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Abstract—In this paper, we introduce the notion of mobility-

cast in opportunistic networks, according to which a message sent
by a node S is delivered to nodes with a mobility pattern similar
to that of S – collectively named place-friends. The motivation
for delivering a message to place-friends stems from the fact that
current social acquaintances are likely to be place-friends. Most
importantly, it has been recently found that a large fraction of
new social contacts comes from place-friends.

After introducing mobility-cast, we present a privacy-
preserving mobility-cast protocol based on the MobileFairPlay
platform for secure two-party computation in mobile environ-
ments. The effectiveness of the protocol in delivering messages
to place-friends is demonstrated by means of simulations based
on a real-world GPS trace.

Finally, in the last part of the paper we present an imple-
mentation of mobility-cast on the Android platform, and test
its computational performance on a number of different smart-
phones. Overall, the results presented in this paper show that
privacy-preserving mobility-cast can be effectively implemented
with current mobile phone technology.

I. INTRODUCTION

While mobile social networks have attracted considerable
interest in the research and industrial community in recent
years, some issues are still to be solved before they gain full
acceptance in the user community. First, if opportunistic com-
munications are used to drive the information dissemination
process, forwarding mechanisms should be designed that are
able to deliver information to all and only the interested users,
so to reduce spamming of messages throughout the network.
Furthermore, privacy issues should be carefully considered
when designing a mobile social application. On the one hand,
knowledge of private user information such as interest profile,
mobility pattern, social ties, etc., has been proved very useful
in improving the information propagation process within the
network [5], [7], [9], [11]. On the other hand, users are
increasingly reluctant in sharing such sensible information
with strangers, which motivate the need for protocols that
consider user privacy in the design cycle by exploiting the
privacy-by-design concept.

In this paper, we try to address the above described is-
sues by introducing an innovative information dissemination
mechanism, called mobility-cast, and by presenting a privacy-
preserving implementation of a mobility-cast protocol. The
idea at the core of mobility-cast is delivering a message M
generated by a user U to users who display a mobility pattern
similar to U ’s one. Following [12], in this paper we call such
set of users the place-friends of user U . As described in

greater detail in Section II, mobility-cast finds its motivation
in the observation that not only current social acquaintances
are likely to be place-friends, but also a large fraction of new
social contacts comes from place-friends.

The mobility-cast protocol that we introduce, which we call
2H since information is propagated only up to the second
communication hop, is built upon a secure function to estimate
place-friendships between two users. As carefully analyzed in
Section VI, the function is secure in the sense that, after its
execution, a party only acquires minimal information about
the other party’s mobility profile. The amount of information
disclosed to the other party can be controlled through a design
parameter of the protocol.

In this paper, we show 2H effectiveness not only in preserv-
ing user privacy, but also in actually delivering information
precisely to place-friends: the results of simulation experi-
ments performed on a real data trace show that 2H strikes
the best compromise between coverage, precision, and cost,
amongst the protocols evaluated in the experiments – see
Section VII for details.

Finally, we report the results of measurements we have
performed on different smartphones with the goal of estimating
the running time of the secure place-friendship estimation
function at the core of 2H. The results have shown that running
times are acceptable (as low as 10 sec) even with current
smartphone technology.

II. MOTIVATION

We want to implement a communication primitive for
opportunistic networks which delivers a copy of message M
generated by user A to all nodes in the network with a mobility
pattern similar to A. In accordance with [12], we call the set
of nodes with a mobility pattern similar to node A the place-
friends of node A. How to formally define a user’s mobility
pattern and a similarity metric between mobility patterns (and,
hence, the set of place-friends) is deferred to later sections. We
call the communication primitive that delivers a copy of the
message to place-friends mobility-cast.

Mobility-cast is motivated by the observation that social
interactions often occur between individuals with similar mo-
bility patterns: e.g., colleagues who work in the same place,
friends attending the same fitness class, etc. This intuitive
observation is quantitatively evaluated in [4], where the authors
show that social ties between people can be inferred with a
good accuracy from co-occurrence in time and space. Hence,
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delivering a message to node A’s place-friends is likely to
reach many relevant social ties of node A. More importantly, it
has been recently shown [12] that a large fraction (about 30%)
of new social interactions arise between place-friends. Similar
observations have been done in [16], where it is shown that
individuals with similar mobility patterns are likely to be close
in the social network graph formed of the phone calls between
users. Thus, delivering a message to place-friends is useful not
only to reach current social ties, but also forthcoming social
ties. Indeed, we can imagine that a mobility-cast primitive
might even increase the fraction of social interactions between
place-friends well beyond the 30% value observed in [12].
Suppose individual B, who is a stranger but place-friend of
node A, receives an interesting message M from A (e.g.,
announcing a special event in which B is very interested);
having received M , node B might be stimulated to initiate a
direct, social interaction with node A.1

