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Abstract—In this paper, we address the problem of balancing the net-
work traffic load when the data generated in a wireless sensor network is
stored on the sensor node themselves, and accessed through querying
a geographic hash table. Existing approaches allow balancing network
load by changing the geo-routing protocol used to forward queries in
the geographic hash table. However, this comes at the expense of
considerably complicating the routing process, which no longer occurs
along (near) straight-line trajectories, but requires computing complex
geometric transformations.

In this paper, we demonstrate that it is possible to balance network
traffic load in a geographic hash table without changing the underlying
geo-routing protocol. Instead of changing the (near) straight-line geo-
routing protocol used to send a query from the node issuing the query
(the source) to the node managing the queried key (the destination), we
propose to “reverse engineer” the hash function used to store data in the
network, implementing a sort of “load-aware” assignment of key ranges
to wireless sensor nodes. This innovative methodology is instantiated
into two specific approaches: an analytical one, in which the destination
density function yielding quasi-perfect load balancing is analytically
characterized under uniformity assumptions for what concerns location
of nodes and query sources; and an iterative, heuristic approach that
can be used whenever these uniformity assumptions are not fulfilled. In
order to prove practicality of our load balancing methodology, we have
performed extensive simulations resembling realistic wireless sensor
network deployments showing the effectiveness of the two proposed
approaches in considerably improving load balancing and extending
network lifetime. Simulation results also show that our proposed tech-
nique achieves better load balancing than an existing approach based
on modifying geo-routing.

Index Terms—Geographic hash tables; load balancing; wireless sensor
networks; in-network data storage; network lifetime.

1 INTRODUCTION

Geographic hash tables [15] have been recently proposed
as an approach for effectively retrieving data from a
wireless sensor network when sensed data is stored on
the sensor nodes themselves (in-network data storage).
More specifically, in ght approaches1, each sensor node
is assigned a value in a certain range (for instance, the
two-dimensional real interval [0, 1]2) by hashing its coor-
dinates in the deployment region; also, each sensed data
is tagged with a meta-data used for retrieval purposes,
and meta-data is hashed to a key value within the same
range used for mapping node coordinates through a

The authors are with Istituto di Informatica e Telematica del CNR, Pisa, Italy.
1. To avoid confusion, in the following we use ght to denote a generic

geographic hash table approach, and GHT to denote the specific ght
approach proposed in [15].

properly designed hash function. Keys are then stored at
the sensor nodes – in general, at a sensor node different
from the one which generated the data – based on
a geographic proximity criterion, and overlay links in
the distributed hash table are actually collapsed to the
underlying physical, wireless links thanks to the use of
geo-routing. In geo-routing (see, e.g., [2], [11]), a message
is routed towards a specific geographic location (x, y)
instead of a specific destination node, and it is typically
delivered to the node whose key is closest to destination
point (x, y).2 Thus, routing a query for a specific data in
a ght is a very simple task: if query for a certain key
k = (xk, yk) is generated at a certain node u = (xu, yu),
node u simply generates a message setting (xk, yk) as the
destination point, and the query will be delivered to the
node whose ID is closest to (xk, yk), which is in charge of
storing the data with key k. Geographic hash tables find
application not only in wireless sensor networks [15], but
also in P2P resource sharing in wireless mesh networks
[3], [6].

Despite the fact that ghts have been proved effective
in retrieving data in large scale wireless sensor networks,
they suffer from problems affecting distributed hash
tables in general, a major of which is imbalanced usage
of storage and/or network resources. Balancing storage
resources (number of stored keys per node) is important
in sensor networks due to the limited memory size of
sensor nodes. Imbalance in network traffic load instead
has a negative effect on network lifetime, since energy-
consuming transmit/receive operations are not evenly
spread amongst network nodes. This explains why re-
searchers have recently proposed techniques to improve
storage and load balancing in ghts. In this paper, we
are concerned with the load balancing problem in ghts,
and we do not consider storage balancing – see [1] and
references therein for ght storage balancing techniques.

In ghts, load imbalance can occur mainly due to the
two following reasons. First, ght approaches are typically
designed assuming that nodes are uniformly distributed
in the deployment region, leading to severe imbalance
in case nodes are concentrated around some locations
and/or “coverage holes” in the deployment region occur

2. For simplicity, in this paper we consider a two-dimensional wire-
less sensor network deployment.
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[16]. Even if nodes are uniformly distributed, load im-
balance still occurs due to the well-known fact that geo-
routing selects (near) straight-line trajectories, causing
network traffic to concentrate around the center of the
deployment region [4], [9].

A possible way of lessening the load imbalance prob-
lem in ghts is to modify the underlying geo-routing
protocol, so that packets no longer travel along (near)
straight-line trajectories. Approaches such as the ones
proposed in [12], [14], [16] can be used to this purpose.
However, changing the geo-routing protocol comes at
a price. First, a customization of the routing protocol
for the purpose of ght would be needed, which might
entail considerable implementation efforts in those sce-
narios where other applications share the same routing
protocol, and changes in the routing protocol might
impact on upper layers and existing applications. Note
that while implementing different routing protocols for
different applications is in principle possible, this would
negatively impact the memory footprint of the routing
layer, and it is thus not advisable in wireless sensor
networks. Second, a common feature of the load balanc-
ing geo-routing protocols mentioned above is that they
require computation of complex geometric transforma-
tions, which are used to map the physical space into a
virtual space in which the routing process takes place.
Thus, current load balancing approaches can be imprac-
tical in application scenarios where the nodes composing
the geographic hash table have limited computational
power and memory resources, as it is typically the case
in wireless sensor networks.

Given the above discussion, a question that arises is
the following: is it possible to achieve load balancing in
a geographic hash table without changing the underlying
straight-line geo-routing protocol? In this paper, we give
a positive answer to this question, presenting a novel
methodology to address the load balancing problem
in ghts: instead of changing the geo-routing protocol,
we propose to “reverse engineer” the hash function so
to reduce the load imbalance caused by straight-line
geo-routing. The methodology is instantiated into two
specific approaches. In a first, analytical approach the
key idea is to characterize, for each point (x, y) in the
deployment region, the desired destination probability
density function (pdf), i.e., the probability that a node
residing in (x, y) is the destination of a random query.
By properly designing such destination density func-
tion, we formally prove that concentration of network
traffic in the center of the deployment region can be
avoided even in presence of straight-line geo-routing,
and quasi-perfect load balancing can be achieved. Once
the desired destination density has been characterized,
the hash function can be “reverse engineered” so that
the expected number of keys stored by a node (which,
together with key popularity, determines its likelihood of
being the destination of a query) results in the desired
destination density.

