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Abstract—In this paper, we investigate the fundamental prop-
erties of data gathering in wireless sensor networks, in terms of
both capacity and latency. We consider a scenario in which s(n)
out of n total network nodes have to deliver data to a set of
d(n) sink nodes at a constant rate \(n, s(n),d(n)). The goal is
to characterize the maximum achievable rate, and the latency
in data delivery. We present a simple data gathering scheme
that achieves asymptotically optimal data gathering capacity and
latency with arbitrary network deployments when d(n) = 1, and
for most scaling regimes of s(n) and d(n) when d(n) > 1 in
case of square grid and random node deployments. Differently
from most previous work, our results and the presented data
gathering scheme do not sacrifice energy efficiency to the need of
maximizing capacity and minimizing latency. Finally, we consider
the effects of a simple form of data aggregation on data gathering
performance, and show that capacity can be increased by a
factor f(n) with respect to the case of no data aggregation,
where f(n) is the node density. To the best of our knowledge,
the ones presented in this paper are the first results showing that
asymptotically optimal data gathering capacity and latency can be
achieved in arbitrary networks in an energy efficient way.

Index terms: Wireless sensor networks, data gathering ca-
pacity, data gathering latency, physical interference model.

I. INTRODUCTION

After several years of intensive research and technological
development, wireless sensor networks are becoming increas-
ingly deployed in a wide range of application scenarios, and
will likely be part of our everyday life in a few years. Despite
that, our understanding of fundamental properties of these
networks — the so-called scaling laws —, which can help the
network designer discriminating what can and cannot be done
in such networks, is still limited. In particular, network capac-
ity and communication latency are two fundamental properties
of a wireless sensor network: the former can help charac-
terizing the overall amount of data that can be transported
within the network, while the latter can help understanding,
for instance, whether the network can be effectively used for
real-time event detection. When a wireless sensor network is
to be used for, e.g., environmental monitoring, in which an
extensive set of sensor readings has to be collected at one or
few data collection sites (sinks), the combined characterization
of network capacity and communication latency scaling laws
is fundamental to understanding feasibility of a large scale
network deployment.

Starting from the seminal Gupta and Kumar’s work on
capacity [7] for unicast transmissions, fundamental properties
of general wireless multihop networks have been extensively
studied in the literature in the last few years (see Section II

for details). These studies have shown a considerable influence
of the network topology and traffic patterns on the achievable
network capacity and latency limits. For instance, in [7] it
has been shown that while the per-node capacity in a network
composed of n nodes degrades as O when n grows
to infinity in arbitrary networks, it degrades at a faster pace

(as O gj g) if nodes are randomly deployed. The above
results old un er the assumption that traffic source/destination
pairs are randomly chosen. However, if communications are
localized (i.e., the destination of a packet is randomly chosen
amongst one of the source’s immediate neighbors), the situa-
tion is drastically different, and per-node throughput actually
remains constant as n grows to infinity. Another example
of the influence of the traffic pattern on network capacity
and communication latency can be derived by comparing
the findings of [13], which show that asymptotically optimal
capacity and latency cannot be simultaneously achieved for
unicast transmissions, with those of [15], which show that
asymptotically optimal capacity and latency can indeed be
simultaneously achieved for broadcast communications.

Given the above discussion, it is clear that characterizing the
capacity and latency scaling laws of a wireless sensor network
requires taking into account the typical traffic patterns of this
type of networks. In this paper, we consider one such typical
pattern — the data gathering pattern —, in which many (or all)
the sensor nodes have to regularly deliver data to one (or few)
sink node(s). The data gathering network capacity has been
recently investigated in a few papers [4], [11], [12], [24] (see
Section II for details), which, however, are based on quite strict
assumptions for what concerns network topology, properties
of the observed random field, and/or PHY layer capabilities.
When simultaneous transmissions are allowed in the network
[11], [12], radio interference is modeled using a relatively
inaccurate interference model (the protocol interference model
[7]). Furthermore, the effects of data aggregation strategies
on the achievable network capacity have only be partially
considered. Most importantly, none of the existing works is
concerned with energy efficiency of the communications, nor
considers latency in data communication. There is no need to
comment on the importance of energy efficient communication
in wireless sensor networks. As for latency, we stress that
latency is a fundamental property in many wireless sensor
network application scenarios, for instance when the network
is used for real-time event detection.

The main findings of this paper, which are extensively



described at the end of Section II, are that asymptotically
optimal data gathering capacity and latency can be simultane-
ously achieved in arbitrary and random networks in an energy
efficent manner, as long as the network deployment satisfies
a property which we call minimal cell connectivity. The data
gathering capacity is limited by the number of sink nodes in
the network, and can thus be improved (up to a certain point)
by increasing the number of data collection sites. Another way
of improving the data gathering capacity is by exploiting a
very simple form of data aggregation, which increases network
capacity of an O(f(n)) factor, where f(n) is the node density.

The rest of this paper is organized as follows. In Section
II, we discuss related work and extensively describe this
paper’s contributions to the state-of-the-art. In Section III,
we introduce the network model used in the rest of the
paper. In Section IV, we consider the case of single sink
networks, and present a data gathering scheme that provides
asymptotically optimal data gathering capacity and latency. In
Section V, we extend the data gathering scheme to the case
of multiple sink networks, and characterize conditions under
which asymptotically optimal data gathering capacity can be
achieved. Section VI discusses energy efficiency of the data
gathering schemes proposed in sections IV and V. Finally,
Section VII summarizes the main results of the paper and
discuss their implications for the design of wireless sensor
network data gathering applications.