Since mobility-cast can be used to deliver messages to
current, as well as future, social ties, its possible uses in
the context of mobile social networking applications are
numerous. For instance, mobility-cast can be used by a fully
distributed, opportunistic mobile social networking application
to effectively disseminate a message to friends without flood-
ing the network. Even more importantly, mobility-cast can
be used to implement fully-distributed, opportunistic “friend
recommendation” services for social networking applications.

III. RELATED WORK

A number of recent studies have shown that the effective-
ness of the information propagation process can be improved
by having users exchange some type of personal information
to drive the process. In [5], [7], the authors show that the ef-
fectiveness of unicasting a message to destination is improved
by considering user social metrics (e.g., centrality in the social
network graph) in the forwarding process. The authors of [11]
instead proposed exchanging user interest profiles in order to
deliver messages only to interested users. A work which is
closer in spirit to ours is [9], where the authors propose to
use the user mobility profile to drive message forwarding.
However, the focus in [9] is in unicasting a message to a spe-
cific destination, while in this paper we aim at implementing
a novel communication primitive, namely, mobility-casting.
Furthermore, privacy issues are not considered in [9], and
mobility profiles are exchanged in clear between users.

Another line of research which is related to our work is
privacy-preserving protocols for opportunistic networks. Most
of existing approaches focus only on securely computing
whether two mobile users are “friends”, where the specific
definition of friendship depends on the approach at hand
[6], [8], [22]. A few protocols consider network-wide infor-
mation propagation protocols built on top privacy-preserving
“friendship” estimation. In [1], the authors introduce a privacy-
preserving protocol for geo-casting a message to a specific

1Notice, though, that this would require node A to include his/her identity
in M , which might be at odds with the need of preserving privacy.

geographic location. In [2], the authors of this paper present
a privacy-preserving approach for implementing the interest-
casting primitive introduced in [11], and analyze the privacy-
preservation vs. forwarding accuracy tradeoff which is in-
herent in the design. The interest-casting protocol has been
implemented within the MobileFairPlay platform for secure
two-party computation in mobile devices [3]. While similar
in spirit to the study presented herein, the works in [2], [3]
consider an existing opportunistic communication primitive,
namely, interest-casting [11]. On the contrary, in this work we
introduce the novel mobility-casting communication primitive,
and present a privacy-preserving, effective implementation of
the proposed primitive.

IV. DEFINING PLACE-FRIENDS

In order to define place-friends, we need to formally define
a notion of individual mobility pattern, and a similarity metric
between mobility patterns. Concerning definition of mobility
pattern, two approaches are typically used in the literature:
a point-of-interest based approach, or a partition-based ap-
proach. In the former approach, a number of points-of-interest
(shopping centers, touristic attractions, public parks, etc.) are
identified within the area of interest (typically, a city). A user’s
mobility profile is then defined by the visiting frequency of the
points-of-interest. This notion of mobility profile is used, e.g.,
in [12]. In the partition-based approach, the area of interest
is partitioned into a number of non-overlapping regions, and
a user’s mobility profile is given by the visiting frequency
of each sub-region. Sub-regions typically are defined as the
coverage area of a cell-tower (see, e.g., [14]), or based on a
square cell partitioning (see, e.g., [1], [4], [9]).

While in principle our ideas can be applied to any defi-
nition of mobility pattern, for the sake of definiteness in the
following we use a square grid partition-based approach. More
specifically, we assume the mobility region R is a square of
side `, which is logically partitioned into m = h2 square
cells of side `

h

, where h is a tunable parameter. Assuming an
arbitrary ordering of the m cells, the mobility pattern of a user
A is defined as an m-dimensional vector M

