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Abstract—Active safety applications for vehicular networks
aims at improving safety conditions on the road by raising
the level of ‘‘situation awareness” onboard vehicles. Situation
awareness is achieved through exchange of beacons reporting
positional and kinematic data. Two important performance pa-
rameters influence the level of situation awareness available to the
active safety application: the beacon (packet) delivery rate (PDR),
and the packet inter-reception (PIR) time. While measurement-
based evaluations of the former metric recently appeared in
the literature, the latter metric has not been studied so far.
In this paper, for the first time, we estimate the PIR time and
its correlation with PDR and other environmental parameters
through an extensive measurement campaign based on IEEE
802.11p technology.

Our study discloses several interesting insights on PIR times
that can be expected in a real-world scenarios, which should be
carefully considered by the active safety application designers. A
major insight is that the packet inter reception time distribution
is a power-law and that long situation awareness black-outs are
likely to occur in batch, implying that situation awareness can be
severely impaired even when the average beacon delivery rate is
relatively high. Furthermore, our analysis shows that PIR and
PDR are only loosely (negatively) correlated, and that the PIR time
is almost independent of speed and distance between vehicles. A
third major contribution of this paper is promoting the Gilbert-
Elliot model, previously proposed to model bit error bursts in
packet switched networks, as a very accurate model of beacon
reception behavior observed in real-world data.

I. INTRODUCTION

Vehicular networks are considered a very promising tech-
nology to improve safety conditions on the road. Active
safety applications are a class of applications enabled by short
range vehicular radio communications aimed at raising the
level of a driver’s “situation awareness”, with a substantial
benefit in terms of improved safety conditions and better traf-
fic efficiency. Among active safety applications, we mention
electronic emergency braking light, lane change assistant, lane
merging assistant, intersection collision warning, etc. [15].

The successful realization of active safety applications poses
hard challenges to the underlying communication technology,
which should enable fast and reliable exchange of information
between neighboring vehicles in an environment characterized
by high mobility and typically harsh radio propagation con-
ditions. The Dedicated Short Range Communication (DSRC)
initiative [11] is aimed at defining standards at various lev-
els of the network architecture to realize such dependable
short-range radio technology for vehicular communications.
In particular, the recently released IEEE 802.11p standard

amends the well-known 802.11 protocol suite with the goal of
improving quality in vehicular communications. The standard
operates in the 5.9 GHz frequency band, and provides data
rates between 3 and 27 Mbps.

The fundamental mechanism underlying active safety ap-
plications is beaconing, through which applications running
onboard vehicles become aware of the position and status
of surrounding vehicles. Beaconing consists in the periodic,
single-hop broadcast transmission of status messages — called
beacons — containing vehicle positional and kinematic data.
Thus, understanding beaconing performance is a fundamental
step in the process of designing active safety applications.
This explains the considerable attention that the vehicular
networking community has devoted to the study and optimiza-
tion of beaconing [1], [5], [9], [10], [13], [14]. In particular,
two parameters have been identified as the most relevant to
characterize beaconing performance: the beacon delivery rate
and beacon inter-reception time.

Beacon delivery rate refers to the fraction of correctly
received beacons over the total number of transmitted beacons,
i.e., it is equivalent to the well-known packet delivery rate
(PDR) metric. Beacon (packet) inter-reception time (PIR),
first defined in [5], is defined as the interval of time elapsed
between two successful beacon receptions. To understand why
both PDR and PIR are important in characterizing situation
awareness, consider the two following scenarios. In both
scenarios, 50% of the beacons transmitted by vehicle A with
a 10Hz frequency in an interval of 10 sec are received at
vehicle B, i.e., vehicle B receives 50 beacons in both cases.
However, the reception pattern is very different. In scenario 1,
beacons are received in an alternate fashion: the first beacon
is received, the second is missed, the third is received, and so
on. In scenario 2, beacons are received in batch: 25 beacons
are received in the first two seconds of the interval, then no
beacon is received for 5 seconds, and the remaining 25 beacons
are received in the last three seconds of the interval. Clearly,
scenario 1 and 2 are very different from the situation awareness
viewpoint: in the former case, vehicle B’s knowledge of
vehicle A’s position and status is outdated of at most 200
msec; in the latter case, there is a situation awareness blackout
of at least 5 sec. Considering that a vehicle can move of more
than one hundred meters in 5 sec at highway speeds, it is
clear that situation awareness is severely impaired in scenario
2, resulting in possibly undetected dangerous situations.

So far, beaconing performance has been mostly studied



through analysis and simulation, and only very recently a few
papers evaluated PDR based on on-the-field measurements —
see Section II. However, as commented above PDR alone
is not sufficient to fully understand the level of situation
awareness available to active safety applications. Thus, ours
can be considered as the first study of practical beaconing
performance — including both PDR and PIR — based on an
extensive set of on-the-field measurements obtained in normal
traffic conditions.