II. RELATED WORK AND CONTRIBUTIONS

The investigation of fundamental wireless network proper-
ties has been subject of intensive research since the seminal
Gupta and Kumar’s work [7]. In [7], the authors lay down
the foundations of wireless multihop networking, showing that
short-range communications have to be preferred to long-range
communications if the objective is to maximize network ca-
pacity. This is due to the fact that short-range communications
minimize the interference level in the network, allowing for a
degree of spatial reuse (i.e., simultaneous transmissions) that
is sufficient to outweigh the relay burden caused by multi-
hop communications. However, this relay burden considerably
limits per-node network capacity, which is shown to converge
to 0 as the number n of network nodes grows to infinity. In
[6], Grossglauser and Tse show that the Gupta and Kumar’s
capacity limit does not apply in mobile networks: the main
idea is to exploit node mobility, rather than multihop forward-
ing, to deliver packets to the destinations. This way, per-node
capacity can be optimized (i.e., (W) per-node capacity can
be achieved, where W is the channel capacity), at the price of
considerably increasing communication latency. The tradeoff
between network capacity and latency in packet delivery is
investigated, e.g., in [13], [20]. In particular, in [13] the authors
show that the achievable per-node capacity is upper bounded
by O (%), where D is the average packet delay. This result
implies that (W) per-node capacity can be achieved only
by allowing O(n) latency, which is not optimal in most two-
dimensional deployment scenarios.

The above results refer to the unicast communication pat-
tern. Other traffic patterns have been recently investigated,
such as multicast [10], [19] and broadcast [8], [9], [15], [16],

[17], [23]. We briefly comment on the results concerning
broadcast communications, which are indeed relevant to wire-
less sensor networks (think about a sink node broadcasting a
query in the network, downloading new software to the nodes,
etc.). In [23], Zheng investigates the broadcast capacity of
random networks with single broadcast source, and presents a
broadcast scheme providing asymptotically optimal capacity.
The author also studies the information diffusion rate, which
is closely related to latency. However, broadcast capacity
and information diffusion rate are not jointly considered, i.e.,
the capacity-achieving broadcast scheme does not optimize
diffusion rate, and vice-versa. In [8], [9], the authors consider a
more general network model, in which arbitrary node positions
and arbitrary number of broadcast sources are allowed. The
results of [8], [9] essentially confirm the finding on broadcast
capacity reported in [23] in the more general model. In
[15], the authors consider a network model similar to that
of [9] (but assuming a single broadcast source), and show
that asymptotically optimal broadcast capacity and latency can
be achieved, subject to a (not very restrictive) condition on
network topology. This result has been recently generalized
to the case of arbitrary number of sources in [16], and to the
case of mobile nodes [17].

The data gathering capacity of wireless networks has been
investigated in a few recent papers. In [12], the authors
consider a model in which nodes are evenly spaced in a
circular area. Nodes monitor a random, spatially-correlated
field, and the goal is to deliver snapshots of this random field
to a sink, located in the center of the area. As the node density
increases, correlation of the sensed data increases, as well as
the demand of traffic directed to the sink. Since correlated
data can be compressed, the question addressed in [12] is
whether data compression can be exploited to deliver accurate
snapshots of the random field (with an upper bounded MSE)
to the sink. The authors essentially prove a negative result,
showing that the benefits of data compression are not sufficient
to outweigh the capacity bottleneck at the sink node, which
implies that the per-source available capacity is O (%) In [4],
El Gamal shows how to go beyond this per-node capacity limit
achieving O W per-source capacity, which is proved
to be sufficient to guarantee delivery of accurate snapshots
of a Gaussian, bandwidth-limited random field. The main
idea to improve capacity is exploiting advanced PHY layer
techniques, namely cooperative communication: every node
distributes its sampled value to neighboring nodes, and then
all these nodes cooperatively transmit the information to the
sink node, realizing distributed beamforming. Thus, owing
to the beamforming gain, capacity at the sink node can be
increased of a logarithmic factor. Although interesting from a
theoretical point of view, El Gamal’s result is hard to apply in
a practical scenario, due to the many assumptions on which
it is based: nodes are evenly spaced on a sphere, with the
sink node located in the center of the sphere; at the PHY
layer, nodes are assumed to perform transmit power control,
to know the radio signal phase shifts between all possible pairs
of nodes, to be able to perform cooperative communication,
etc.; finally, the joint distribution of the random field observed



at the various nodes is assumed to be known to all sensor
nodes. More recently, Zheng and Barton [24] have shown the
benefits of cooperative communication in a less constrained
environment, where nodes are randomly distributed, use a
common transmit power, and a-priori statistical knowledge of
the observed random field and of the channel characteristics
are not needed. In particular, the authors show that even in

this less constrained environment O (Wlﬁgng data gathering
capacity can be achieved as long as path loss exponent «
is such that 2 < a < 4; indeed, for these values of «
the achieved capacity is shown to match the asymptotical
upper bound, i.e., it is shown to be optimal. If o > 4, the
upper bound to capacity becomes O(%), and optimal capacity
can be achieved even without cooperative communication.
Notice that although Zheng and Barton’s results are based on
less demanding assumptions than [3], they still build upon
exploitation of advanced PHY layer techniques (cooperative
communication), that might be difficult to use in a wireless
sensor network.

The work that is more closely related to ours is [11],
in which the authors investigate the data gathering capacity
of a randomly deployed network in which s(n) out of the
n nodes act as data sources, d(n) nodes are data sinks,
and each source node is randomly mapped to a sink node.

In this model, the authors identify two different asymptotic

regimes: if d(n) = O ( logn), performance is constrained

by the aggregate sink reception capacity, and per-source ca-
pacity is upper bounded by O (W'd(")); if din) > /2

s(n) logn’
performance is constrained by network caSacity, and per-

W-y/n/logn
of the number d(n) of sink nodes. The authors also present
a scheduling/routing algorithm to constructively lower bound
capacity, and prove that the proposed construction indeed
achieves asymptotically optimal data gathering capacity for
most scaling regimes of s(n) and d(n).

In this paper, we consider a traffic model similar to [11],
in which s(n) nodes are data sources and d(n) nodes are
data sinks. However, differently from [11], we assume that
source/sink mapping obeys a locality criterion. In this model,
we provide the following contributions:

source capacity saturates to O independently

a) for the first time, we analyze not only data gathering
capacity, but also latency. In particular, in some cases (see
below) we present data gathering schemes simultaneously
achieving asymptotical capacity and latency. We stress
that turning a capacity achieving data gathering scheme
into one that optimizes both capacity and latency is not
a trivial task (see the construction used in Section 1V).

b) for the many-to-one case (i.e., d(n) = 1), we present
a data gathering scheme that achieves asymptotically
optimal data gathering capacity for arbitrary network
deployments. To the best of our knowledge, ours is
the first capacity-achieving construction for arbitrary
network deployments. Furthermore, we show that, if a
certain topological property that we call minimal cell
connectivity is satisfied, the presented scheme achieves
not only asymptotically optimal capacity, but also asymp-

totically optimal latency in data gathering.