A

= (xA

1 , . . . , x
A

m

)

of real numbers xA

i

2 [0, 1], where xA

i

denotes the relative
visiting frequency for the i-th cell, and

P
i

xA

i

= 1.
Given the above definition, and in accordance with [9], a

user’s mobility pattern can be represented as a vector (point)
in an m-dimensional vectorial space. Different similarity met-
rics can be used to compare two mobility patterns. In [9],
the authors suggest to use Euclidean distance between the
two points corresponding to the individual mobility patterns.
Alternatively, one can use the cosine similarity metric used
in [11] to quantify similarity between user interests, where
interest profiles are represented as points in a vectorial space as
well. However, we have to consider that vectors representing
mobility patterns are likely to be highly skewed, with most
cells visited with near zero frequency, and only a few cells
visited on a regular basis. This observation comes from recent
studies showing that individuals tend to spend most of the time
in a few locations: more specifically, the visitation frequency
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of locations follows a Zipf’s law with exponent 1.2 [14],
corresponding to having an individual spending about 60%
of the time in the 5 most popular locations. Thus, similarity
metrics that consider all coordinates in the vectorial space such
as Euclidean distance and cosine metric tend to shallow the
relative difference/similarity between mobility patterns, due to
the many close-to-zero coordinates which are present in the
overwhelming majority of mobility patterns.

To get around this problem, in this paper we use a similarity
metric based on comparing the k cells most frequently visited
by users. More specifically, let F

A

= {iA1 , . . . , iA
k

} and F
B

=

{iB1 , . . . , iB
k

} be the set of most frequently visited cells of user
A and B, respectively, where iX

j

denotes the ordinal number
in the cell ordering of the j-th most frequently visited cell of
user X . We say that users A and B are place-friends if and
only if

|F
A

\ F
B

| � ˆ� ,

where ˆ�, with 1  ˆ�  k, is a tunable integer parameter
representing the minimal degree of similarity needed to declare
two users place-friends.

Notice that, differently from other metrics such as Euclidean
distance and cosine metric, the notion of similarity defined
above is apt to a scenario in which most of the x

i

values in a
mobility profile are near-zero, since only the most frequently
visited cells are accounted for in the similarity metric. Fur-
thermore, the notion of similarity defined above is apt to a
privacy-preserving implementation, using well-known secure
two-party protocols for secure set intersection computation
(see below).

V. THE MOBILITY-CAST PROTOCOL

Participants in Mobility-Cast are users who have a GPS-
equipped device, like smartphones or tablets, that can keep
trace of their mobility pattern during the daily life. In our
protocol, we consider that the map of a zone, e.g., a city, is split
into cells. Cells can assume different size, for instance they
can be represented by a square where each side is long 10, 100
or 1000 meters. Clearly, there is a tradeoff between location
accuracy (lower with larger cells), and memory requirements
on the device (larger with smaller cells).

The current location of a user is collected at regular time
intervals (e.g., a few minutes), and it is stored in a file.
At regular intervals (say, every few hours or a day), all the
collected data are processed to calculate the visiting frequency
f
new

(C
i

) for each cell C
i

in the map. The new frequency
values are combined with the previously stored frequency
value f

old

(C
i

) to compute the current mobility profile of
the user. We use the typical exponentially weighted moving
average (EWMA) to compute the mobility profile of the user,
i.e., we update the frequency value f(C

i

) for cell C
i

as
follows:

f
old

(C
i

) = f(C
i

), f(C
i

) = ↵f
new

(C
i

)+(1�↵)f
old

(C
i

) ,

where 0 < ↵ < 1 is the degree of weighting decrease.

Starting from the vector f(C
i

) of frequency values for
each cell C

i

, our protocol builds the user mobility profile by
maintaining a list of the IDs of the k most visited cells, i.e.,
the index set FA for user A. Notice that, since our protocol is
based on computing the set intersection between the F sets,
elements in FA are not ordered.

In order to provide a privacy-preserving comparison be-
tween user mobility profiles, we propose a solution based on
Secure Two-party Computation functions [21]. We recall that
in secure two-party computation we have two parties (Alice
and Bob), each holding some private data x and y, respectively.
The goal of secure two-party function computation is allowing
Alice and Bob to jointly compute the outcome of a function
g(x, y), without disclosing to the other party the own input.
The straightforward way to solve the above problem would
be to have a Trusted Third Tarty (TTP) to which Alice and
Bob securely send the data, and to have the TTP compute
g(x, y) and separately send the outcome to Alice and Bob. The
business in secure two-party computation amounts to securely
compute g(x, y) without the need of a TTP.

We adopt our recently developed MobileFairPlay framework
[3], which is a Android-based implementation of the FairPlay
framework to run secure functions [10]. FairPlay has been
proven to be secure against a malicious party; in particular i) a
malicious party cannot learn more information about the other
party’s input than it can learn from a TTP that computes the
function; and ii) a malicious party cannot change the output
of the computed function [10]. Notice that, as customary in
secure two-party computation, there is an asymmetry on the
provided security guarantees: in particular, there is no way
to prevent Alice from terminating the protocol prematurely,
and not sending the outcome of the computation to Bob. This
situation can be detected by Bob, but cannot be recovered
from.