The analytical approach is based, among others, on

uniformity assumptions for what concerns node and
source density3. When these assumptions are not met,
we propose to use a different load balancing approach,
based on an iterative heuristic that repeatedly changes
key ranges assigned to nodes as long as a load balancing
metric is improved.

Performance of our proposed approaches have been
extensively evaluated through simulations resembling
realistic wireless sensor network deployments. Simula-
tion results show the effectiveness of our methodology
in improving load balancing at the expense of only
modestly increasing the overall network traffic (which
is unavoidable when load balancing is sought [7]), even
in presence of non-uniform node or source distribu-
tion. Despite increase in overall traffic, our technique
is proved through simulation to substantially increase
network lifetime, thanks to the more balanced spreading
of network traffic among network nodes. Furthermore,
simulation results show that our proposed technique
provides better load balancing and longer network life-
time as compared to the load balancing approach of [12]
based on modifying the geo-routing protocol.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 introduces the network
model and preliminary definitions. Section 4 describes
our theoretical load balancing approach, while Section
5 introduces the HeLB heuristic to deal with those sit-
uations where uniformity assumptions on node and/or
source distribution do not hold. Section 6 presents the
results of our extensive simulation-based evaluation.
Finally, Section 7 concludes the paper.

2 RELATED WORK

The problem of achieving load balancing in geographic
hash tables in presence of non-uniform node distribution
has been recently addressed in [16]. In case of inho-
mogeneous node distribution, some of the nodes (those
close to the boundary of scarcely populated regions)
tend to be overloaded in terms of the number of keys
they are requested to store, resulting in highly imbal-
anced (storage) load. The authors of [16] propose to use
complex geometric transformations to map the physical
network deployment space into a virtual space in which
node distribution is shown to be near-uniform. The ght
abstraction (both key assignment and routing) is then
realized on the virtual, instead of physical, space, thus
considerably improving load balancing at the expense of
increasing the overall network load. Increase of overall
network load is due to the fact that geo-routing in the
virtual space results in a trajectory in the physical space
which is longer than a straight-line trajectory.

Other approaches [12], [14], originally proposed for
geo-routing, can be exploited to improve load balancing
in ght under the assumption of uniform node distri-
bution in the physical space. The idea is to avoid the

3. Source density defines the probability, for each point (x, y) in the
deployment region, that a node located in (x, y) is the source of a
query.
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concentration of network traffic in the center of the de-
ployment region by performing geo-routing on a virtual
space instead of on the physical space. In other words, a
point (x, y) in the physical space is univocally mapped
to a point (xv, yv) in the virtual space, and geo-routing is
performed using virtual, instead of physical, coordinates.
This way, straight-line trajectories in the virtual space are
turned into non-linear trajectories in the physical space,
thus improving overall load balancing. The difference
between [12] and [14] is on the choice of the virtual
space, which is a suitably defined distance-preserving
symmetric space in [12], and a sphere in [14]. Similarly
to [16], the price to pay is an increase of the overall
network load, due to the fact that non-linear trajectories
in the physical space are necessarily longer than straight-
line ones. Indeed, it has been proven in [7] that this
load balancing vs. total network traffic tradeoff cannot
be avoided in geometric graphs.

Differently from existing approaches, our load balanc-
ing technique does not rely on a notion of virtual space,
so no changes to the geo-routing protocol are required.
Instead, we propose to modify the hash function design,
so that the probability mass of the destination pdf is
concentrated towards the border of the deployment re-
gion, assigning relatively more keys to manage to border
nodes than to central ones. This probability mass concen-
tration on the border has the effect of slightly increasing
the average trajectory length, which in this case is not
due to the fact that trajectories are not straight-lines
as in [12], [14], [16], but to the fact that the expected
distance between a randomly chosen query source and
destination is relatively longer. Thus, our results confirm
that the load balancing vs. total network traffic tradeoff
described in [7] cannot be avoided in geometric graphs.

Another major advantage of our load balancing
methodology with respect to existing techniques is ver-
satility: throughout this paper, we describe how our
ideas can be extended to deal with inhomogeneous
query source density and arbitrary key popularity dis-
tribution. Furthermore, in the supplemental material we
also describe other possible applications of our load bal-
ancing methodology in the fields of mobility modeling
and security.

A further positive aspect of our approach is that,
differently from existing proposals [12], [14], [16], our
analytical approach allows a theoretical characterization
of the expected overall network traffic increase due to
load balancing. This theoretical characterization, which
is proved to be very accurate based on extensive sim-
ulation results, can be used to properly tune the load
balancing vs. total network traffic tradeoff at design
stage. The possibility of properly tuning this tradeoff is
very important, e.g., to extend wireless sensor network
operational lifetime, which is determined by both the av-
erage node energy consumption (related to total network
traffic) and the imbalance of node energy consumption
(related to load balancing).

3 NETWORK MODEL AND PRELIMINARIES

We consider a (infinitely dense) wireless sensor network
whose nodes are located in an arbitrary two-dimensional
convex region A. Network nodes implement a geo-
graphic hash table, which is used to perform in-network
data storage as in [15]. A query in the geographic
hash table abstraction is understood as the process of
retrieving the data associated with a certain key possibly
stored in the ght. The node which initiates the query
process for a certain key k is called the source node in the
following, denoted s; similarly, the node responsible for
key k is called the destination node, denoted d. Similarly
to [15], in the following we assume that a geographic
routing protocol such as GPSR [11] is used to route the
query from s to d. Given our working assumption of
infinite node density, this is equivalent to assume that the
query travels from s to d along a straight line. This is a
quite standard assumption in the analysis of geographic
routing protocols and hash tables [7], [9], [12], [14].