¢) for the many-to-many case with arbitrary s(n) and d(n),
we consider both square grid and random network de-
ployments, and present an extension of the data gathering
scheme for single source networks that achieves asymp-
totically optimal data gathering latency. Furthermore, for
most scaling regimes of s(n) and d(n), the presented
construction achieves also asymptotically optimal per-
source data gathering capacity. In particular, the results
for random network deployments show that per-source
capacity can exceed the bounds established in [11] when

\/T <d(n)=0 (L) This is due to the different

logn logn

rule used to map data source to sinks: random in [11],
locality-based in our study.

¢) finally, we consider the effect of a simple form of data
aggregation based on a notion of sensing granularity, and
show that per-source capacity can be increased by a factor
f(n) with respect to the case of no data aggregation while
preserving asymptotically optimal latency, where f(n) is
node density.

Notably, and differently from most previous works, the
presented results and data gathering scheme do not sacrifice
energy efficiency to the need of maximizing capacity and
minimizing latency. Furthermore, we want to stress that,
differently from previous work on data gathering capacity, the
results in this paper are derived using an accurate, SINR-based
interference model, the physical interference model of [7].

III. NETWORK MODEL AND PRELIMINARIES

We consider a wireless sensor network composed of n
nodes, where s(n) < m — 1 nodes act as data sources,
d(n) < n — s(n) nodes act as data collection points (sinks),
and the remaining n— s(n) —d(n) nodes may be used to relay
data to the sinks. When multiple sink nodes are present in the
network, the mapping between data sources and sinks obeys
a locality criterion, which will be detailed in the following.

We assume nodes communicate through a common wireless
channel of a certain, constant capacity W, and that the
nodes transmission power is fixed to some constant value P.
Correctness of packet reception is governed by a condition on
SINR, according to the so-called physical interference model
[7]. More specifically, when a node u transmits a packet to
another node v, the packet is correctly received (at constant
rate W) if and only if

Py (u)
SINRE) = N5 P
where N is the background noise, 3 > 0 is the capture
threshold, 7 is the set of nodes transmitting concurrently with
node u, and P, () is the received power at node v of the signal
transmitted by node x. We make the standard assumption
that radio signal propagation obeys the log-distance path loss
model, according to which the received signal strength at
distance d from the transmitter (for sufficiently large d, say,
d > 1) equals P -d~“, where « is the path loss exponent. In
the following, we make the standard assumption that o > 2,
which is often the case in practice. Up to tedious technical
details, our results can be generalized to the cost-based radio
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Fig. 1. The notion of minimal cell connectivity: without the gray node, the
network is not minimally cell connected, since the length of minimal cell path
P between source w and sink v is 5, and is greater than cd(u, v) = 2. With the
gray node, the network becomes minimally cell connected, as len(P’) = 2.

propagation model of [18], which is shown to closely resemble
log-normal shadowing propagation.

For given values of P, §, a, and N, we define the trans-
mission range 7,4, of a node as the maximum distance up to
which a receiver can successfully receive a packet in absence
of interference. From the definition of physical interference
model, we have 7,4, = Y/ P/(BN).

The communication graph, denoted G = (V, £), represents
the set of all possible communication links in the network, i.e.,
V is the set of the n nodes, and (undirected) edge (u,v) € €
if and only if d(u,v) < rmae-

The per-source data gathering capacity of a network with
n nodes, s(n) data sources, and d(n) sinks is defined as the
maximum rate A(n, s(n),d(n)) at which each source node
can send its data, with the property that the data sent by a
source at time t is received by a sink node within time ¢ + T,
with T' < co. The data gathering latency is the minimal time
T(n,s(n),d(n)) such that T' < T'(n, s(n), d(n)), for each data
source. Note that, when d(n) = 1, the definitions of data gath-
ering capacity and latency are meaningful only if graph G is
connected. When d(n) > 1, it is indeed possible to have non-
zero per-source capacity and finite latency also in partitioned
networks. However, in order to be able to compare different
data gathering scenarios on the same network topology, we
will keep the assumption of connected communication graph
also when d(n) > 1.

We consider two types of network deployment in this paper.
In the arbitrary deployment, nodes are arbitrarily deployed in
a two-dimensional region of arbitrary shape. In the random
deployment, nodes are distributed uniformly at random in a
square region of side (ryq./j) - v/n/logn, where j > 8
is an arbitrary constant. Note that in the random deployment
scenario we can set the region side to be an arbitrary constant
(e.g., 1), which implies that the transmission range r,,,, can
be expressed as

logn
Tmax = Tm,a:c(n) =7 n

i.e., it is asymptotically vanishing with n. Thus, the random
deployment scenario under the additional assumption that the
side of the deployment region is a constant corresponds to
the so called dense random network scenario, considered, for
instance, in [11].

Similarly to [15], we assume the deployment region (in both
arbitrary and random deployments) is partitioned into a lattice
of square cells of side [, with [ = Imaz and h > 1 an arbitrary
constant. The step of the lattice ensures that, in absence of
interference, a node located in a cell is able to communicate
with all nodes in adjacent cells (horizontal, vertical, and
diagonal adjacency). Note that condition A > 1 ensures that
the maximum distance between any two nodes in adjacent cells
is at most Tm% i.e., strictly smaller than the transmission
range. This is needed to guarantee that our capacity and
latency achieving data gathering scheme, which only exploits
transmissions between nodes in adjacent cells, avoid using
long links with an arbitrarily small interference margin. These
links, called black/gray links in [1], are notoriously difficult
to simultaneously schedule in a STDMA scheme, and are thus
avoided in our data gathering approach.

For a given node u, C(u) denotes the cell to which node u
belongs. Given any two nodes u, v, the cell distance between
u and v, denoted cd(u, v), is the minimum number of adjacent
cells that must be traversed to reach C'(v) starting from C(u)
(or viceversa). Given a path P in graph G, we say that P
is a cell path if and only if consecutive nodes in P belongs
to adjacent (non-empty) cells. Given any two nodes u, v, let
P(u,v) denote a minimal-length cell path between nodes u
and v. We say that the network is minimally cell connected if
and only if, for each source node w, len(P(u,v)) = cd(u,v),
where v is a sink node of minimal cell distance from node
u!, and len(P) denotes the length of path P. The notions
of cell distance, cell path, and minimal cell connectivity are
pictorially described in Figure 1. Observe that the notion of
minimal cell connectivity, which we show to be sufficient
to achieve asymptotically optimal data gathering latency, is
closely related to the notion of backward connectivity, which
is shown in [15] to be sufficient to achieve asymptotically
optimal broadcast latency.