In Fig. 1 we pictorially present our protocol, which makes
use of Secure-two party computation to compare Alice and
Bob mobility profiles. The protocol assume a threshold value
�  ˆ�, known to all participants, is used to control the
message forwarding process. The protocols starts when Alice
and Bob are in close proximity; for instance, using a Bluetooth
connection, when they are less than 20m apart. Initially, Alice
starts a connection to Bob; once received the connection
request from Alice, Bob starts the secure computation of the
function:

g(FA, FB

) =

⇢
True if |F

A

\ F
B

| � �
False otherwise . (1)

If the profiles are found to be similar, Alice and Bob
are estimated as place-friends, and they start comparing the
content of their buffers and exchange files. Otherwise, the
connection is terminated. Notice that, if � < ˆ�, function
g(FA, FB

) might evaluate at True even if Alice and Bob
are not place-friends. This situation can be avoided by setting
� =

ˆ�. However, as we shall see in the next section, increasing
the value of � is detrimental for privacy preservation since
more information about the own mobility pattern is disclosed
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Fig. 1. Protocol flow to discover similarity of mobility profiles.

to the other party during the computation. For this reason,
using a value of � lower than ˆ� is often preferable in practice.

The message forwarding policy is as follows. If Alice is
the sender of a message M , or if Alice received the message
directly from the sender, M is delivered to Bob if Alice and
Bob are estimated to be place-friends according to function
(1). In all other cases, including the case in which Alice and
Bob are estimated to be place-friends but Alice received M
from a node which is not the sender of M , M is not delivered
to Bob. Notice that this forwarding policy, which can easily
be implemented including an hop-count field in the message,
ensures that any message travels at most two-hops to reach
a place-friend. For this reason, we name our protocol 2-hops
mobility-cast (2H for short).

Restricting message forwarding to two hops finds its moti-
vation in the fact that, due to the need of preserving privacy,
Alice and Bob always use their own mobility profiles to
estimate place-friendships. Hence, the decision on whether a
message M generated by node S and currently in Alice’s
buffer should be forwarded to Bob is not based on the
similarity between Bob’s and S’s mobility profiles, but on the
similarity between Alice’s and Bob’s profiles. This implies
that the message M can be delivered to nodes that are not
place-friends of S, impacting the precision of the forwarding
process. It is easy to see that the higher the hop distance from
S, the higher the likelihood of forwarding the message to a
false place-friend of S. On the other hand, message forwarding
is useful to speed up the message propagation process and
increase coverage. Restricting forwarding up to the second
communication hop is a compromise that has been shown to
work well in related work [2].

VI. PRIVACY ANALYSIS

While not disclosing user mobility profiles, a certain leakage
of private information is unavoidable when using secure two-
party computation. In particular, at the end of the protocol
computation, the following information is leaked to the other
party:

– if the outcome of g(FA, FB

) is True, the party (say, Bob)
knows that at least � of his most popular locations are
in common with Alice. However, he does not know the
exact number of common locations (can be any number
in the [�, k] interval), nor which they are exactly. Only in
the case that � = k Bob knows that Alice has the same
exact mobility profile as the own profile.

– If the outcome of g(FA, FB

) is False, Bob knows only
that less than � of his most popular locations are in
common with Alice. However, he does not know the exact
number of common locations (can be any number in the
[0,�� 1] interval), nor which they are exactly.

To quantitatively evaluate privacy leakage, we use the
entropy-based privacy preservation metric introduced in [2].
In particular, we want to quantify the privacy leakage caused
by the protocol execution, under the assumption that the
attacker’s goal is discovering the other party’s mobility profile,
i.e., his/her k most frequent locations. Taking w.l.o.g. Alice’s
perspective, Bob’s profile is a set of k cell IDs, which can be
modeled as a random variable Y = (y1, . . . , yk). Each specific
realization of r.v. Y is denoted Y

i

, and corresponds to a set
of k cell IDs chosen amongst the m possible cell IDs. Hence,
the number of possible values of r.v. Y is

�
m

k

�
.

The bit entropy of a random variable Y with possible values
{y1, . . . , yn} is defined as [13]:

H[Y ] = �
nX

i=1

p(Y
i

) log2 p(Yi

) ,

where p(y) is the probability mass function of random variable
Y . The privacy preservation metric of a certain protocol P is
defined as

pp(P) =

H[Y
after

]

H[Y
initial

]

,

where Y
initial

and Y
after

are the r.v. modeling Alice’s un-
certainty about Bob’s profile initially and after the execution
of protocol P, respectively. The pp metric takes values in
[0, 1], with 0 indicating that after P’s execution Alice knows
exactly Bob’s mobility profile (zero privacy preservation),
and 1 indicating that after P’s execution Alice has the same
knowledge about Bob’s profile he had before executing the
protocol (maximal privacy preservation).