We define the following probability density functions
on A:

– the source density s(x, y), denoting the probability
density of having the source node s of a random
query located at (x, y);

– the destination density d(x, y), denoting the proba-
bility density of having the destination node d of a
random query located at (x, y);

– the traffic density t(x, y), denoting the probability
density that a random query traverses location (x, y)
on its route from node s to node d.

Based on functions s,d and t, we can define the load
density l(x, y), denoting the total load density at location
(x, y), as follows:

l(x, y) =
1

a+ b+ c
· (a · s(x, y) + b · d(x, y) + c · t(x, y)) ,

where a, b, c are constants representing the relative im-
pact of the various density functions when computing
the load at (x, y), and 1/(a+ b+ c) is the normalization
constant of the density function. Informally, the load
density can be understood as the density of transmitted
messages for a node located at (x, y), which depends
on the probability of being either the source or the
destination of a query, or of being in the path from the
source to the destination. It is important to observe that
the traffic density t, under our working assumption of
straight-line routing, is indeed a functional t(x, y, s,d),
i.e., given densities s and d, the traffic density t can
be computed, e.g., using the approach of [9] (see next
section).

Note that, while the source density s depends on pa-
rameters such as node locations and data query patterns
and can be considered as an input to the load balancing
problem, the destination density d depends on factors
such as the number of keys managed by a node located
at (x, y), and/or their popularity. The key observation
to our approach is that, while relative key popularity
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is beyond control of the network designer, the expected
number of keys managed by a node located at (x, y) can
actually be arbitrarily chosen in a ght design. Our goal in the
following is to “reverse engineer” the hash table design
in such a way that the resulting destination density d is
such that, when combined with the given source density
s and the traffic density t resulting from s and d, it
produces a spatially uniform load density. Observe that
implicit in our approach is the assumption that network
designer is able to estimate the source density s, i.e.,
the expected number of queries generated by a region
of the deployment area A. Thus, our approach can be
reasonably applied in situations where node positions
are mostly fixed, and traffic patterns predictable, as it is
the case in many wireless sensor network applications.

4 LOAD-BALANCING HASH TABLE DESIGN
4.1 Implicit destination density characterization
We start presenting a formal, implicit characterization
of the density function d yielding uniform load. To
start with, we need to compute the traffic distribution
t for given source and destination densities s and d.
This can be done using a result in [9], which has been
originally derived to characterize the stationary node
spatial distribution of the RWP mobility model [10] with
arbitrary waypoint distribution4.

To keep the presentation simple, in the following
we assume that the deployment region A is the unit
disk5. Furthermore, we make the assumption that both
distributions s and d are rotationally symmetric, i.e., the
value of the density function at point (x, y) depends only
on the distance of (x, y) from the origin. Given these
assumptions, in the following we will make use of polar
coordinates. In other words, we shall write

s(r, θ) = s(r)

to denote the value of density function s (similarly, of
density function d) at the point located at distance r from

4. In the following, equation (1) and the preceding definitions are
taken from [9].

5. Up to tedious technical details, using the techniques in [9] our
design can be extended to the case where A is an arbitrary convex
region. Extension to non-convex shapes is highly non-trivial, since in
this case linear routing paths cannot be used to connect source with
destination nodes.
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Fig. 2. Traffic and resulting load distribution with destina-
tion density function d5.

the origin, and making an angle of θ with respect to the
x-axis (see Figure 1).

Let us fix a point R on the unit disk, and assume
without loss of generality that R is located at (0, r)
((r, π/2) in polar coordinates). Denote by a1(r, φ) the
distance from R to the boundary of the disk along
direction φ, and let a2(r, φ) be the same distance along
the opposite direction π+φ (see Figure 1). The values of
a1(r, φ) and a2(r, φ) in the unit disk are as follows (see
[9]):

a1(r, φ) =
√

1− r2 cos2 φ− r sinφ

a2(r, φ) =
√

1− r2 cos2 φ+ r sinφ .

For given source and destination densities s(r) and
d(r), the resulting traffic density t(r) is equivalent to
the density of random segments crossing point R, where
the endpoints of the segments are randomly chosen
according to densities s(r) and d(r), respectively. This
latter density corresponds to the node spatial density of
the nonuniform random waypoint process as defined in
[9], and is given by:

t(r, s,d) =
1

E[`]

∫ 2π

0

dφ

∫ a2(r,φ)

0

dr2 (1)∫ a1(r,φ)

0

dr1(r1 + r2) · s(r1, φ) · d(r2, π + φ) ,

where E[`] is the expected length of a random segment
with endpoints chosen according to densities s and d,
and s(r1, φ) (respectively, d(r2, π + φ)) is the source
density (respectively, destination density) computed at
point R+ r1 · (cosφ, sinφ) (respectively, at point R+ r2 ·
(cos(π + φ), sin(π + φ))).

We are now ready to provide the implicit character-
ization of the destination density function du yielding
uniform load:

Theorem 1: For a given rotational symmetric source
density s, the destination density function du yielding
uniform load is a solution to the following integral
equation:

1

a+ b+ c
· (a · s(r) + b · du(r) + c · t(r, s,du)) =

1

π
, (2)

where t(r, s,du) is defined in (1).
Unfortunately, deriving a closed-formula expression

for du is difficult, since (2) is a complex integral equation
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in non-standard form. However, and under the assump-
tion of uniform source density s, a hint on the shape
of the desired destination density d can be derived as
follows. If s is the uniform distribution, the density
function on the left hand side of equation (2) becomes
the sum of three components, one of which is uniform.
Then, in order for the l.h.s. of equation (2) to become
uniform distribution, we must have:

b · d(r) + c · t(r, s,d) = k ∀r ∈ [0, 1] ,

for some constant k > 0. This situation is well ex-
plained in Figure 2 for the case of a = b = 1 and
c = 2, corresponding to the small data case (see next
section). The figure reports the d5 distribution – defined
in the next section – for destinations (dashed plot), and
the resulting traffic density t (thick dashed plot). The
key observation is that, while density t is not uniform,
function d5(r) + 2 · t(r) is almost constant in the range
r ∈ [0, 1] (thick black plot), yielding a near uniform load
distribution l (black plot).