Our measurement-based characterization of beaconing per-
formance discloses several interesting insights:

— the PIR time distribution is heavy-tailed. More specifi-
cally, it is a power law of relatively low exponent. Fur-
thermore, relatively long situation awareness blackouts
are likely to occur in batch. These facts have important
implications on active safety application design, which
shall be able to cope with relatively long and repeated
situation awareness blackouts;

— PIR and PDR are loosely correlated metrics, promoting
PIR time as the most important metric for estimating the
degree of “situation awareness” in vehicular networks.

Another major contribution of this paper is promoting the
Gilbert-Elliot model [6], [8] as a very accurate vehicular
link channel model: in the last part of the paper, we show
that this model, which we rename L/N model in the context
of vehicular networks to emphasize effect of LineOfSight
(LOS)/NonLineOfSight (NLOS) conditions on link quality,
can be tuned to almost perfectly resemble the beacon reception
patterns observed in our collected measurements. Given its
simplicity and analytical tractability, we then propose the L/N
model as an invaluable tool in the design and analysis of active
safety applications.

II. RELATED WORK

Given its importance within the realm of active safety
applications, beaconing performance characterization and op-
timization has been subject of intensive research in recent
years. Most studies are based on analysis and simulation, and
are typically aimed at understanding and optimizing the com-
munication parameters (data rate, transmission power, etc.)
[10], [14]. In [13], the authors analyze multi-hop information
propagation using a simple link model, corresponding to the
geometric link model that we will consider in the last part
of this paper. Other studies consider specific active safety
applications, such as cooperative collision warning [5], [16].

Only very recently some papers have been published report-
ing results from on-the-field experiments using IEEE 802.11p
compliant radios. Here, we discuss only results relevant to the
beaconing application considered in this paper, and we do not
consider the several experimental works aimed at evaluating
PHY layer features of the vehicular radio link (see, e.g., [2]
and references therein).

To our best knowledge, all existing measurement-based
studies focus on PDR [1], [9] or on application-layer goodput
[12], and only some of them [1], [9] consider vehicle-to-
vehicle (V2V) communications.

In [9], the authors consider an intersection collision warning
application, and evaluate PDR and RSSI as a function of
the distance of the two vehicles from the intersection. The
authors consider different transmit power values in their study,
and conclude that intermediate power levels can provide good
performance while at the same time reducing congestion in
the wireless channel.

In [1], the authors present an extensive analysis of PDR
in different scenarios for what concerns propagation environ-
ment, data rate, etc. The authors also analyze temporal, spatial,
and symmetric correlation of PDR values, and conclude that,
while temporal and spatial correlation are weak, symmetric
correlation is instead quite strong.

To our best knowledge, none of the existing measurement-
based studies addresses the problem of characterizing the PIR
time distribution, and its relationship with PDR and other
environmental factors such as speed and distance between
vehicles. As we have exemplified in the previous section,
beacon delivery rate alone is not sufficient to quantify the
level of situation awareness delivered to the active safety
application. More information about the temporal pattern of
successful beacon receptions is needed for this purpose, which
motivated the authors of [5] to introduce the notion of packet
inter-reception time.

III. EXPERIMENTS SETUP
A. Hardware

Experiments have been performed using two IEEE 802.11p
compliant devices, namely the LinkBird-MX v3 units pro-
duced by NEC. The LinkBird-MX units are embedded Linux
machines (kernel 2.6.19) based on a 64 bits MIPS proces-
sor working at 266Mhz. The characteristics of LinkBird-MX
802.11p network interface are reported in Table I.

LinkBird-MX units were connected to a small-size, omni-
directional WiMo antenna, whose characteristics and form
factor fit well with vehicular applications. The antenna op-
erates at 5.5-5.8GHz frequency range, has 5dBt¢ gain, and
is 108 mm long. The antennas were mounted on the roof
of the vehicles for performing V2V radio measurements.
The onboard equipment on each vehicle is composed of a
LinkBird-MX unit, a GPS receiver, a laptop, and the antenna.

Parameter Details
Frequency/Channel 5725 — 5925 MHz
Bandwidth 10 — 20 MHz
Version IEEE802.11p Draft 3.0, July 2007

Transmit Power
Bitrates (10MHz)
Bitrates (20MHz)

Max 21 dBm (Europe)
3,4.5,6,9,12,18,24,27 Mbps
6,9,12,18,24, 36,48, 54 Mbps

TABLE 1
CHARACTERISTICS OF LINKBIRD-MX 802.11P NETWORK INTERFACE.

Several radio channels in the 5.9GHz frequency band have
been reserved for vehicular systems both in Europe and US.
Among these channels, one is reserved for safety applications
only (the control channel). Given our focus on measuring
performance of beaconing, which is at the basis of active safety



applications, we used the control channel — in Europe, channel
180 at 5.9 GHz — for all our measurements.