In the following, we assume that a simple form of data
aggregation can be used to reduce the amount of data traffic
circulating in the network. In our study, data aggregation is
based on the notion of sensing granularity, which refers to the
spatial resolution used for acquiring data from the sensed field.
More specifically, we assume the network designer can specify
a parameter sg defining sensing granularity, which is used to
partition the network deployment region into non-overlapping
square cells of side sg. When data aggregation is used, we
assume that only one sensor data reading per sensing cell (if
available) is to be returned to a sink node, independently of the
actual number of nodes present in the sensing cell. Although
very simple, this notion of data aggregation, which is based on
the implicit assumption that the sensed field displays a high
degree of spatial correlation, is of practical relevance. Note
that the sensing cell partitioning is independent of the cell
lattice used to define the notion of minimal cell connectivity
and to design the data gathering scheme. To avoid confusion
in terminology, in the following we use the term “cell” to
refer to the cell used in the definition of the data gathering

"Minimal cell connectivity is trivially satisfied if both the source and the
sink node reside in the same (or in adjacent) cell(s).



scheme, and the term “sensing cell” to refer to the cell used
to aggregate data to be delivered to the sink(s).

We conclude this section with two known properties of
the random network deployment, which will be useful in the
remainder of this paper.

Proposition 1. (from [5]) In the dense random deployment
scenario, the critical transmission range for connectivity® is:

Trmaz (1)

7]’ .

Proposition 2. (from [15]) In the random deployment sce-
nario, let C,,;, denote the number of nodes in the minimally
occupied cell in the lattice. We have Prob(C,in, > 0) — 1 as
n — oo, i.e., wh.p., each cell in the lattice contains at least
one node.

ctr(n) =

A straightforward consequence of Proposition 2 is that a
randomly deployed network satisfies minimal cell connectivity,
w.h.p.

IV. SINGLE SINK NETWORKS
A. No data aggregation

We first consider the case of single sink networks, i.e.,
throughout this section we assume d(n) = 1. Differently from
most existing works on data gathering capacity, our results
hold independently of the location of the sink node within the
network.

We start by stating the upper bounds on data gathering
capacity and latency, which hold for both arbitrary and random
network deployments.

Proposition 3. The per-source data gathering capacity of a
w

single sink network with s(n) data sources is O )
W is the capacity of the wireless link. The data gathering

, where

latency is (?(—n)), where D(n) is the network diameter.

The upper bound on capacity follows by observing, simi-
larly to [11], [12], that the sink node can receive data from at
most one node at any instant of time, that the channel data rate
is W, and that sink reception capacity must be shared amongst
s(n) sources. We thus do not consider use of advanced PHY
layer techniques to exceed the O(W) receiving capacity limit
at the sink node, as proposed in [4], [24]. The lower bound
on latency is based on the observation that, under our network
model, a packet can travel at most distance 7,4, towards the
sink node at each communication round.

We now present the capacity and latency achieving data
gathering scheme. We assume that each node v is aware of
the cell C(v) to which it belongs, and that a spatial TDMA
approach is used at the MAC layer. Furthermore, we assume
that cells are colored according to a two-dimensional coloring
scheme (see Figure 2), similar to those used, e.g., in [8],
[15]. More specifically, the color of a cell (and of all the
nodes belonging to that cell) is a tuple (¢,j), with ¢ the
horizontal color and j the vertical color. A total of k2 colors,

2The critical transmission range for connectivity is defined as the minimum
value of the transmission range such that the resulting communication graph
is connected with high probability, i.e., with probability approaching 1 as n
grows to infinity.
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Fig. 2. Two-dimensional coloring scheme used in the data gathering scheme
with k = 3. Cells with the same color (0,0) are shaded.

for some constant k£ > 0, are used, i.e., both the horizontal
and vertical colors take values in {0, ...,k —1}. The coloring
scheme is used in an obvious way to form the transmission
schedule, i.e., time is subdivided into slots of equal time
duration, which are numbered in a cyclical fashion between 0
and k2 — 1; each color is assigned a transmission opportunity
at each communication round composed of k? consecutive
transmission slots. When the slot corresponding to color (3, j)
is active, only links whose transmitter is in a cell of color
(i,4) can be scheduled for transmission.

The following lemma, proved in [15], is a fundamental
building block of our construction:

Lemma 1. Assume a cell partitioning as defined in Section
III, and assume that at most one node per cell with the same
color transmits. If

k>k= [2 + 2545 (B¢ (o — 1A/ (h® — 1))ﬂ :

where ( is the Riemann’s zeta function, then the packet sent
by a node is correctly received by all nodes in adjacent cells.

The lemma states that a constant degree of spatial separation
(number of colors) is sufficient to achieve successful packet
reception in neighboring cells, under the assumption that at
most one node per cell with the same color is simultaneously
transmitting. Thus, a constant degree of spatial separation is
sufficient to achieve Q(7,,,4,) (recall that the size of the cell
is O(T'max)) progress of a packet towards the sink (if minimal
cell connectivity is satisfied).

The data gathering scheme is reported in Figure 3. De-
pending on its role, each network node is classified as either
sink, source node, or relay node. The sink node is the only
data collector in the network. Source nodes generate new data
packets to be delivered to the sink; furthermore, they can act as
data forwarders if they are not sending their own data. Relay
nodes can act only as forwarders of data generated by source
nodes. Non-sink nodes (either source or relay nodes) can be
selected as leader nodes in their cell. There is a unique leader
node in each non-empty cell, which is selected according to
some rule, such as at random, remaining battery level, etc.
Leader nodes act as forwarders of data towards the sink.
Note that only relay nodes that are cell leaders participate
in forwarding the collected data to the sink. Non-leader relay
nodes actually do not take part in the data gathering scheme,
and can be considered as non-active nodes (and possibly put
into sleep mode to save energy).