In the next section, we will show that, given its
versatility in terms of possible shapes of the distribution,
the family of Beta distributions can be used to closely
approximate du under the assumption that s is the
uniform density.
4.2 Explicit destination density characterization
with uniform sources
Since attempting to directly solve integral equation (2) to
derive du is difficult, an alternative approach is trying
to “guess” a close approximation of du driven by the
observation at the end of Section 4.1, using a suitably
chosen family of candidate density functions. A suitable
family of candidate functions are the Beta distributions.
A member of this family is a probability density function
in the [0, 1] interval defined based on two parameters
α, β > 0, called the shape parameters, as follows:

B(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1 ,

where B(α, β) is the Beta function, used as a normaliza-
tion constant, and is defined as follows

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt .

The family of Beta distributions is very appealing
since, by varying the shape parameters, the probability
mass can be shifted almost arbitrarily from the left to the
right of the [0, 1] interval (see Figure 3).

In order to have some hints on which Beta distribu-
tions are good candidates for approximating du, we first
compute the load density l under the assumption that
both source and destination density are uniform. Under
this assumption, the expression for the traffic density t
can be simplified as follows:

t(r, s,d) =
1

π2E[`]

∫ 2π

0

dφ

∫ a2(r,φ)

0

dr2∫ a1(r,φ)

0

dr1(r1 + r2) ,
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Fig. 3. Beta distribution for different values of the shape
parameters.

Observe that an explicit formula for t(r) cannot be
obtained even for this relatively simple case, since the
integral in t(r) is an elliptic integral of the second kind,
which cannot be expressed in elementary functions [9].
Hence, we have to resort to numerical integration to
compute t(r). For definiteness, in computing density l
we will consider two different settings for parameters
a, b, c: i) a = b = 1 and c = 2; and ii) a = 0, and
b = c = 1. Case i) corresponds to a situation in which the
ght is used to retrieve the address of the data holder as
in [3], [6], or to retrieve small data from a certain location
using, e.g., GHT [15]. In fact, in this situation the load
at a certain location can be computed considering that a
node transmits once if it is the source or the destination
of a query, and it transmits two messages if it lies on
the route between source and destination (one message
for forwarding the query to d, and one message for
returning the response to s). In the following, we will
call case i) the small data case. Case ii) models situations
where large amounts of data must be transmitted back
from d to s in response to a query, in which case the
load induced by being the source of a query is negligible
compared to the load generated by transmitting a large
amount of data from d back to s. In the following, we
will call case ii) the large data case.

The cross section of the load density resulting in case
of uniform source and destination distribution for the
small and large data case is reported, e.g., in Figure
4 (d = unif plot). For comparison, the uniform load
distribution is also reported. It is easy to see that, when
both s and d are the uniform distribution, the load
density for small and large data is the same, since in both
situations the load density is composed of a uniform and
a non-uniform component with the same relative weight.
From the figure, it is seen that, as expected, when source
and destination density are uniform, nodes in the center
of the region observe a much higher load than those
near the border. In order to compensate for this load
concentration near the center, it is reasonable to change
the destination distribution d in such a way that nodes
relatively closer to the border are selected relatively more
often as destinations of a query.

Driven by this observation, we have computed the
load distribution resulting when source density s is uni-
form, and destination density is one of the two following
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Fig. 4. Load density cross-section with different destina-
tion densities in the small data case.

Dest. density Ml Mml MSE
unif. 0.51 3.21 1.05 · 10−2

d3 0.36 1.49 7.07 · 10−4

d5 0.33 1.04 6.62 · 10−6

TABLE 1
Load balancing metrics in the small data case.

Beta distributions d3 = B(3, 1) and d5 = B(5, 1) (the
thin solid and thick dashed lines in Figure 3), which
have been chosen since they tend to concentrate the
probability mass towards the border of the disk. Note
that the Beta distributions must be suitably normalized
in order to ensure that their integral on the unit disk is
1. Hence, d3 and d5 are defined as follows:

d3(r) =
2

π
r2 , d5(r) =

3

π
r4 .

The load density cross-section obtained with desti-
nation densities d3 and d5 in the small data case are
reported in Figure 4. As seen from the figure, setting
the destination density to d5 yields a load distribution
which is virtually indistinguishable from uniform. To
assess uniformity of the various load densities, we have
used different metrics, which are summarized in Table
1 for the small data case: the maximum load Ml, the
ratio Mml of the maximum to the minimum load, and
the Mean Square Error (MSE) computed with respect to
the uniform distribution. More specifically, the MSE for
density l is computed as

MSE =
1

π

∫
A

(
l(r)− 1

π

)2

d2r .

As seen from Table 1, a proper design of the destination
density (i.e., of the hashing function) has the potential
to yield quasi-perfect load balancing: with respect to the
case of uniformly distributed destinations, the maximum
load is reduced of about 35%, the ratio Mml is reduced
of a factor 3, and the MSE with respect to uniform load
is improved of 4 orders of magnitude.

The load density cross-section obtained with desti-
nation densities d3 and d5 in the large data case are
reported in Figure 5, with corresponding uniformity
metrics reported in Table 2. As seen from the figure and
the table, in this case destination density d5 turns out
to be too concentrated on the border, leading only to
a minor load balancing improvement over the case of
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Fig. 5. Load density with different destination densities in
the large data case.

Dest. density Ml Mml MSE exp. length
unif. 0.51 3.21 1.05 · 10−2 0.90541
d2.8 0.33 1.22 9.48 · 10−5 0.97718
d3 0.33 1.23 1.17 · 10−4 0.98302
d5 0.48 1.91 4.85 · 10−3 1.02121

TABLE 2
Load balancing metrics and expected path length in the

large data case.

uniformly distributed destinations. On the other hand,
destination density d3 yields a considerable load balanc-
ing improvement (slightly better than that obtained in
the small data case), with a 35% reduction of Ml with
respect to the case of uniform destination density, and a
near three-fold reduction in Mml. However, the MSE
with respect to uniform load, although reduced with
respect to the small data case, remains in the order of
10−4, i.e., two orders of magnitude worse than the best
performing destination density in case of small data.
Indeed, a more accurate fine tuning of the α parameter
of the Beta distribution leads to a slightly more uniform
load distribution. This is obtained using the following
destination density: d2.8 = 0.6048 · x1.8. With this des-
tination density, the MSE with respect to uniform load
density is reduced to 9.48 · 10−5 (see Table 2).