B. Beaconing application

We developed a simple beaconing application, which sends
packets — henceforth called beacons — at a regular interval.
The beaconing interval has been set to 100 ms, according to
recommendations for active safety applications [11].

Beacons are generated by the application running on the
laptop, sent to the LinkBird-MX unit through an Ethernet link,
and then transmitted on air using the single-hop broadcast
primitive provided by the LinkBird-MX protocol stack — called
C2X stack. A packet sent in single-hop broadcast is received
by all the nodes within the transmitter’s communication range.
A beacon contains the following information: the vehicle ID,
the packet ID (increased by one at each transmission), the ve-
hicle latitude, longitude, speed, heading, and current time (all
taken from GPS receiver). Each beacon has a 100B payload,
considered the typical size for active safety applications [11]
— without security overhead. In fact, beacons are envisioned to
carry not only GPS data, but also data collected from various
onboard sensors reporting, e.g., steering wheel angle, braking
system status, vehicle size, etc. Since we do not have direct
access to these data in our experiments, we use a padding of
73B to generate a 100B beacon. Beacons are transmitted at
full power (21 dBm in Europe) using the lowest coding rate
(1/2) with BPSK modulation, corresponding to a PHY layer
raw data rate of 6Mbps with 20M hz channel bandwidth, in
agreement with latest recommendations [7], [10]. Usage of
the lowest available data rates is mandatory for active safety
applications, due to the typical usage of single-hop broadcast
packets (which can be sent only at the lowest data rate), and
to the better communication reliability provided by the lowest
data rate.

The beaconing application also generates data traces as
follows. The application records both transmission and re-
ception events: for each transmitted beacon, the application
running on vehicle A records the vehicle ID, the packet ID,
and A’s GPS data (latitude, longitude, speed, and heading),
thus mirroring the information contained in the transmitted
beacon. Also, whenever the application running on vehicle
A receives a beacon from another vehicle B, it stores the
following information: the beacon content — B’s vehicle ID,
packet ID, and B’s GPS data —, the own GPS data (latitude,
longitude, speed, heading and time), and the current system
time. Note that the recorded system time at A is not necessarily
synchronized with GPS time, nor with the system time at
B. However, synchronization is not needed here, as the sole
purpose of recording system time of a reception event is
allowing an accurate measurement of the PIR time: with
system time, we are able to measure PIR time with a 1ms
accuracy. On the other hand, the GPS receivers used in our
experiments provide time readings with a 1s accuracy, which is
insufficient for accurately measuring PIR time — but sufficient
(with some trick) to allow temporal alignment of the recorded
traces.

Fig. 1.  Map reporting the return trip from Montopoli in Valdarno to
S. Cristina Valgardena (906 Km).

Castetforentino

Fig. 2.  Map reporting the return trip from Pisa to Florence (176 Km).

IV. MEASUREMENTS
A. Data collection

Measurements were collected during several data collection
campaigns performed in the months of January and February
2011. The first two sets of measurements were taken during
a two-way trip from Montopoli in Valdarno to S. Cristina
Valgardena, Italy (see Figure 1). The one way trip from
Montopoli to S. Cristina is 453 Km long. A second group
of measurements were taken during two two-way trips from
Pisa to Florence — see Figure 2 — where each two-way trip
is about 176 Km. Overall, measurements were taken along a
total of 1260 Km per vehicle, comprised of about 1151 Km
of highways, 82 Km of suburban road, and 27Km of urban
road. Indeed, the total amount of traveled kilometers during
measurement campaigns amounts to 2520 Km, as two vehicles
have been used to both transmit and receive beacons.

B. Data post-processing

The raw traces generated during the measurement cam-
paigns have been post-processed to generate data that can be
directly used to evaluate beaconing performance.

The first problem we addressed was temporal alignment
of the four sets of traces generated for each leg of a trip.
The transmit traces generated by the two vehicles have been
used for this purpose. Traces have been aligned using the
GPS time reading. We recall that our GPS devices provide
time reading with a 1s granularity, which is insufficient for
accurate temporal alignment of data traces considering that a
vehicle can move of more than 30m in a second in a highway.
However, the GPS device is polled with a 10Hz frequency
(the beaconing frequency), thus allowing temporal alignment
of transmit traces with an accuracy of about 0.1s, which we
deem sufficient for our purposes (considering also the inherent



inaccuracy in GPS positional data). Temporal alignment of the
transmit traces allows computing the distance between vehicles
during the trip.