The data gathering scheme is very simple. Non-sink nodes
are allowed to transmit only if the current slot color corre-



Algorithm for a generic non-sink node v:
Let i be the color of the current time slot
Node v has a single position packet buffer
Lif color(v) =i then

if (source(v) and MyTurn(v)) then

generate and transmit new packet

3. else if cellLeader(v) then

4. if buffer(v) is not empty then

5. transmit packet and empty buffer

6.else // color(v) # i

7.if cell Leader(v) then

8. listen to the channel

9. if new packet arrive then

10. receive the packet and store in transmit buffer

N

Algorithm for the sink node:
1s. At each time slot:

2s. listen to the channel
3s. if new packet arrive then
4s. receive the packet and deliver to user application

Fig. 3. The data gathering scheme with single sink node.
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Fig. 4. The data gathering tree. Sensing cells are shown with dashed lines. If
data aggregation is used, only one source node per sensing cell is active.

sponds to the node color. If the node is a source, a further
condition must be satisfied in order to enable transmission of
a new packet. This condition, which is verified by function
MyTurn() at step 2., ensures that data generated by the
various sources do not conflict at intermediate nodes in their
route to the sink. In the following, we show the constructive
technique used to calculate function MyTurn() for each
source node, and prove its correctness. If transmission of a new
data packet is not allowed, the node can act as forwarder of
data generated by other sources if it is a leader node (step 3.).
If the current slot color does not correspond to the node color,
the node actively participates in the data gathering scheme
only if it is a leader. In this case, it checks whether a new
packet is received at the current time slot, and stores the new
packet in the buffer. The data gathering algorithm for the sink
node is straightforward.

To ensure collision-free delivery of data to the sink and
optimal latency (in case minimal cell connectivity is satisfied),
data is conveyed to the sink through a cell-based shortest path
tree, called the data gathering tree, where the transmission
time (slot) for each data source is appropriately computed?.
An example of data gathering tree is reported in Figure 4: for
each source node v, a minimal length cell path to sink node

3A similar construction and transmission time computation has been used
in the broadcast scheme for arbitrary number of sources presented in [16].
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Fig. 5. The cell tree corresponding to the data gathering tree of Figure 4. Only
positive cell-node weights are shown.

s, denoted P(v,s), is randomly selected as data forwarding
path*. Note that, without loss of generality, we can assume
that P(v, s) — {v, s} is composed only of leader nodes. The
composition of all these minimal length cell paths (one for
each source) forms the data gathering tree.

Starting from the data gathering tree, a simplified gathering
tree, called cell tree, is constructed as follows. A cell-node is
associated with each cell with at least one node in the data
gathering tree. With a slight abuse of notation, in the following
we use C(T") to denote the cell corresponding to cell-node T
in the cell tree. An edge is present between cell-nodes T' and
U if and only if there is at least one edge between a node in
C(T) and a node in C(U) in the data gathering tree. Each
cell-node is assigned with a weight equal to the number of
source nodes present in the corresponding cell. The cell tree
corresponding to the data gathering tree of Figure 4 is reported
in Figure 5.

The main idea of the data gathering scheme is to have the
sink node receiving a new packet from a different data source
at each communication round. Since the communication round
is composed of a constant number k2 of transmission slots,
and the total number of sources is s(n), we have that each
source delivers packets to the sink with a rate of %(n) =
Q(%) which is asymptotically optimal. Furthermore, data
source transmission times are set in such a way that conflict at
intermediate nodes of the cell tree are avoided, which ensures
that a packet transmitted by source v during communication
round t is received by sink s at communication round t +
cd(v, s). As we shall see, this property implies asymptotically
optimal data gathering latency when minimal cell connectivity
of the network is satisfied.

The transmission time for each source node in the network
is recursively computed as follows, starting from the root of
the cell tree, which corresponds to the cell containing the
sink node. Communications rounds (each composed of k>
transmission slots) are cyclically numbered from 0 to s(n)—1.
In the following, all the mathematics is modulo s(n).

Let T4, ...,Ty be the children of the root node R in the cell
tree, and let sw(7T;) be the sum of the weights of all cell-nodes
belonging to the subtree rooted at 7;. Furthermore, denote by

4The choice of the actual minimal length cell path used to deliver data to
the sink, which determines the tree topology, has no influence on the data
gathering capacity and latency achieved by our scheme.
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Fig. 6. Transmission scheduling for the cell tree of Figure 5.

w(T') the weight of cell-node 7. It is easy to see that

h
w(R) + Z sw(T;) = s(n) .

Without loss of generality, we let the communication rounds
{0, ..., w(R)—1} be assigned to the w(R) sources in the same
cell as the sink (if any), and communication rounds

L, =w(R) + isw(Tj), e

...,w(R)—I—ZZ:sw(Tj)—lei

be assigned to the sources that gather their data to the sink
via cell-node T;, with ¢ = 1,..., h. We can now compute
function MyTurn() for source nodes in C(s) by randomly
ordering them, and letting M yTurn(v) return true for a source
node v in C(s) and order position ¢ if and only if the current
communication round is ¢ — 1.

Let us now consider one of the children nodes 7T;. If
w(T;) > 0, ie., if at least one data source is located in
C(T;), then the first w(T;) rounds of the [L;, U;] interval are
assigned to sources in C(T;), and function MyTurn() for
these sources can be computed as above. The remaining rounds
are recursively assigned to the children T7,...,7} of cell-
node 7 in the tree, using an interval-based round assignment
as above. However, we have to consider that node 7; must
be able to transmit a new packet during each of its assigned
rounds. Hence, the packets coming from a particular children
T}, which must be transmitted by the leader node of cell C(T;)
during interval [L’, U], must be received by T; in an earlier
time window. In order to preserve optimality of data gathering
latency and single buffering at the nodes, we set the time
window used by cell-node Tj2 to transmit its data to cell-node
T; to be [L} —1,U; — 1]. In other words, the data transmitted
by the leader node in cell C(7}) at round ¢ is received by
the leader node in cell C(T;) during the same round, and
transmitted to the parent cell-node during round ¢ + 1.