Although in our approach load balancing is achieved
without changing geo-routing straight-line trajectories, a
certain increase in overall network load can be expected
(in accordance with the well-known tradeoff between
load balancing and overall network load [7]). This is
due to the fact that, although queries are still routed
along the shortest path from source to destination, the
average length E[`] of a path (i.e., the normalization con-
stant in the traffic distribution (1)) increases as the load
distribution becomes more balanced. The last column
of Table 2 reports the expected path length for the
various destination distributions. Note that the expected
path length is determined by the source and destination
densities s and d, and is not influenced by the choice of
the weights a, b, c used in computing the load density.
Hence, the average path length obtained with a certain
destination density function is the same in both small
and large data cases. It is interesting to observe that
the expected path length increase (i.e., overall network
load increase) for the most uniform load density with
respect to the case of uniformly distributed sources and
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destinations is very limited, and amounts to less than
13% in the small data case, and to less than 8% in the
large data case.

4.3 Hash function design
In the previous section, we have characterized destina-
tion densities yielding close to uniform load density in
case of both small and large data. As outlined in Section
3, a further step is needed in order to define the hash
function for a given desired destination density.

Traditionally, hash functions are designed to map a
certain domain D (e.g., file names in a P2P file sharing
application, meta-data description in an wireless sensor
network in-network storage system, etc.) into a real
number in the [0, 1) interval, i.e.:

H : D→ [0, 1) ,

where k = H(D) is the key associated with element
D ∈ D. Similar to other distributed hash table ap-
proaches, in geographic hash table designs [3], [15] the
nodes realizing the ght are assigned a subset of the [0, 1)
interval to manage, called their key range. Note that in
some ght designs such as GHT [15], the hash function
indeed maps the domain D into the [0, 1)2 interval;
however, through straightforward geometric transforma-
tions, the [0, 1)2 interval can be mapped into the [0, 1)
interval preserving the hash function properties. Thus,
to keep presentation simple, in the following we assume
the co-domain of the hash function is the [0, 1) interval,
and we assume the key range kr(u) of a specific node
u is a sub-interval of [0, 1). Denoting with N the set of
network nodes, we have:⋃
u∈N

kr(u) = [0, 1) and ∀u 6= v ∈ N, kr(u) ∩ kr(v) = ∅ .

In ght designs, the key range kr(u) of a specific node
u depends on its geographic coordinates, and those of
its geographical neighbors. We now present a method
for assigning key ranges to a set of nodes N of known
coordinates such that, when coupled with an arbitrary
hash function H with co-domain in [0, 1), the result-
ing destination density equals a certain given function
d(x, y). For simplicity, we first present the method under
the assumption that the probability density function
q(k), with 0 ≤ k < 1, corresponding to the probability
that a specific key is the argument of a random query, is
the uniform distribution over [0, 1) (uniformly popular
keys). We then describe how to generalize our method
to non-uniform key popularity distributions.

Given the set of nodes N deployed in a bounded
region A, we first compute the Voronoi diagram on the
nodes, and let V (u) be the Voronoi cell of node u – i.e.,
the locus of points in A closer to u than to any other
node in N − {u}. For each u ∈ N , the width w(u) of the
key range kr(u) is given by

w(u) =

∫
V (u)

d(x, y)dxdy , (3)

where d(x, y) is the desired destination density. We now
order the nodes in N according to their geographical
locations, e.g., starting from the Southern-Western node
(the specific ordering used is not relevant). Let u1, . . . , un
be the resulting ordered list of nodes, where n = |N |.
We then set the key range kr(ui) for node ui, with i =
1, . . . , n, as follows:

kr(ui) = [ai, bi) , where ai =

i−1∑
j=1

w(uj) and bi = ai+w(ui) .

Fact 1: Let pi denote the probability that the key re-
quested in a random query belongs to key range kr(ui),
and assume q(k) is the uniform distribution over [0, 1).
Then,

pi =

∫ bi

ai

q(k)dk = w(ui) =

∫
V (ui)

d(x, y)dxdy ,

where V (ui) is the Voronoi cell of node ui and d is the
desired destination density.

By Fact 1 and by observing that
∑
ui∈N area(V (ui)) =

area(A), we have that the destination density resulting
from the above described key range assignment is the
discrete counterpart of the desired density function d.

If q(k) is a generic probability density function, de-
riving the key range assignment is more complex, as it
involves solving the following Volterra integral equation
[13]: ∫ y

ai

q(k)dk =

∫
V (ui)

d(x, y)dxdy . (4)

Given the starting point ai =
∑
j=1,...,i−1 w(uj) of

key range kr(ui), the end point y of kr(ui) (and, con-
sequently, w(ui)) can be computed solving the above
Volterra integral equation. By iteratively solving equa-
tion (4) starting from i = 1, we can compute all the key
ranges kr(ui), and generalize Fact 1 to hold for arbitrary
key popularity distributions.

An important feature of our proposed hash function
design lies in its practicality. In particular, we want to
stress that the hash function can be computed in a fully
distributed and localized way, thus according to typical
wireless sensor network design guidelines. This is be-
cause, if node density is high enough – a prerequisite for
our approach to be effective, each node can compute its
Voronoi cell by exchanging location information with its
immediate neighbors. For this to happen, it is sufficient
to have the nodes’ transmission range larger than the
maximum distance between two Voronoi neighbors. In
case of uniformly distributed nodes, it is easy to see
that the minimal density required for connectivity w.h.p.
[8] is sufficient to ensure that the Voronoi graph can
be locally computed. Furthermore, re-computation of a
Voronoi cell in response to changes in network topology
(for instance, because a sensor node runs out of energy)
can also be easily done in a fully distributed, localized
way. As for computing the key range of a node, say u, the
integral in equation (3) can be numerically approximated
by, e.g., pre-computing and storing at u a lookup table
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containing the value of the integral in a sufficiently fine
lattice around u (say, a lattice covering u’s transmission
range); the value of the integral in equation (3) can
then simply be reconstructed on-the-fly by adding the
values stored in the lookup table corresponding to lattice
elements at least partially included in the Voronoi cell
V (u). Considering that, e.g., a 256 elements lattice is used
to compute the key range, and assuming the value of
the integral on a lattice element is represented with 8
bytes, the total size of the lookup table would be 1.25KB,
which represents only a small portion of the memory
size typically available on wireless sensor nodes.