Note that GPS position readings might be invalid for rel-
atively long periods of time due to, e.g., galleries, reduced
number of visible satellites, and so on. This implies that valid
GPS readings of both vehicles have been recorded only for a
portion of a trip. We define a GPS position reading taken at
time ¢ to be valid if and only if:

a) it has been updated with respect to the previous reading
taken at time ¢t — 1;

b) the distance between the position of the vehicle at time ¢
and ¢ — 1 is compatible with the GPS speed reading, i.e.
d(t—1,t) < 1.5 vpmas , where d(t — 1,¢) is the distance
between vehicle position at time ¢ and that at time ¢t — 1,
and vy, is the largest speed reading returned by GPS
at times ¢ — 1 and {.

Criterion b) has been introduced to filter out situations in
which a sudden change in environmental conditions (e.g.,
new satellites becoming visible) resulted in very different
consecutive GPS position readings.

Once transmit traces have been temporally aligned, valid
segments of a trip have been identified, where a valid segment
is defined as a portion of a trip during which the GPS position
readings of both vehicle A and B are continuously valid for a
time interval of at least 30s. Intuitively, a valid segment defines
a portion of a trip for which the position of both vehicles can
be accurately estimated. Thus, each trip is broken down into a
number of valid segments. Beaconing performance estimation
reported in the remainder of this paper will be based only
on the analysis of traces collected in valid segments of the
various trips (only from highway sections), which amount to
about 925 Km overall.

V. AGGREGATE PIR TIME DISTRIBUTION

Which is the PIR time distribution? A first observation
that we derived from the extensive amount of collected data
(over 448K transmission events and over 275K reception
events have been recorded) is that the PIR time can be
considered, for all practical purposes, as a discrete random
variable!. In fact, PIR values computed from the receiver traces
always matched almost perfectly with a value of the form k-7,
where k£ > 1 is an integer and 7' is the beaconing period of 100
ms. Thus, random variable PIR denoting the time elapsing
between two successive successful beacon receptions can be
modeled as PIR = k-T, where T is a constant corresponding
to the beaconing period, and £ is a random integer denoting the
number of periods elapsed between two successful receptions.

In order to characterize PIR time distribution, we observe
that a sound notion of PIR time requires the two vehicles
to remain within each other transmission range during the
timespan between successive successful beacon receptions. In
fact, the aim of the PIR metric is to quantify the degree of

I'This observation applies to the low channel load scenarios considered in
our measurements campaign.
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Fig. 3. PDR as a function of distance between vehicles.

“situation awareness” achieved when two vehicles are within
each other transmission range. Clearly, there can be no situa-
tion awareness if two vehicles are not able to communicate.

Given the above observation, before proceeding further we
need to define a notion of transmission range, that can be used
to filter out portion of the data traces during which vehicles
were not continuously within each other transmission range.

To characterize the transmission range, we analyze the
dependence between PDR and distance between vehicles (see
Figure 3). It is interesting to note that there are two relatively
flat regions in the PDR vs distance curve: one in the range
of distances between 70 m and 100 m, where PDR is about
30%; and one in the range of distance between 110 m and
170 m, where the PDR is about 10%. These flat regions can
be used to define a notion of transmission range, i.e., of a
distance up to which beacons can be received with a given
minimum reliability. More specifically, in the following we
define a strict and loose notion of transmission range, with
the strict transmission range corresponding to 80 m, and the
loose transmission range corresponding to 160 m.

It is interesting to compare the two values of transmission
range defined above with those reported in the literature.
In [1], the authors evaluate the PDR vs. distance function
using extensive measurements in different vehicular scenarios.
For all the scenarios considered, the reported transmission
ranges are higher than the ones resulting from our studies. For
instance, according to [1], we have a PDR of about 0.4 at 450
m. A possible reason explaining this difference in measured
transmission ranges could be related to the hardware used in
the experiments. In fact, while our NEC LinkBird-MX radios
fullfil the requirements for minimum radio sensitivity dictated
by DSRC, according to which sensitivity must be -85dBm at
3Mbs [4], in [1] the authors use radios with a much lower
sensitivity of -94dBm. Thus, much longer transmission ranges
can be in principle achieved using the radios of [1] given the
same intensity of the received signal.

The PIR time distributions for strict and loose transmission
range resulting from filtering out irrelevant portions of the
data traces are reported in Figure 4. More specifically, the
figure reports the complementary cumulative density function
(ccdf) of random variable PIR, i.e., P(PIR > k). The mean
value of the PIR random variable is 126.29 msec with strict
transmission range, and 134.92 msec with loose transmission
range. The median is 100 msec in both cases. Indeed, the
PIR distribution is highly concentrated on the first term:
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event (PIR = 1) has relative frequency 0.9344 with strict
transmission range, and 0.9277 with loose transmission range.
The remaining probability mass, though, is well spread among
the larger terms. In fact, independently of the definition of
transmission range, the PIR time ccdf is linear in log-log scale,
i.e., it is a power law. Indeed, the following power laws almost
perfectly fit experimental data:

.15

1\
P(PIR > k) =0.065 - (> for strict tx range ,

k

and
1) 108
P(PIR > k) =0.073 - (k) for loose tx range ,

What are the implications of the power law trend of PIR
time? The most important implication of the power law trend
is that the PIR time distribution is heavy tailed: the probability
of having relatively long PIR time is relatively high. The above
observation applies to both definitions of transmission range:
not only the PIR time is a power law in both cases, but the
exponent of the power law is indeed very similar.