To quantify the pp metric, we need to make same as-
sumptions about the distribution of r.v. Y . In the following,
we quantify privacy leakage under the assumption that all
locations have the same probability of being included in a
node’s mobility profile. In other words, we assume that all�
m

k

�
possible subsets of k out of m possible cell IDs are

equiprobable. Notice that this assumption is not necessarily in
contrast with the observation made in [14] that people tend
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to frequently visit only a few locations. In fact, people in
general have different more frequently visited location, and
the resulting aggregate location popularity (which is the one
that determines the distribution of r.v. Y ) might be relatively
uniform. On the other hand, analyzing privacy leakage under
a non-uniform location popularity assumption (e.g., assuming
Zipf’s law) is cumbersome, due to the need of computing
each single p(Y

i

) value in the definition of bit-entropy. This
further justifies our working assumption of uniform location
popularity.

Let us first compute H[Y
initial

]. If locations (cell IDs) have
uniform popularity, from Alice’s perspective any of the

�
m

k

�

possible Bob’s mobility profiles has the same probability 1

(

m
k )

of occurrence. Hence, we get:

H[Y
initial

] = �
(

m
k )X

i=1

p(Y
i

) log2 p(Yi

) = �
(

m
k )X

i=1

1�
m

k

�
log2

1�
m

k

�
=

=

(

m
k )X

i=1

1�
m

k

�
log2

✓
m

k

◆
= log2

✓
m

k

◆
.

Let us now compute H[Y
after

]. We recall that the value of
� used to estimate place-friendship is fixed and know to both
parties. We distinguish the case of protocol execution with
outcome True or False.

If the outcome is True, after the protocol execution Alice
knows that Bob’s mobility profile has at least �  k locations
in common with the own profile. Fixed a value h, with � 
h  k, of possible common locations, the number of possible
choices for Bob’s profile with h locations in common with
Alice can be computed as follows:

✓
k

h

◆
·
✓
m� k

k � h

◆
.

In fact, the first binomial coefficient accounts for all possible
choices of the h locations in common with Alice’s profile,
taken amongst the k locations in Alice’s profile. The second
binomial coefficient accounts for all possible choices of the
remaining k � h locations in Bob’s profile, which are taken
amongst the m � k locations which are not in common with
Alice’s profile.

Given the above, we can compute H[Y
after

] in case of True
outcome as follows:

H[Y T

after

] = log2

 
kX

h=�

✓
k

h

◆
·
✓
m� k

k � h

◆!
.

If the outcome is False, Alice knows that all possible
Bob’s profiles with at least � locations in common with the
own profile should be excluded from the universe of possible
profiles, i.e.,

H[Y F

after

] = log2

 ✓
m

k

◆
�

kX

h=�

✓
k

h

◆
·
✓
m� k

k � h

◆!
.

The value of the pp metric for increasing values of k and
� = 3 is reported in Figure 2. As expected, a True outcome

of the protocol’s execution discloses more information to the
adversary. However, the amount of information disclosed to
the other party can be reduced by increasing the value of the
number k of locations in the mobility profile. Notice, though,
that increasing the value of k beyond a reasonable value has a
negative effect on the accuracy of the mobility-cast operation,
indicating a tradeoff between networking performance and
privacy already observed in [2] for the case of interest-cast.

Figure 3 reports the pp metric for increasing values of �,
with parameter k = 10. In case of True protocol outcome (the
most critical case for privacy leakage), we can reduce privacy
leakage by reducing the value of �. Also in this case the need
of privacy preservation is at odds with the accuracy of the
mobility-cast operation: with a lower value of �, relatively
less locations must be in common to estimate the two parties
as place-friends, thus potentially propagating a message M to
users who are not actual place-friends of the sender of M .

3 4 5 6 7 8 9 10
k

0.2

0.4

0.6

0.8

1.0
pp

False

True

Fig. 2. Value of the pp metric for increasing values of k, with parameter �
fixed to 3.

2 4 6 8 10
l

0.2

0.4

0.6

0.8

1.0
pp

False

True

Fig. 3. Value of the pp metric for increasing values of �, with parameter k
fixed to 10.