It should be observed, though, that the hash func-
tion design described herein relies upon some global
knowledge, namely a total ordering of nodes which is
assumed to be known to all nodes and is used to (locally)
compute a node’s key range. Changes in node ordering
due to a topology change can be initiated by the base
station once the topology change has been detected. The
amount of messages to be sent in order to distribute the
new ordering of nodes is comparable to the cost of a
single broadcast message, i.e. it is O(n) in a network
with n nodes. In general, our proposed approach is
suitable to those scenarios where node locations are
mostly fixed and node population changes at a relatively
slow rate, as it is the case in many wireless sensor
network applications.

5 NON-UNIFORM DISTRIBUTIONS

The analytical approach presented in Section 4 is based
on three assumptions, namely that: i) nodes are uni-
formly distributed, ii) source nodes are uniformly se-
lected among the network nodes, and iii) node density is
very high. In practice, though, these assumptions might
not be met, especially the uniformity assumptions on
node and source distribution. In this section, we release
these two uniformity assumptions, and present an itera-
tive heuristic, named HeLB (Heuristic Load Balancing),
aimed at modifying each node’s key range in order to
balance network load even when assumptions i) and ii)
do not hold. The basic idea of HeLB is to start by observ-
ing the network load resulting with uniform key ranges,
and to iteratively re-arrange key assignment in order to
reduce the range of keys managed by overloaded nodes,
while increasing the number of keys managed by nodes
with a lower load.

With a slight abuse of notation, let kr(i) denote the
length of the key range of node i. Under the assumption
of uniform key popularity, that we retain in this section,
the value of kr(i) determines the average number of
queries managed by node i6. Initially, nodes are assigned
with key ranges of the same length, i.e. initially kri =
1/n, ∀i ∈ N , where n = |N | is the number of nodes in

6. More formally, this fact follows from the Law of Large Numbers,
after that a sufficiently high number of queries circulates in the
network.

the network. At each iteration, the procedure consists of
the following phases:

1) a large number of queries is spread out in the
network;

2) for each node i ∈ N , the average load per-query
c(i) is computed;

3) key range kr(i) is modified according to the heuris-
tic method specified below, in order to reduce the
load on overloaded nodes and increase the load on
under-loaded nodes;

4) compute the max-min load ratio Mml.
The procedure stops when the max-min load ratio

Mml, which is initialized at an artificially high value,
stops decreasing.

The heuristic method adopted at step 3) of HeLB
modifies the key range of each node as follows:

kr(i) = max{0, kr(i) + ((c̄− c(i)) ∗ k)} ∀i ∈ N, (5)

where c̄ is the average of the c(i) values, i.e. c̄ =∑
i∈N c(i)/N , and k is a small constant, used to control

the sensitivity of the load balancing procedure. The
kr(i) values are then normalized in order to obtain∑
i∈N kr(i) = 1. Note that with the above rule the key

range length of overloaded nodes (those with c(i) > c̄)
is decreased, while that of underloaded nodes (those with
c(i) < c̄) is increased.

In the next Section and supplementary material, we
will show through extensive simulations that the pro-
posed heuristic performs well in case of both non-
uniform node and non-uniform query source distribu-
tion.

Before ending this section, we want to comment about
feasibility of the proposed HeLB heuristic. In princi-
ple, two approaches can be used to implement HeLB:
a simulation-based approach, as reported in the next
section; and a fully distributed, adaptive approach. In
the former approach, appropriate key range values that
balance the load are estimated through simulations: a
prerequisite for this approach is that information about
expected node spatial distribution, source distribution,
and key popularity are available before actual network
deployment. This is indeed quite often the case in wire-
less sensor networks, where node locations and data
transfer patterns are quite predictable at the design
stage. In case the above information is not available,
a more cumbersome, yet feasible approach consists in
initially setting uniform key ranges and start operat-
ing the network; as more and more queries travels
within the network, load statistics are communicated to
a centralization point (e.g., the base station), which is
in charge of re-computing the key ranges according to
the rule defined above. New key range values are then
broadcast to all nodes in the network. Notice that, once
key range values are changed, transfer of data items
between nodes is needed in order to let each node store
all data items in its key range. This is an additional
burden on the network; however, if the hash function
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0.02 < pi

0.015 < pi ≤ 0.02

0.01 < pi ≤ 0.015

0.005 < pi ≤ 0.01

0.001 < pi ≤ 0.05

pi ≤ 0.001

Fig. 6. Node deployment and discretized destination dis-
tribution d5 used in the simulations.

is suitably defined (see, e.g., [3]), data transfer occurs
only between nearby nodes in the network.

6 SIMULATIONS

In this section, we evaluate the two approaches for load
balancing hash function design described in sections 4
and 5 through simulation. In particular, in subsection
6.1 we evaluate performance of the analytical approach
to hash function design described in Section 4, while
in subsection 6.2 we evaluate performance of the HeLB
heuristic.

6.1 Analytical hash function design
The analytical approach to load balancing hash function
design described in Section 4 is based, among others, on
the two following assumptions: i) infinite node density,
and ii) straight line trajectory between source and desti-
nation nodes. In practical scenarios, node density is finite
– although it might be very high in, say, dense wireless
sensor network deployments, and the trajectory followed
by a message on its route from source to destination is
typically a piecewise linear trajectory approximating the
straight line connecting source with destination.

In order to evaluate the impact of relaxing assump-
tions i) and ii) on the load balancing achieved by our
hash design approach, we have performed extensive
simulations resembling realistic wireless sensor network
deployments. More specifically, we have considered two
deployment scenarios: a) grid-based; and b) random.

