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Abstract—In this paper, we present a framework for analyzing
routing performance in delay tolerant networks. Differently from
previous work, our framework is aimed at characterizing the
exact distribution of relevant performance metrics, which is
a substantial improvement over existing studies characterizing
either the expected value of the metric, or an asymptotic approx-
imation of the actual distribution. In particular, the considered
performance metrics are packet delivery delay, and communication
cost, expressed as number of copies of a packet circulating in
the network at the time of delivery. Our proposed framework is
based on a characterization of the routing process as a stochastic
coloring process, and can be applied to model performance of
most stateless delay tolerant routing protocols such as epidemic,
two-hops, spray and wait, etc. After introducing the framework,
we present examples of its application to derive the packet
delivery delay and communication cost distribution of two such
protocols, namely epidemic and two-hops routing.
Characterizing packet delivery delay and communication cost
distribution is important to investigate fundamental properties
of delay tolerant networks. As an example, we show how packet
delivery delay distribution can be used to estimate how epidemic
routing performance changes in presence of different degrees
of node cooperation within the network. More specifically, we
consider fully cooperative, non-cooperative, and probabilistic
cooperative scenarios, and derive nearly exact expressions of the
packet delivery rate under these scenarios based on our proposed
framework. The comparison of the obtained packet delivery rate
estimation in the various cooperation scenarios suggests that even
a modest level of node cooperation (probabilistic cooperation with
a low probability of cooperation) is sufficient to achieve 2–fold
performance improvement with respect to the most pessimistic
scenario in which all potential forwarders drop packets.

Index Terms—Delay-tolerant networks; non-cooperative net-
works; delay-tolerant routing; packet delivery delay distribution;
communication cost distribution.

I. INTRODUCTION

The delay tolerant network (DTN) paradigm [10] has at-
tracted increased attention in the research and industrial com-
munity in recent years. Differently from other types of wireless
multi-hop networks, DTNs are characterized by a very sparse
node population, and by the lack of full network connectivity
at virtually every time. Given these features, eventual packet
delivery to the destination can be achieved only through node
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mobility, which is indeed the main communication means in
the network.

Since node speed is several orders of magnitude lower
than speed of radio signal propagation in the air, delays
expected in DTNs are orders magnitude higher than those
typically experienced in fully connected wireless multihop
networks. This means that applications designed for DTNs, as
the name DTN suggests, must be able to tolerate large delays
in information dissemination and end-to-end packet delivery.

From the above description, it is clear that a prominent
parameter for evaluating network-level protocol performance
in DTNs is packet delivery delay. In particular, an accurate
characterization of the expected packet delivery delay, together
with an estimation of the communication cost (number of
copies of a packet circulating in the network), is fundamental
to optimally tune the delivery delay/communication overhead
tradeoff, which is at the very heart of delay-tolerant network-
ing.

The research community has devoted substantial efforts to
accurately estimating expected performance metrics in DTNs
(see, e.g., [2], [3], [9], [15], [16], [19]). In some cases,
though, knowing the expected value of a performance metric
is not sufficient to fully understand DTN behavior in different
conditions, and a characterization of the distribution of the
metric of interest is needed. Consider for instance a situation
in which the network designer is interested in comparing
the expected packet delivery rate (PDR) of different DTN
routing protocols, where a packet is considered as successfully
delivered if and only if it is received by the destination within
a certain time TTL (Time To Live) since its generation at
the source. Let D be the random variable (r.v.) corresponding
to the time elapsing between the instant at which the packet
is generated at the source, and the instant at which a copy
of the packet is first received at the destination. Knowing
the expected packet delivery delay E[D] gives the designer
only a very inaccurate estimation of the PDR, since only 0/1
information can be deduced by the knowledge of the sole
expected packet delivery delay, such as assuming PDR = 1
if E[D] ≤ ε · TLL, for some 0 < ε ≤ 1, and PDR =
0 otherwise. Much more accurate PDR estimation could be
given if the distribution of random variable D is known, since
in this case the designer could estimate the expected PDR as
P (D ≤ TTL), i.e., using the cumulative density function of
r.v. D.

In this paper, we introduce a theoretical framework for
analyzing routing performance in delay tolerant networks
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which is aimed at characterizing the exact distribution of
the fundamental performance metrics described above, namely
packet delivery delay and communication cost. This is in
sharp contrast with existing work, which either considers
only expected value of the metrics of interest ([2], [3], [9],
[15], [16]), or provides an asymptotic approximation of their
probability distribution [19].