By repeatedly applying the above construction, the transmis-
sion times of all data sources in the network can be computed,
and used to define the respective myTurn() functions. The
result of the transmission time computation for the data
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gathering tree reported in Figure 4 is reported in Figure 6. Note
that it is perfectly possible that, as a consequence of schedule
computation, several nodes simultaneously transmit packets
within the cell tree. However, the data gathering scheme
ensures that at most one node per cell is allowed to transmit in
each transmission slot which, by Lemma 1, implies that each
simultaneously transmitted packet can be successfully received
by nodes in neighboring cells as long as k > k.

We are now ready to prove that our data gathering scheme
provides asymptotically optimal capacity.

Theorem 1. The data gathering scheme of Figure 3 achieves

S‘(}Z) per-source capacity.

Proof: The proof follows easily by observing that: )
the transmission schedule is built in such a way that packets
generated by any source are delivered to the sink once every
s(n) communications rounds; i) the link communication rate
is W and #it) each communication round is composed of a
constant number k2 of fixed length transmission slots, where
the value of k is defined in Lemma 1. [ ]

The following Lemma provides an upper bound to data
gathering latency as a function of the cell distance to the
sink, under the assumption that the network is minimally cell
connected.

Lemma 2. Assume the network is minimally cell connected.
The packet sent by source node v during communication round
t is received by the sink s during communication round t +

cd(v, s).

Proof: The transmission schedule is built in such a
way that every generated data packets traverses one edge
of the cell tree at each communication round. Hence, the
packet generated at round ¢ by source node v such that the
corresponding cell-node is at distance h from the root of the
cell tree is received by the sink node at round ¢ + k. The cell
tree is built starting from the data gathering tree, which is in
turn constructed by joining minimal cell paths for each data
source. Given minimal cell connectivity, we have that, for each
source, the minimal cell path to the sink has length equal to
cd(v, s). Hence, it must be h = cd(v, s), and the lemma is
proved. [ ]

Theorem 2. Assume the network is minimally cell connected.



The data gathering scheme of Figure 3 achieves O (%)
data gathering latency.

Proof: We observe that, since k& is a constant and the
duration of a transmission slot is fixed, the duration of a
communication round does not depend on n. This implies also
that the actual transmission slot during which the packet is
transmitted by the source (or received by the sink node), which
can add at most an additional factor equal to the duration of a
communication round to latency, is O(1). By Lemma 2, and by
the above observation, the data gathering latency for source v
is O(cd(v, s)). We next observe that, by definition of network
diameter, the Euclidean distance between any source node v
and the sink s is upper bounded by D(n). The proof of the
theorem follows by observing that the cell size is ©(rpqz),
which implies that c¢d(v, s) = O (% [ |

Combining Proposition 3 and theorems 1 and 2, we can
conclude the following:

Theorem 3. The data gathering scheme of Figure 3 achieves
asymptotically optimal data gathering capacity and latency.
This result holds for arbitrary network deployments, subject
to the condition that minimal cell connectivity is satisfied.

B. Data aggregation

We now consider the effects of data aggregation on data
gathering performance. To this purpose, we assume the de-
ployment region is divided into square sensing cells of side sg.
The data gathering scheme is modified as follows. If more than
one data sources are present in a sensing cell, only one of them
is selected as active source (an arbitrary criterion can be used
to select active sources); the data gathering scheme remains
unchanged, with the difference that only active sources are
allowed to transmit and used to build the data gathering tree.

It is immediate to see that data gathering latency is not
impacted by data aggregation. To evaluate the effects of data
aggregation on data gathering capacity, we need to determine
the relationship between sg and the area of the deployment
region. It is in fact immediate to see that per-source data
gathering capacity in presence of data aggregation becomes

*(am)

where as(n) is the number of active sources in the network. In
turn, as(n) is upper bounded by the number of sensing cells in
the network, which can be determined only if the relationship
between sg and the area of the deployment region is fixed. To
this purpose, we consider two deployment scenarios, similar
to those considered in previous works on the data gathering
capacity [4], [11], [12]. In the square grid scenario, the n
nodes are distributed in a square lattice of step O (7,4, ); thus,
the deployment region is a square of side L = O(\/n"4z) =
O(y/n). Defining the density of a deployment as the average
number of nodes within a node transmission range, it is easy to
see that square grid deployment is a minimal density scenario
that maintains the network connected. The other considered
scenario is the random deployment scenario described in
Section III. We recall that, under this scenario, n nodes are

distributed uniformly at random in a square region of side
L = (rmaz/j) - v/n/logn. As shown in Section III, the
random deployment scenario is a minimal density scenario
for achieving connectivity w.h.p. with random uniform node
deployment. Note that, due to random node distribution, this
minimal density is O(logn), which is larger than the ©(1)
density of the square grid scenario.

Let us first consider the square grid deployment; in this case,
the number of sensing cells is

o((£))-om

under the reasonable assumption that the sensing granularity
does not depend on the number of nodes. Thus, in the
square grid deployment, owing to the low node density, data
aggregation provides no significant gain in per-source data
gathering capacity, which remains 2 (%)

Let us now consider the random deployment; in this case,
the number of sensing cells is

(V) ) o)

which implies that the per-source data gathering capacity
is increased of a ©(logn) factor over the case of no data
aggregation. It is easy to generalize the above reasoning, and
conclude that, under the assumption that the density of node
deployment is ©(f(n)), for some f(n) = O(n), the per-source
data gathering capacity is increased by a f(n) factor.

We can then conclude this section with the following
theorem:

Theorem 4. Assume a network is deployed with O(f(n))
density, for some f(n) = O(n); furthermore, assume that
the network is minimally cell connected, and that the sensing
granularity does not depend on n. Then, our data gathering
scheme combined with data aggregation achieves optimal data
gathering latency, and ) (Wfl(n)s

capacity.

per-source data gathering

V. MULTIPLE SINK NETWORKS

We now consider the more general case of multiple sink
networks, where d(n) > 1 nodes in the network act as data
collector. When multiple sinks are present in the network,
a relevant question is how to map data source to sinks.
In [11], the authors assume this mapping is random. This
assumption, which eases the theoretical analysis developed in
[11], clearly leads to sub-optimal data gathering performance,
since the number of re-transmissions (which negatively impact
per-source data gathering capacity) needed to deliver a data
packet increases with the distance to the sink. Driven by
this observation, in this section we make the assumption that
source nodes send their data to a sink at short cell distance.
Furthermore, we assume that sink nodes are not randomly
located (as in the model of [11]), but they can be properly
selected amongst the network nodes, as it is typically the case
in a wireless sensor network scenario. On the other hand,
source nodes are assumed to be randomly chosen amongst
the remaining 7 — d(n) nodes.
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Fig. 7. Data gathering scheme with multiple sinks in square grid deployments.