A consequence of the observed power law trend is that,
when designing active safety applications, relatively long
periods of time during which situation-awareness is impaired
should be expected. For instance, the probability that the PIR
time exceeds 1 sec — call this event a blackout — is about
0.006 with loose transmission range, which is apparently a low
value. However, we have to consider that the PIR time value is
sampled very frequently: on the average, a new PIR value is
generated every 134.92 msec (loose tx range). Considering
a blackout as a Bernoulli event with success probability
0.006, and assuming independence of blackouts?, we have that
blackouts on the average occur once every 1/0.006 samples,
i.e., once every 22.5 sec. Thus, we can expect a situation-
awareness black-out of at least 1 sec once every 22.5 sec
on average. Considering that a vehicle can easily travel for
30-40 m in a highway scenario during one sec, it is evident
that potentially dangerous situations might remain undetected
during blackouts.

A third implication of the power law trend is related
to modeling of the wireless link between vehicles, and is

2In the following, we show that blackouts are not independent events. Inde-
pendency is assumed here for the purpose of back-of-the-envelope calculations
only.
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carefully investigated in Section VII: as we shall see, the fact
that the PIR time distribution has a fat tail is a clear evidence
of the fact that the simple wireless link model often used in
vehicular network analysis [13], [16], according to which a
packet is successfully received within transmission range with
a fixed probability 0 < p < 1, does not reflect packet reception
behaviors observed in real world.

Are blackouts isolated? To answer this question, we
have evaluated the distribution of the first PIR event after a
blackout occurs in case of loose transmission range. More
formally, we have evaluated the probability mass function
of the event (PIR; = k|PIR;_; > 10), where PIR; is
the ¢-th packet inter-reception time observation. The rationale
for this investigation is the following: if blackouts were
temporally independent events, the shape of the conditioned
PIR distribution would be very similar to the shape of the
unconditioned PIR distribution. Otherwise, positive or negative
temporal correlation of blackouts is displayed.

The PIR time distribution observed after a blackout is
reported in Figure 5. The shape of the distribution is con-
siderably different from that of the unconditioned PIR time
distribution (see also Figure 10 later on in the paper): the
probability mass of the first event is 0.2933, as compared to
0.9277 in the unconditioned distribution; the mean and median
are 1.384 sec and 250 msec, as compared to 134.9 msec and
100 msec in the unconditioned distribution. In general, the
probability mass is shifted towards larger terms (heavier tail)
in the conditioned distribution. For instance, the probability
of having a blackout, which is 0.006 in the unconditioned
distribution, is 0.261 after conditioning, i.e., more than 44
times larger. This clearly indicates a strong positive temporal
correlation between blackout events: the fact that a blackout
is just occurred considerably increases the probability of
observing another blackout in the next sample. Thus, blackout
events are likely to occur in batch, further challenging the
design of effective active safety applications.

As we will see in Section VII, blackout temporal correlation
can be explained by the L/N vehicular link model: if a blackout
occurred, it is likely that the link between the two vehicles is in
NLOS conditions; if NLOS conditions are relatively persistent,
it is then very likely that also the next observed PIR time will
be relatively long.

VI. CONDITIONED PIR TIME DISTRIBUTIONS
Is the PIR time distribution correlated to PDR? To
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answer this question, we have computed the Pearson correla-
tion coefficient’ between PIR time measurement and the PDR
observed in the 5 seconds preceding a successful reception
event (which corresponds to a PIR time measurement). As
seen from Table II, the coefficient reveals a weak inverse
correlation between PIR and PDR. Thus, PDR values cannot
be directly used to estimate PIR time. Since relevant PIR
events from the “situation-awareness” viewpoint are those
corresponding to relatively large PIR values (say, PIR times
> l1sec), we have computed the correlation coefficient also on
the restricted data set formed of the (PIR, PDR) pairs with
PIR > 10. As seen from Table II, also in this case correlation
is weak, although somewhat stronger than in case the entire
data set is considered. Negative correlation is in accordance
with intuition, since relatively high PIR values are expected
when the PDR is relatively low. However, the correlation is
very weak, due to the fact that while PDR value needs to be
averaged over a sufficiently large interval (5 sec) for statistical
accuracy, the PIR value refers to an event occurring in a much
shorter time interval (interval between successive successful
beacon receptions). The weak negative correlation between
PIR time and PDR can be noticed also in Figure 6-a), reporting
the PIR time distribution conditioned on different ranges of
observed PDR values: as seen from the figure, higher PDR
values tend to reduce the tail of the PIR time distribution.