Finally, we briefly analyse the case in which an attacker
uses his network interface to eavesdrop the channel trying to
infer whether Alice and Bob are place-friends. To this purpose,
we split our protocol flow into two phases: i) the Secure
Computation Set Intersection and ii) the Packet Forwarding.
On the first phase, the attacker observes only parts of the
secure-two party protocol that are not significative for him, so
he is not able to read sensible data such us cells frequented,
or common cells. On the second phase, which occurs only
if Alice and Bob have common cells, the attacker may see
the file transferred from and, also, he may infer that they are
place-friends, although the attacker is not able to know their
common cells. A solution for this kind of attack is the use of a
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cryptographic tunnel between Alice and Bob communications.
in fact, the tunnel will hide the entire communication content
and, the attacker will not be able to deduce whether they are
place-friends.

VII. EXPERIMENTAL EVALUATION

In order to estimate the performance of 2H , we have used
the real-world mobility trace available through the Microsoft
Research GeoLife GPS Trajectories project [17][18][19]. The
dataset provides GPS trajectories of 182 people collected in a
period of over five years (from April 2007 to August 2012). A
GPS trajectory is represented by a sequence of time-stamped
points stored every 1 to 5 seconds or every 5 to 10 meters.
Each point contains the information of latitude, longitude and
altitude and majority of the data was collected in Beijing.

Since the original dataset is huge and covers a very long
time interval, we decided to consider only a time interval of
one year. More specifically, we used the trajectories saved in
2008, which is the denser year with 77 active users in the
trace.

A. Data pre-processing
In order to derive user mobility profiles, we divided the

central area of the city of Bejing into square cells. Each cell
is 1 Km wide, and in total we consider an area of 340 Km2,
corresponding to 340 cells.

Fig. 4. In grey, the consiered area of Beijing

Preliminary to the experiments, we calculated the frequency
with which each user visits the 340 cells using the entire, one-
year long data trace. We then recoded for each user her 10
most visited cells, which forms her mobility profile. Then, in
order to set the value of ˆ� and � to reasonable values, we
have computed, for each user in the dataset, how many cells
on average she has in common with each of the other 76 users.
The results of this preliminary evaluation showed that, on the
average, a user has 1.85 cells in common with another user, but
the variance is high (2.39). This indicates that mobility profiles
have very different degrees of similarity between themselves,

which is a good scenario to evaluate the ability of protocol
2H to deliver messages precisely to place-friends.

B. Simulation experiments

We implemented a Java simulator that uses the Bejing
data trace to estimate mobility-cast performance. During a
simulation experiment, a user U is selected as the message
sender. For the given user U , the simulator identifies within the
year-long trace a two-months portion with the largest density
of encounters. The message M is then generated at node U
at the beginning of the identified two-months stretch of the
trace, and the forwarding process starts according to one of
the forwarding policies described in the next section. At the
end of the experiment, the ID of users that received M is
recorded, as well as the ID of U ’s place-friends (computed
using the mobility profiles). For each timestamp in the dataset
trajectory, we consider all possible pairs of generic users Alice
and Bob. If they are within a distance of 1000 m, Alice checks
whether she has in her queue packets that she may forward
to Bob according to the chosen forwarding policy. If this is
the case, depending on whether place-friendship is required
by the forwarding policy, Alice starts comparing the number
of cells in common with Bob’s mobility profile, and, in case
this number is larger than a threshold �, message forwarding
takes place. Notice that the large value of the transmission
range of 1 Km – much larger than typical WiFi and Bluetooth
communication ranges – has been chosen to cope with the very
low density of users per unit area in the data trace.

C. Forwarding protocols

Since 2H is the first mobility-cast protocol introduced in the
literature, there is no direct competitor to compare against.
Nevertheless, we have included the following forwarding
protocols in the simulations:

– DD: strictly speaking, DD is not a real forwarding
protocol, since no packet forwarding takes place. In DD,
it is only the sender (say, Alice) of a message M who can
deliver it to other users. In particular, Alice delivers M to
another user (say, Bob) subject to the condition that Alice
and Bob have at least ˆ� common cells in their mobility
profile. Since threshold ˆ� is used (instead of threshold �
as in protocol 2H), only actual place-friends of Alice can
receive M under protocol DD.

– EP: it is the classical Epidemic forwarding protocol [20].
Whenever Alice, who has a copy of M , meets another
user (say, Bob) who does not hold M , she forwards a
copy of M to Bob. Forwarding occurs independently of
whether Alice and Bob are place-friends.