We first state the capacity upper bound and latency lower
bound in presence of s(n) source nodes and d(n) sinks.

Proposition 4. The per-source data gathering capacity of a

W-d(n)
) ) The

network with d(n) sinks and s(n) sources is O (

D(n)
Tmazy/d(n) )’

The capacity bound follows by observing that, with d(n)
sink nodes, the aggregate sink reception capacity is increased
by a factor at most d(n) with respect to the single source case.
The lower bound on latency is obtained under the optimistic
assumption that sink nodes are evenly spread in the network,
so that the distance of a source to the closest sink can be
reduced by a factor O(1/d(n)).

In the remainder of this section, we consider two possible
network deployments, namely the square grid deployment
described at the end of Section IV and the random deployment.

Assume square grid node deployment. The deployment re-
gion is divided into d(n) square sub-regions of approximately
equal size’, and one node is selected as sink node within each
sub-region (note that at least one node is contained in each sub-
region). Source nodes belonging to a certain sub-region R send
their data towards the only sink node within R (see Figure 7).
The data gathering scheme described in the previous section is
independently applied in each sub-region, i.e., a data gathering
and cell tree is built in each sub-region, and the data gathering
process goes on in parallel along all the data gathering trees.
We now characterize the data gathering capacity and latency
achieved by this data gathering approach:

data gathering latency is ) (

Theorem 5. Assume square grid node deployment. The mul-
tiple sink data gathering scheme described above achieves
Q W) per-source data gathering capacity, where
M(s(n),d(n)) denotes the maximum number of source nodes
D(n)

Tmaz /d(N)

optimal) data gathering latency.

in a sub-region, and O (i.e., asymptotically

Proof: We first observe that, even if data gathering on
the different trees goes on in parallel, transmissions in the
different trees do not corrupt each other. In fact, since each cell

5To simplify presentation, in the following we assume that each cell as
defined in Section III is entirely contained in a single sub-region. This
assumption might entail some rounding on the actual size of sub-regions.

is entirely contained in a single sub-region, the property that at
most one node per cell with the same color is simultaneously
transmitting holds also when multiple, spatially separated data
gathering processes are active. Thus, Lemma 1 is satisfied, and
source nodes in sub-region R can transmit their data to the
respective sink with rate %, where s(R) is the number of
sources in sub-region R. It is then clear that per-source data
gathering capacity is lower bounded by W, where
M(s(n),d(n)) > S(R) is the maximum number of sources
in a sub-region. The upper bound on data gathering latency
follows immediately by: ) construction of sub-regions; %)
construction of the data gathering trees in each sub-region; and
1i1) the observation that the square grid deployment satisfies
minimal cell connectivity. [ ]

The value of M (s(n),d(n)), and thus the achievable per-
source capacity, depends on the relative magnitude of s(n) and
d(n), and is characterized in Lemma 1 of [11]. In particular,
if s(n) > d(n)log(d(n)) (e.g., s(n) = n® and d(n) = n®,
with 0 < b < a < 1), we have M (s(n),d(n)) = © gs(n))

which implies that our scheme achieves asymptotica ld}En())p—
timal €2 <p W&(Cf f)" )

nario is when s(n) = d(n) = O(n), i.e., when the order
of the number of sources is the highest possible, and a
comparable number of sinks is used. In this case, we have

) per-node capacity. Another relevant sce-

M(s(n),d(n)) = © (log’ign , and the achieved per-node
capacity is (%), which is a factor lolgign below

optimal. The sub-optimal behavior of our data gathering
scheme is due to unbalanced distribution of source nodes in
the sub-regions.

Consider now the case of random node deployment. Simi-
larly to the previous case, we subdivide the deployment region
into d(n) sub-regions of approximately equal side. However,
we add the further constraint that sub-regions must be larger
than a cell, as defined in Section III. This is to ensure that,
in accordance with Proposition 2, each sub-region contains at
least one node w.h.p., so that a sink node can be selected within
each sub-region w.h.p. Note that this constraint imposes an
upper bound on the number of admissible sink nodes, namely

a(n) = 0 (2 ).

The data gathering scheme is the same as in the case of
square grid deployment: one node is selected as sink in each
of the d(n) sub-regions; all source nodes in sub-region R send
their data to the sink node belonging to R; data gathering along
the d(n) data gathering trees runs in parallel. The following

theorem can be proved along the same lines as Theorem 5:

Theorem 6. Assume random node deployment, and that

din) = O( L ) The multiple sink data gathering

logn J°*

w

scheme described above achieves 2 (W per-source

data gathering capacity, where M (s(n),d(n)) denotes the
maximum number of source nodes in a sub-region, and

1o} D(n)
Tmaz y/d(N)

latency.

(i.e., asymptotically optimal) data gathering

We observe that when d(n) = © (L

logn

) and s(n) = O(n),
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Fig. 8. Data gathering capacity scaling laws with random network deployment.

we have M (s(n),d(n)) = ;EZ;, which implies that the per-
source capacity §) (V[;‘(‘i(;”> =0 (102‘/”) achieved by our
scheme is optimal. It is interesting to compare this result
with the findings of [11], which also assume random network
deployment. In [11], the authors show that per-source capacity

is upper bounded by O (W'd(”)) when d(n) = O ( 1

s(n) logn /)’

-y/n/logn

while it is upper bounded by O (W ()

Conversely, our results have shown that

) for larger

values of d(n).

O (Ws(i()" )> per-source capacity can be achieved even when

as long as d(n) = O (1ogn . This different
scaling law in per-source capacity, which is depicted in Figure
8, is due to the different strategies used to map source node
to sinks: random in [11], locality-based in our work. Thus,
the advantages of the locality criterion used for data gathering
becomes tangible in terms of achievable capacity.