In the grid-based scenario, sensor nodes are arranged
in a grid-like fashion covering a disk of a certain radius.
For convenience, we set to 1 the step of the grid, i.e.,
we normalize distances with respect to the grid step.
A varying number of nodes (ranging from 112 to 1020)
is deployed in the disk (the 112 nodes deployment is
reported in Figure 6). In the random scenario, a certain
number of nodes is randomly distributed in a disk,
whose radius is set to 1 for convenience.

Communication links between nodes are established
based on their distance, as follows: there is a wireless link
connecting nodes u and v if and only if their distance is
at most r, where r is the radio range and is a simulation
parameter. In the following, when referring to node
density, we mean the (average) number of neighbors of
a node in the network.

Messages are routed from source to destination ac-
cording to geo-routing, and more specifically using the
GPSR protocol [11]: a message M with final destination
d currently processed at node u is forwarded to u’s one-
hop neighbor whose distance to d is smaller7.

Both the small data and the large data case are con-
sidered in our simulations. In the former case, once
source and destination nodes s, d are selected, a (query)
message is sent from s to d, and a (reply) message is sent
back from d to s. In the latter case, we ignore the single
(query) message sent from s to d, and we simply send
100 (data packet) messages from d back to s. In both
the small and large data case, the source node is chosen
uniformly at random among the network nodes, while
the destination node is chosen according to one of the
following distributions: 1) uniform; 2) d2.8; and 3) d5.
Indeed, both d2.8 and d5 are the discretized versions of
the distributions described in Section 4.2, and are com-
puted according to the procedure described in Section
4.3: we first compute the Voronoi diagram on the nodes,
and then, for each node, compute its key range width
integrating the destination distribution in the respective
Voronoi cell. As an example, the discretized version of
the d5 distribution for the 112 nodes grid deployment is
reported in Figure 6.

Grid deployment
In a first set of simulations, we have fixed the radio
range to 1.5 (corresponding to connecting each node to
its vertical, horizontal, and diagonal neighbors in the
grid), and varied the number n of nodes from 112 to
1020. This is the minimal density scenario considered
in our experiments, corresponding to each node having
approximately 8 neighbors. For each considered topol-
ogy, we have randomly generated 106 (query) messages,
and computed the following metrics: i) maximum node
load (number of transmitted messages); ii) maximum to
minimum node load ratio; and iii) average hop count of
the source/destination paths.

The small and large data cases returned quite similar
results. In the interest of space, in the following we re-
port only the results for the small data case, while those
for the large data case are reported in the supplementary
material.

As shown in Figure 7, distribution d5 is very effective
in improving load balancing with respect to uniform
destination distribution, reducing the maximum load
of about 20%, and reducing the max/min ratio of a
factor about 2.5. This comes at the expense of increasing
the average hop count (and, hence, the overall network
load) of about 13%. It is interesting to observe that the
simulation results matches very well with theoretical
analysis, which predicted a 35% max load reduction, a
3-fold max/min load ratio reduction, and a 13% average

7. Indeed, we have implemented only the greedy forwarding step of
[11], since local minima – leading to deadlock in message forwarding –
cannot occur in the considered grid-like deployments, and occurs with
negligible probability in case of random deployments of the density
considered herein [17].
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Fig. 7. Grid-based topology with fixed density: maximum node load (left), max to min node load ratio (center), and
average hop count (right) in the small data case.
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Fig. 8. Grid-based topology with n = 1020 and varying density: maximum node load (left), max to min node load ratio
(center), and average hop count (right) in the small data case.

trajectory length increase when distribution d5 is used
instead of the uniform distribution as the destination
density. Distribution d2.8 turns out to be less effective
in balancing load in both the small and large data cases
(see supplementary material), partially contradicting our
analysis that indicates that distribution d2.8 should in-
deed yield better load balancing than d5 in the large data
scenario. This is due to the fact that the node density
considered in this first set of experiments is quite low
(close to the minimum density needed for connectivity),
while the analysis is based on the infinite node density
assumption.

This observation is validated by the results of another
set of simulations, in which we have kept the number of
nodes fixed to 1020, and varied the radio range (hence,
node density) from 1.5 to 6 in steps of 0.5. When the
transmission range is set to 6, nodes in the center of
the grid have 60 neighbors. Also in this case we have
generated 106 queries for each setting of the transmission
range. As seen from Figure 8, the results confirmed that
d5 is the best performing destination distribution in the
small data case, yielding a max load reduction of about
7-20%, and a max/min load ratio reduction of about 50-
60%, at the expense of a hop count increase of about
11-13%. However, in the large data case results have
shown that, as the node density increases, distribution
d2.8 achieves a better load balancing as compared to d5.
In particular, when node density is maximal, d2.8 yields
a lower maximum load and a slightly smaller max/min
load ratio than d5, as predicted by the analysis (see
supplementary material). When compared to uniform
destination distribution, d2.8 reduces maximum load of
5-15%, and the max/min load ratio of about 50%.

Random deployment
In the second set of simulations, we have randomly

deployed 1020 nodes as follows: we have first divided
the unit disk in 1020 square cells of nearly the same
size (due to border effects), and then deployed one
node uniformly at random in each of these cells. This
Poisson-like node distribution is used to generate quite
homogeneous, yet random, node spatial distributions.
We have then empirically computed the critical trans-
mission range for connectivity [8], i.e., the minimum
value of the radio range yielding connected topologies
with high probability, which turns out to be r = 0.06 in
our experiments. We then generated 100 random node
deployments, and for each of them computed different
network topologies varying the radio range from r to 5r.
For each generated topology, we generate 10000 queries
for either small and large data case.

The simulation results (averaged over the 100 deploy-
ments), reported in the supplementary material, outlined
that the relative advantage of our load balancing ap-
proach over uniform destination density are less signifi-
cant than in the grid deployment scenario. In particular,
with the small data case (similar results with large data)
and d5 destination distribution, we have a max load
reduction of as much as 12%, and a reduction of the
max/min load ratio of a factor as large as 2. However,
with the largest node densities (radio range larger than
3r), the benefits of our approach become less apparent.
This is due to the fact that, under higher densities, the
average hop count of source/destination paths becomes
too low (below 3, which is lower than in case of grid-
like deployments), implying that the impact of relaying
traffic becomes relatively less significant than the load
induced by being either the source or the destination of
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a query.