– PF: it is a 2-hops probabilistic forwarding protocol.
Whenever the sender of message M (say, Alice) en-
counters another user (say, Bob), she forwards a copy
of M to Bob with fixed probability p. Similarly to EP,
forwarding occurs independently of whether Alice and
Bob are place-friends. The same forwarding rule is used
by any user who received M directly from Alice. No
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message forwarding is allowed beyond the second hop
of communication.

D. Results
The results reported in this section are computed averaging

across 77 simulation experiments, one for each user in the data
trace. The following performance metrics have been estimated:

– Coverage: it is the ratio between the number of place-
friends of the sender user U that received the message
M , and the total number of U ’s place-friends. Notice
that coverage is computed using threshold ˆ� to define
place-friends. The coverage metric measures how good a
protocol is at delivering messages to U ’s place-friends.
In a sense, coverage can be considered as the counterpart
of packet delivery rate in unicast communication.

– Precision: it is the ratio between the number of U ’s place-
friends that received M , and the total number of users
that received M . Precision measures the accuracy of a
protocol in delivering messages only to U ’s place friends.

– Cost: it is the total number of copies of M circulating
in the network at the end of the protocol execution. Cost
measures the routing overhead of a protocol.

– Delay: it is the average time interval elapsing since the
time instant at which U generated M , and the time instant
at which a place-friend V 6= U received M for the first
time.
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Fig. 5. Coverage of the various forwarding protocols as a function of �.

Figure 5 reports the coverage experienced by the various
forwarding protocols when ˆ� = 3 and � is varied from 1 to
3. EP and DD performance is independent of the value of �,
since place-friendships is not considered during EP forwarding
process, while it is defined based on the fixed threshold ˆ�
in the DD protocol. PF performance does depend on � for
the following reason. In order to understand whether 2H
forwarding strategy is actually superior to a random one, we
have set the parameter p in PF in such a way that the average
cost of PF is as close as possible to the cost of 2H for the
corresponding value of �. This resulted in setting p = 0.5
when � = 1, p = 0.3 when � = 2, and p = 0.2 when
� = 3. This explains why, in the plot reported in Figure 5,
PF performance changes with �, despite the fact that place-
friendship is not considered in the forwarding process.
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Fig. 6. Cost of the various forwarding protocols as a function of �.

As expected, EP has the best coverage performance, due
to the epidemic forwarding process. However, EP pays the
fee in terms of cost, which as much as 2.3 times higher than
that of 2H – see Figure 6. EP performs poorly also in terms
of precision, due to the fact that the forwarding process is
oblivious to place-friendship – see Figure 7. DD is at the
other end of the scale with respect to EP: it has poor coverage
performance but minimum cost due to the lack of forwarding,
and it has optimal precision due to the fact that M is delivered
only to place-friends of the sender node U .
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Fig. 7. Precision of the various forwarding protocols as a function of �.

Protocols 2H and PF strike a compromise between coverage
and cost, improving coverage performance considerably with
respect to DD, while considerably reducing the cost with
respect to EP. It is interesting to compare 2H and PF perfor-
mance. While the two protocols display comparable coverage
performance, 2H achieves a much better precision than PF –
see Figure 7. This is due to the fact that, while the average
coverage performance of the two protocols is very similar,
the variance in the achieved coverage is very different for
the two protocols – see Table I. The variability in coverage
performance displayed by randomized forwarding explains the
much better performance displayed by 2H with respect to PF
in terms of precision.

In Fig. 8 we show the Delay result of all simulated protocol.
Findings say that DD reaches the lowest delay value due to
its low dissemination power. On the other side EP provides
the highest delay, for the opposite reason DD. However, both
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Fig. 8. Delay of the various forwarding protocols as a function of �.

protocols do not depends on � due to their nature. The protocol
PF gives different results depending on the � value, reaching
the lowest value for � = 3 in which the probability set for the
forwarding is equal to 0.2 . Finally, the 2H protocol results to
be less dependent on the � influence.

Protocol � Var (%) Protocol � Var (%)
2H 1 5.3 PF 1 7.7
2H 2 5.3 PF 2 8.2
2H 3 5.4 PF 3 9.4

TABLE I
VARIANCE IN COVERAGE PERFORMANCE OF PROTOCOLS 2H AND PF.

Summarizing, we can conclude that 2H proved effective in
delivering messages only to place-friends, striking the best
compromise between coverage, precision, cost, and delay
amongst the considered protocols. The optimal setting of the
parameter � in protocol 2H is a design choice that should
account not only for the performance metrics considered
herein, but also for the privacy preservation properties of the
protocol as analyzed in Section VI.