Before ending this section, we observe that data aggregation
can be used also in presence of multiple sink to increase per-
source capacity by a factor of f(n), where f(n) is the node
density.

d(n) > \/T

logn?

VI. ENERGY EFFICIENCY

Differently from most previous work on data gathering
capacity characterization, the capacity/latency achieving data
gathering scheme presented in this paper is fully compatible
with an energy efficient wireless sensor network design. In
particular, energy-efficiency is achieved for what concerns
choice of the i) node transmission range, i) data aggregation
method, and 4i¢) data source/sink mapping.

Concerning %), we observe that Proposition 1 states that, up
to a constant factor, the transmission range as defined in the
dense random deployment scenario considered in this paper
is the minimum possible to maintain the network connected,
w.h.p. In other words, choosing a smaller value for the
transmission range would result in a disconnected network
with some fixed probability p > 0, impairing a fundamental
network property. Thus, the results derived in this paper
are obtained considering the minimum possible (i.e., energy
efficient) setting for the transmission range. We stress that
this is not the case in some relevant related work on data
gathering. For instance, in [4] the cooperative transmission
scheme requires using very high transmit power values at the
neighboring nodes to achieve an Q(W logn) capacity at the
sink node. In [12], the lower bound on the per-source data

gathering capacity is of the form

W c1r?
An,n—1,1) > — » —5——=== ,
N C3Tae T CaTmaz + C5

—

)

with the ¢;s positive constants. The above lower bound is
Q(%)’ i.e., asymptotically optimal, if 7,4, does not depend
on n. However, in [12] the authors consider a dense network
scenario in which an increasingly large number of nodes is
deployed in a fixed area. Hence, an energy efficient setting of
the transmission range would require 7,4, — 0 as n — oo
(as in our analysis), to take advantage of the increasing node
density. However, the capacity lower bound reduces to the
trivial lower bound A(n,n — 1,1) > 0 when 7,4, — 0, since
the right hand side of (1) converges to a negative constant
when 7,4, — 0. Thus, the optimal capacity lower bound
must be traded off with energy efficiency in [12], which is not
the case for the results presented in this paper.

Concerning i), we observe that, although very simple, the
notion of data aggregation used in our analysis is of practical
relevance, and fits well with sleep scheduling techniques
used to extend sensor network lifetime without significantly
impacting observation accuracy (see, e.g., [2], [22]).

Finally, concerning iii) we observe that the locality rule
used to map active data sources to sinks is fully compatible
with energy-efficient routing algorithms, in which a minimal
number of hops (and, hence, packet retransmissions) is needed
for an active source to reach a sink. This is in sharp contrast
with the random mapping used in [11], which on the average
leads to energy inefficient routing of packets to the sinks.

VII. DISCUSSION AND FINAL CONSIDERATIONS

In this paper, we have investigated the capacity and latency
scaling laws of data gathering in wireless sensor networks
where s(n) sources have to send their data to one of the
d(n) sinks. Our main finding is that a simple gathering
scheme can be used to obtain optimal or near optimal data
gathering capacity for most scaling regimes of s(n) and d(n).
Furthermore, the same gathering scheme achieves optimal
data gathering latency under the condition that the network
is minimally cell connected, a condition which is satisfied,
for instance, in case of square grid and random network
deployment. We have also characterized the capacity increase
achieved by a form of data aggregation based on the notion of
sensing granularity, increase which is shown to be proportional
to the node density f(n). Although simple, this form of data
aggregation is of practical relevance, and fits well with sleep
scheduling strategies aimed at extending network lifetime.

Before ending this paper, we comment on the following two
questions: ¢) what are the design guidelines that can be derived
from our theoretical results? and i) is the characterized data
gathering capacity sufficient to guarantee observability of the
region monitored by a wireless sensor network?

Concerning i), we observe that the capacity and latency
achieving data gathering scheme presented in this paper is
fully distributed and very easy to implement in a real network.
However, it is based on a set of assumptions, which might not
always hold in a wireless sensor network. More specifically, it
is assumed that spatial TDMA is used at the MAC layer (which



requires time synchronization), a weak form of location-
awareness (nodes must know the cell to which they belong),
and that leader nodes are selected in each cell. Indeed, time
synchronization (see, e.g., [21]) , location-awareness (see, e.g.,
[14]), and leader election mechanisms (see, e.g., [3]) are quite
typical building blocks of a wireless sensor network used, e.g.,
for environmental monitoring, so we believe that the proposed
data gathering scheme can potentially be implemented in
several wireless sensor network application scenarios.

As for ii), we observe that the optimal per-source capacity
W-d(n

s(n)
totically vanishing unless d(n) = Q(s(n)). Thus, the only
way of achieving non-vanishing per-source capacity is to have
a number of sinks comparable to the number of sources, which
might entail a prohibitive cost in many application scenarios.
However, if the observed field is spatially correlated, data
aggregation can be used to increase per-source capacity by
selecting a number of available sources to report their data,
and having a large set of nearby sources to remain silent. The
advantage of data aggregation over the case of no aggregation
clearly depends on the (source) node density: the higher
the density, the higher capacity increase can be achieved.
It is interesting to observe that in random deployments, the
minimal density necessary to guarantee network connectivity
w.h.p., which is Q(log n), achieves the same O(logn) capacity
increase (in the single sink scenario) that has been achieved in
[4], [24] through sophisticated PHY layer and data encoding
techniques. The resulting per-source capacity has been shown
in [4] to be sufficient to guarantee observability of a random
Gaussian field. Although this does not directly imply that the
same observability property holds also in our setting (in fact,
nodes are evenly spaced on a sphere in the model of [4],
while they are randomly deployed in a square in our case),
the above observation seems to indicate that a simple form of
data aggregation has the potential to guarantee observability
of a random field also in presence of a single sink.

It is also worth observing that our results and the presented
data gathering scheme are fully compatible with an energy
efficient network design in which, for instance, the transmis-
sion range is set to the minimum possible value that keeps
the network connected, a subset of the nodes are put in sleep
mode to save energy, and so on.

Finally, we want to outline that the results presented in this
paper are relevant also to other types of wireless multihop
networks where the many-to-one or many-to-many traffic
pattern is likely to arise, such as wireless mesh networks where
most of the traffic is directed towards few gateway nodes.

without data aggregation is at most O ( )), i.e., asymp-
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