PIR vs. | All data set | PIR > 10
PDR -0.2313 -0.3543
distance 0.0856 0.1458
speed 0.0423 0.1084
TABLE II
CORRELATION COEFFICIENTS BETWEEN PIR TIME AND PDR, DISTANCE,
AND SPEED.

Is the PIR time distribution correlated to distance? To
answer this question, we have computed the correlation coef-
ficient between the PIR time and the average distance between
vehicles in the time interval elapsing between consecutive
successful beacon receptions. The result (Table II) shows a
negligible correlation between distance and PIR time, which
is confirmed also by the PIR time distributions conditioned on
different distance values reported in Figure 6-b). Also when
restricted to PIR values > 10, the correlation between distance
and PIR time remains barely noticeable (see Table II).

Is the PIR time distribution correlated to speed? To
answer this question, we have computed the correlation coef-
ficient between the PIR time and the average speed of vehicles

3We recall that the Pearson correlation coefficient takes values in [—1, 1],
with -1 and 1 representing maximal correlation (negative and positive,
respectively), and O representing no correlation.

in the time interval elapsing between consecutive successful
beacon receptions. The result, reported in Table II, shows a
negligible correlation between speed and PIR time, which
is confirmed also by the PIR time distributions conditioned
on different speed values reported in Figure 6-c). Also when
restricted to PIR values > 10, the correlation between speed
and PIR time remains negligible (see Table II).

VII. VEHICULAR LINK MODELS

Can a simple vehicular link model resembling observed
PIR time distribution be defined? To answer this question,
in this section we consider three candidate models, which we
briefly introduce below. These models are aimed at modeling
a situation in which the two vehicles are within each other
transmission range, where the transmission range can be
thought of as a value empirically defined as in Section V. For
simplicity, and in accordance to the observation in Section V,
in all models we assume time is discretized into 100 msec
steps and model random variable PIR as a discrete random
variable. We recall that notation (PIR = k) denotes the event
“the packet-inter reception time equals & - 100 msec”.

A. The geometric link model

The geometric model corresponds to the well-known model
of independent Bernoulli trials, according to which each
transmission is successfully received with a fixed probability
p. Success probability p is assumed to be independent of
the vehicles’ speed and relative distance, as long as the two
vehicles fall into each other transmission range. When the
two vehicles are outside each other transmission range, the
reception probability is assumed to be 0. This channel model
has been used, e.g., in [13], [16].

It is straightforward to see that the geometric link model in-
duces a PIR time distribution which is geometric of parameter
p, whence the name of the model. In fact, we have

P(PIR=k)=(1—-p)* p, fork=1,2,....

It is also easy to see that the ccdf of the PIR time is
P(PIR > k)= (1—p)*.

A log-log plot of the PIR time ccdf with geometric link
model and different values of p is reported in Figure 7. As
seen from the plot, the tail of the PIR time distribution is very
thin, unless parameter p is relatively low.

B. The Gilbert model

The Gilbert model has been introduced in [8] to model
bit error bursts in packet switched networks. In the Gilbert
model, the link can be in two states (GOOD and BAD): when
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Fig. 7. Ccdf of the PIR time distribution with geometric link model and
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The L/N link model.

in GOOD state, the bit is correctly received with probability
1; when in BAD state, the bit is correctely received with
probability 0 < p;,,, < 1. Transitions between the two states
are determined according to transition probabilities pg and pp.
Thus, the model is fully characterized by three parameters:
the link reception probability in BAD state p;.., and the two
transition probabilities ps and pp.

The PIR time distribution in the Gilbert model can be
obtained as a special case of that for the more general Gilbert-
Elliot model derived in the next section. Similarly to the
geometric link model, we assume the above packet reception
probabilities apply only when the two vehicles are within each
other transmission range, with reception probability equal to
0 otherwise.

C. The L/N (Gilbert-Elliot) link model

In [6], Elliot introduced a generalization of the Gilbert
model in which the probability of correct bit reception in
GOOD state is phign, With pioy, < Ppign < 1. The resultant
model is known as the Gilbert-Elliot model. In this paper,
we propose to rename the Gilbert-Elliot model in vehicular
environments as L/N link model, motivated by the observation
that beacon reception probability is heavily influenced by LOS
(corresponding to GOOD state) and NLOS (corresponding to
BAD state) conditions. This observation has been recently
confirmed by measurement studies [2]. The resulting 2 x 2
Markov chain is pictorially represented in Figure 8. A link
can be in either LOS or NLOS state, with transition proba-
bilities p”, p¥* determining the rate of transitions between
the two states. The probability of successfully receiving a
packet depends on the current link state: it is ppign, With
0 < Prigh < 1, when the link is in LOS state, and it is piouw,
with 0 < piow < Phigh, when the link is in NLOS state. Note
that, given the memorylessness property of a Markov chain,
the probability of successfully receiving a beacon at time ¢
depends only on the state of the link at time ¢, and not on
its state at previous time steps. Similarly to the geometric
and Gilbert model, we assume the above packet reception

probabilities apply only when the two vehicles are within each
other transmission range, with reception probability equal to
0 otherwise.