VIII. PROTOTYPE IMPLEMENTATION OF 2H

In order to verify whether protocol 2H can be efficiently
executed with current smartphone technology, we have im-
plemented the most computationally intensive task of the
protocol on the Android platform. More specifically, we have
implemented the secure computation of function g(FA, FB

)

as defined in equation (1). Function g(FA, FB

) secure com-
putation is implemented in MobileFairPlay [3], an Android-
based implementation of FairPlay [10]. FairPlay functions
must be written with the language Secure Function Definition
Language (SFDL), which is a high level language that allows
developers to write simple function that are then converted into
garbled boolean circuits. Only a limited number of commands
and operations are available in SFDL. For instance, it is not
possible to use text values in a function, but only integers or
simple types are allowed. MobileFairPlay then transforms an
SFDL program into a Java program executable on Android
smartphones.

The SFDL function that we have written to securely com-
pute similarity between Alice’s and Bob’s mobility profiles is
quite simple and works by comparing each cell ID in Alice’s

profile with those in Bob’s profile. If the same cell ID appears
in both profiles, then a counter is increased. At the end of the
function, the value of the counter (common frequently visited
cells) is compared to the threshold � known to both parties. If
the comparison is positive, then the output for both Alice and
Bob is True (represented by integer 1), otherwise it is False
(represented by integer 0).

The APP that we have built is a prototype of the 2H
protocol including secure estimation of place-friendship. User
mobility is traced every minute. Once per day, the application
takes all saved GPS coordinates and calculates frequencies
per cells. When two users Alice and Bob meet each other,
Alice starts challenging Bob on the number of common cells
that they have in their profiles in a privacy-preserving manner.
The current version of the APP considers mobility profiles
composed of the five most frequently visited cells. Once Alice
starts the connection with Bob through the Bluetooth interface,
the devices are automatically paired for the first time. Then, the
Secure-Two party computation of function g(FA, FB

) begins.
At the end of the computation, both users know the value
of g(FA, FB

). Frequencies per cell used as input by both
participant can not be manually inserted, but they are directly
included by our APP into the Secure-two party procedure. This
step is required to avoid that Alice and Bob may manipulate
their input guessing the same vector input of the other. Finally,
if Alice and Bob recognise each other as place-friends, they
start an interaction phase consisting in sharing files (txt, pdf,
jpg, etc.).

To evaluate the computational time of the application, we
have executed the APP on five smartphones, which are listed
in Table II together with their technical specifications.

Fig. 9 reports the time needed to compute g(FA, FB

),
including communication through the Bluetooth interface. In
the reported results, the Samsung Galaxy S2 always played
Alice’s role, while the Bob’s role is played by the other
smartphones. We can see that running times range between
less than 10 and 12.5 seconds, with the best running time
achieved by the fastest smartphone, i.e. Sony Xperia T. We can
then conclude that our proposed 2H protocol can be effectively
executed also with current smartphone technology.
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Fig. 9. Time needed to compute function g(FA, FB).
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Smartphone CPU RAM Bluetooth Ver. Android O.S.
Samsung Galaxy S2 Dual-core 1228 MHz 1 GB 3.0 2.3.6

Samsung Galaxy S-Plus Single-core 1443 MHz 512 MB 3.0 2.3.5
Samsung Galaxy Nexus One Dual-core 1200 MHz 1024 MB 3.0 4.0

Sony Xperia T Dual-core 1500 MHz 1024 MB 2.1 4.0
HTC Desire Single-core 1024 MHz 576 MB 2.1 2.2.3

TABLE II
SMARTPHONES USED FOR TESTING COMPUTATION OF FUNCTION g(FA, FB).

IX. CONCLUSIONS

In this paper, we have put forward the idea of delivering
messages to place-friends in opportunistic networks. Deliver-
ing messages to place-friends (which we called mobility-cast)
has the potential to reach not only current social contacts of a
user, but also forthcoming social contacts as observed in recent
studies. We have introduced a privacy-preserving design of
a mobility-cast protocol called 2H, and analyzed its privacy-
preservation properties, as well as evaluated its performance
through experiments based on a real-world mobility trace. The
results of the experiments have shown that 2H strikes the
best balance between coverage, precision, and cost, amongst
the considered protocols. Finally, we have shown that secure
place-friendship estimation, which is at the core of 2H, can be
effectively implemented with current smartphone technology,
experiencing running times below 10 seconds.

As directions for future work, we mention extending the ex-
perimental evaluation using more data traces to better quantify
2H benefits, and realizing a full-fledged mobility-cast APP to
be tested with real users.
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