6.2 HeLB performance
In this section, we evaluate HeLB performance under
the assumption of uniformly distributed source and
node density. Uniformity assumptions are retained in
this section to allow comparison of our heuristic with
the Outer Space load balancing approach proposed in
[12], which requires uniformity of node deployment to
properly operate. HeLB performance evaluation when
uniformity assumptions are released is reported in the
supplementary material.

In order to be able to directly compare HeLB with
Outer Space, we have deployed 1000 nodes in the unit
square uniformly at random: this is because the virtual
space used in [12] to define Outer Space is defined
starting from a square deployment region. We have then
considered different values of the transmission range,
ranging from 0.15 (minimal density for connectivity
w.h.p.) to 0.45. For each value of the transmission range,
150 sample topologies were generated to produce sta-
tistically significant results. In the interest of space, we
report results only for the small data case; very similar
results were obtained in the large data case.

Performance of HeLB is compared both with Outer
Space and with the standard ght approach in which key
ranges are evenly distributed among nodes (called uni-
form in the following). Besides the three load balancing
metrics considered in the previous set of experiments,
we have also evaluated network lifetime under the three
approaches.

Network lifetime is computed as follows. Initially, all
nodes are assigned the same amount of energy units,
set to 5000 in our experiments. As nodes take part in
the query process, their energy level is decremented as
follow: a unit of energy for each received message, and
1.4 units of energy for each transmitted message. Note
that these values of energy consumption are in line with
typical values of IEEE 802.15.4 radio transceivers [5].
When the first node in the network exhausts its battery,
network operation is terminated, and the total number of
queries served by the network is reported as the network
lifetime – which, then, is expressed in terms of number
of successfully served queries.

Notice that HeLB requires running preliminary simu-
lations to estimate the correct values of the key ranges. In
order to evaluate HeLB performance in a situation closer
to reality, where real-world conditions are different from
those found in simulations, the experiments performed
to evaluate HeLB load balancing performance have been
done using a slightly different network topology than
the one used to compute the key ranges. In particular,
the position of nodes in the network has been changed,
re-locating each node uniformly at random in a circle of
radius 0.025 centered at its previous position.

The load balancing metrics obtained using the var-
ious approaches (averaged over 150 experiments) are
reported in Figure 9. As seen from the figure, HeLB

resulted superior to Outer Space under all respects: the
maximum load, max/min load ratio, and hop length
with HeLB are always lower than with Outer Space.
It is worth observing that the relative advantage of
HeLB over Outer Space is more noticeable at lower node
densities, indicating that our approach is very effective
in improving load balancing also when the node density
is relatively low. On the contrary, Outer Space requires
higher node density to display some load balancing
advantage over uniform key range assignment.

A similar trend is observed for what concerns network
lifetime – see Figure 10: HeLB increases the number of
served queries of as much as 28% as compared to uni-
form key range assignment, and it provides noticeable
lifetime benefits also at the minimal node density. On
the contrary, at low densities Outer Space provides lower
lifetime than uniform key range assignment, and lifetime
improvements (as high as 23% at maximal density) can
be noticed only when the transmission range is larger
than 2 times the minimal value required for connectivity
w.h.p.

The superior performance of HeLB with respect to
Outer Space is due to the fact that, similarly to our an-
alytical approach, Outer Space is based on the (implicit)
assumption that geo-routing results in near straight-line
trajectories. This assumption well approximates reality
only when the node density is relatively high. In fact,
Outer Space performance in [12] is evaluated under
node density ranges higher than those considered in
our study. Differently from Outer Space, HeLB is a
heuristic which is not based on any specific assumption
about the underlying routing protocol, but rather tries
to “reasonably” re-arrange key distribution based on the
currently observed load.

Summarizing, simulation results clearly show the ad-
vantage of load balancing in terms of more uniform
energy consumption and, hence, longer lifetime: with
HeLB, although the average hop count (hence, energy
consumption) to serve a single query is higher than with
uniform key range assignment, we do have a lifetime
increase, since the rate at which energy is consumed
at the most loaded node in the network is significantly
reduced. This can be clearly seen from the load distri-
bution reported in the Supplementary material, showing
that the number of “highly loaded” nodes with HeLB is
considerably reduced with respect to the case of uniform
key distribution and Outer Space routing.

6.3 Discussion

Simulation results have shown that our proposed load
balancing approaches can be successfully used also in
practical situations, where the assumptions of infinite
node density, perfect straight-line trajectory, as well
as uniform node and source distribution do not hold.
Clearly, the achieved load balancing is not quasi-perfect
as the one achievable if assumptions on which the
analytical technique presented in Section 4 would hold.
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Yet, load balancing and network lifetime improvements
are clearly visible also when node density is near the
minimal needed to achieve connectivity.

It is interesting to compare the relative performance
achieved by the analytical and heuristic load balanc-
ing approaches. The two approaches provide similar
performance, with somewhat better performance figures
provided by the HeLB heuristic. Notably, HeLB heuris-
tic provides these interesting performance figures even
in presence of non-uniformity in node deployment or
source distribution (see supplementary material).

Another interesting observation is that, from a quanti-
tative point of view, our approach in practical scenarios
achieves better load balancing and network lifetime than
an existing approach [12]. Even more notably, our ap-
proach improves load balancing while preserving simplicity
of geo-routing, as well as of the hash function design. Thus,
the load balancing methodology presented in this paper
has the potential of being readily applicable in a wireless
sensor network scenario.

7 CONCLUSIONS

In this paper, we have presented a novel way of ap-
proaching the load balancing problem in ght design. The
proposed methodology, instantiated into an analytical
and a heuristic approach, has been shown to provide
very good load balancing in ideal conditions, and to
provide load balancing improvements comparable or
even superior to those provided by existing schemes in
practical scenarios, even when uniformity assumptions
are not valid. The major advantage of the presented
load balancing methodology over existing ones lies in
its practicality and versatility. Possible extension of our
ideas to other fields such as mobility modeling and
security have been discussed.

For future work, we plan to investigate possible ways
of extending and integrating our approach with existing
ideas. In particular, one interesting direction for research
is integrating our approach with the ideas proposed in
[16] to address the case of concave shapes of the node
deployment region.
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