The Gilbert-Elliot model has been mostly used so far to
characterize bit-level error burst in a communication, thus the
typical quantity of interest has been the number of correctly
received bits in a group of m consecutive bits. In this paper, we
are instead interested in characterizing the distribution of two
consecutive successful receptions (corresponding to packet,
instead of bit, receptions), which, to our best knowledge, has
not been studied so far.

To derive the PIR time distribution in the L/N-model, we
start by stating a known property of the two states Markov
chain defined above:

Proposition 1 (see, e.g., [3]): If 0 < pl,pNE < 1, the
unique stationary distribution of the two states Markov chain
of Figure 8§ is

pl pNL
" (pL TPl PNET L +pNL> '

Thus, pr, and pyr = 1 — pr represent the stationary
probabilities of finding the link in state LOS and NLOS,
respectively.

Next, we derive the probability P(L|Rx) (respectively,
P(NL|Rz)) of finding the link in state LOS (respectively,
NLOS), conditioned on the event that a beacon has been
received. Probability P(L|Rxz) can be computed applying
Bayes’ theorem, according to which we can write:

P(L|Rz) P(Rﬁé%; L _ —Dhigh PL____ _
DL * Phigh + PNL * Plow
_ Phigh ph
— PE Phigh + PV Plow
and

Plow * pNL
pL * Phigh + pNL * Plow

The value of P(PIR = k), for any k& > 1, can be computed
by considering all possible unfolding of the Markov chain
during k steps, starting from a reception event. Consider a
given k-step unfolding of the Markov chain, i.e. a sequence
of k states Sy,...,Sg, with S; € {LOS,NLOS}, and let
P(S1,...,Sk) be the probability that the unfolding occurs.
The probability that (PIR = k) occurs, conditioned on
unfolding 51, ..., Sk, can be computed as follows:

P(NL|Rz) =1 — P(L|Rx) =

k-1
P(PIR = k‘|{51, s 7Sk}) = Dsy - H(l _pSi) ’
i=1
where ps, = phign if S; = LOS, and ps, = piow if S; =
NLOS.
The probability that unfolding Si,...,S; occurs after a
reception event can be computed as follows:

k k
P(Sy,...,Sk) = P(L|Rz)- [ [ "+ P(NL|Rx)- ] [ PV ™57,

i=1 i=1
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Fig. 9. Ccdf of the PIR time distribution with L/N link model and different
parameter settings.

where

L.S: { 1—pNL  if 8 = LOS

poT = NL :
p otherwise

and

1-— pNL if Si—l = LOS, Sz =LOS
vasi _ pNE if S;_1 =L0OS, S;=NLOS

= L

].—pL if Si,1 :NLOS, Sz =NLOS

for 7 > 1. The probabilities p’V 1% are defined similarly.
Thus, the probability of event (PIR = k) can be computed
as follows
k-1

P(PIR=k) = ps, - [[(1 - ps,)- P(Sh,...

=1

aSk)a

where the summation is over all possible k-step unfold-
ing of the Markov chain. Unfortunately, directly computing
P(PIR = k) requires summing a number of terms which is
exponential in k, which becomes unfeasible for even moderate
values of k. However, the P(PIR = k) probabilities can be
efficiently computed using the following recursive definition,
whose correctness can be formally proved by induction (proof
omitted due to lack of space):

P(PIR = k) = P(L|Rx)Py1, + P(NL|Rz) P,y |
where
Pip = p"" (1= prow) Pi—1yn + (1= p" ) (1 = prign) Pa—1)r
Pin = (1= p") (1 = prow)Pi—1yn + 2" (1 = phign)Pi-1yr
fori=2,...,k and
Pi = (1= p")pnigh + PN Diow
Pin = (1= p")piow + " phign -

The ccdf of the PIR time distribution with the L/N link
model and different parameter settings is shown in Figure 9.
In all the plots reported in the figure, prign = 0.9, Diow =
0.1, and pL = pNL. With these settings, it is easy to see
that the probability of successful reception is pr, - Prigh +
PNL - Piow = 0.5. Different scenarios are considered, modeling
a situation where transitions between LOS and NLOS states
are relatively frequent (p* = pN = 0.8 — unstable plot),
relatively unfrequent (p” = pNt = 0.2 — stable plot), and
seldom (p = pNE = 0.1 — persistent plot). For comparison

PIR

L L L L L
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Fig. 10. Measurement-based PIR time ccdf and geometric, Gilbert, and L/N
model fittings: unconditioned and conditioned distribution.

purposes, the plot corresponding to the geometric link model
with p = 0.5 is also reported. As seen from Figure 9, with the
L/N link model the shape of the ccdf varies considerably even
if the probability of successful reception is fixed at 0.5. In
particular, scenarios with relatively persistent link states result
in a fatter tail of the PIR distribution.

D. Validation

Can the link models defined above be used to faithfully
mimic beacon reception behavior in vehicular networks?
To answer this question, we have fitted the geometric, Gilbert
and L/N link models to the data obtained from our traces.

Fitting of the geometric model has been done as follows.
The expected value of random variable PIR under the ge-
ometric link model is 1/p. Thus, the parameter p of the
geometric link model for a specific data set (either strict
or loose transmission range) can be computed by setting
p = 1/Avg(PIR), where Avg(PIR) corresponds to the
average PIR value observed in the experiments. The resulting
values of p are 0.7918 and 0.7411 in the strict and loose
transmission range case, respectively.

Fitting of the Gilbert and L/N link model is less straight-
forward, since the models have three and four parameters,
respectively, and the expected value of random variable PIR
in these models cannot be readily computed. We have then
performed an iterative search for the best values of the model
parameters, minimizing the mean square error (in log scale).

Figure 10 reports the ccdf of the PIR time distribution
derived from measurements, as well as the geometric, Gilbert
and L/N model fits in case of loose transmission range. Similar
results, not reported due to lack of space, have been obtained
in case of strict transmission range. From the figure is seen
that the geometric link model generates a packet reception
behavior that deviates considerably from measured data. The
Gilbert model shows a better fit to measurements than the
geometric model: however, while it can be used to approximate
reasonably well the tail of the distribution, it is quite inaccurate
in estimating the first terms of the distribution. The L/N
model can be instead be adjusted to almost perfectly fit
experimental data. The resulting best fitting for the L/N model
are pL' = 0.035,p™L = 0.004, prign = 0.825, piow = 0.0125
in the strict transmission range case, and p~ = 0.03, pNl =
0.005, prigh = 0.835, piow = 0.0125 in the loose transmission
range case. It is interesting to observe that the two best fittings
of the L/N model are indeed very similar, indicating that the



optimal setting of this model is not very much dependent on
the choice of the transmission range.

To further validate accuracy of the L/N-model, we have
considered the conditional PIR time distribution after a black-
out event, as defined in Section V. The conditional PIR time
distribution for the L/N-model has been evaluated by simulat-
ing the Markov chain with best fit parameters for 10° steps,
and recording the observed PIR time after a blackout event.
The resulting conditional PIR time distribution is reported in
Figure 10, along with that obtained from measurements. As
seen from the figure, the L/N-model with best fit parameters
as above is able to faithfully reproduce both the uncondi-
tioned and conditioned PIR time distribution obtained from
measurements. On one hand, this validates the L/N-model as
a simple, analytically tractable, and very accurate vehicular
link model. On the other hand, the fact that L/N-model can be
made to almost perfectly fit measured PIR time distribution
indirectly proves that the heavily tailed shape of the PIR time
distribution is caused by transition between persistent LOS
and NLOS conditions, during which reception probability is
relatively high and relatively low, respectively.

VIII. FINAL REMARKS

In this paper, we have presented a first extensive,
measurement-based analysis of beaconing performance in ve-
hicular networks considering not only delivery rate, but also
temporal beacon reception patterns. The major findings con-
cerning temporal correlation of successful beacon receptions
is that the PIR time distribution is heavily tailed, and that
situation awareness blackouts are likely to occur in batch. As
we have discussed in this paper, these findings have impor-
tant implications on the design of active safety applications,
challenging the design of effective solutions.

Another major contribution of this paper is an empirical
proof of the fact that the observed beacon reception patterns
are caused by transition between persistent LOS and NLOS
link conditions; a byproduct of this proof is the validation of
the L/N-model as a simple, analytically tractable, and very
accurate vehicular link model, which we believe will be an
invaluable tool to assist active safety application designers in
the challenge of developing effective solutions.

Before ending this paper, an observation is in order. The
fact that situation awareness blackouts are likely to occur
in NLOS conditions apparently impairs the ultimate design
goal of active safety applications, namely extending a driver’s
situation awareness beyond human eye. Our study clearly
indicates that countermeasures should be undertaken to fulfill
this goal. For instance, advanced PHY layer techniques (multi-
antenna systems, advanced coding schemes allowing reception
of a beacon even if only a few bits are corrupted, etc.) could
be used to increase reception probability in NLOS conditions.
A network-level countermeasure is multi-hop propagation of
beacons, so that impairment of the LOS path can be somehow
avoided. However, usage of multi-hop communication can be
considered as an effective approach only when the penetration
rate of DSRC-based radio technology will be very high.

Thus, how to increase reception probability in presence of
NLOS conditions is likely to remain a prominent engineering
challenge for several years to come.
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