Our proposed framework is based on a characterization
of the routing process as a stochastic coloring process, and
can be applied to model performance of most stateless delay
tolerant routing protocols such as epidemic [18], two-hops [8],
and spray and wait [15]. After introducing the framework,
we present two examples of its application to compute (or
accurately approximate) the packet delivery delay and com-
munication cost distribution of epidemic and two-hops routing.
The accuracy of our analytical estimation is validated through
simulation of random-waypoint mobile networks, whose re-
sults show that:
– in case of epidemic routing, the presented analytical es-
timation is nearly exact, and much more accurate than the
asymptotic approximation provided in [19] for networks of
moderate size;
– in case of two-hops routing, our analytical approximation
of the packet delivery delay and communication cost distri-
bution is very accurate as long as the maximum number of
packet copies circulating in the network is relatively small as
compared to the network size.

We then show how the proposed framework can be used
to faithfully compare performance of the two considered
routing protocols, in terms of both expected PDR and average
communication cost.

As a further example of application of our framework, we
show how packet delivery delay distribution can be used to
estimate how the performance of epidemic routing changes in
presence of different degrees of node cooperation within the
network. We stress that node cooperation is fundamental to
ensure acceptable performance in DTNs: in fact, differently
from more traditional (fully connected) types of wireless
multi-hop networks, nodes are typically requested not only
to act as packet forwarders, but also to store in their own
buffer other nodes’ packets for a very long time interval (store-
and-forward communication). Thus, both energy and memory
resources, which are very limited in a typical mobile node,
have to be sacrificed for the other nodes’ good.

In the last part of this paper, we consider different coopera-
tion scenarios, encompassing no cooperation, full cooperation,
and probabilistic cooperation, and derive nearly exact expres-
sions of the expected PDR under these scenarios based on our
proposed framework. The comparison of the obtained PDR
estimations gives useful insights on the behavior of epidemic
routing in presence of reduced cooperation levels within the
network, the most notable of which is that even a modest
level of node cooperation (probabilistic cooperation with a low
cooperation probability) is sufficient to achieve up to 2-fold
performance improvement over the most pessimistic scenario
in which all forwarders drop packets. To the best of our
knowledge, ours are the first analytical results characterizing
epidemic routing performance in presence of reduced levels

of cooperation within the network.
Summarizing, the novel contributions of this paper are:

i) the first theoretical framework for characterizing the exact
packet delivery delay and communication cost distribution of
a wide class of DTN routing protocols;
ii) the exact characterization of the packet delivery delay and
communication cost distribution with epidemic routing;
iii) a very accurate approximation of the packet delivery delay
and communication cost distribution with two-hops routing;
iv) the first theoretical characterization of epidemic routing
performance in presence of different degrees of node cooper-
ation within the network.

The derived bounds are shown to be significantly more
accurate than the asymptotic bounds reported in [19].

The rest of this paper is organized as follows. In Section
II, we survey related work. In Section III, we present our
theoretical framework for estimating routing protocol perfor-
mance in DTNs. In Section IV, we introduce some preliminary
definitions and results which will be used in the remainder
of the paper. In Section V, we present the first example of
application of our theoretical framework, which is used to
derive the exact packet delivery delay and communication
distribution of epidemic routing. In Section VI, we present
the second example of application of our theoretical frame-
work, presenting an accurate approximation of the packet
delivery delay and communication cost distribution of two-
hops routing. In Section VII, we compare and assess through
simulation expected performance of epidemic and two-hops
routing in terms of PDR and communication cost, exploiting
the theoretical results derived in sections V and VI. In Section
VIII, we present an example of how the packet delivery delay
distribution derived in Section V can be used to study the
effects of different degrees of node cooperation on epidemic
routing performance. Finally, Section IX concludes.

II. RELATED WORK

Several papers have presented analytical investigations of
DTN routing protocol performance. However, most of these
papers [3], [9], [15], [16] considered only derivation of the
expected value of the metric of interest (typically, packet
delivery delay) in their analysis. To the best of our knowledge,
only a few papers [2], [19] attempted at characterizing a
performance metric’s distribution. However, the authors of [2]
consider a network model in which the TTL is associated
with each single packet replica, and thus their results cannot
be used to provide bounds on the delivery time since initial
packet generation. On the other hand, the results of [19] are
based on ordinary differential equations and are asymptotic
in nature, i.e., they become increasingly more accurate as
the number of nodes in the network grows larger. As we
will show later in this paper, the approach of [19], when
applied to networks of reasonable size, is quite inaccurate.
Most importantly, the bounds presented in [19], when applied
to packet delivery delay, considerably underestimate the value
of the metric, hence they cannot be used to provide minimal
performance guarantees in DTNs.

Relevant to the last part of this paper are recent works
investigating DTN performance in presence of reduced levels
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of node cooperation within the network. In [6], the authors
assume selfish node behavior, and present a mechanism to
discourage selfish node behavior during packet exchange based
on the principles of barter. In [13], the authors consider
three well-known routing protocols for DTNs, and evaluate
their performance (in terms of expected delivery delay and
communication overhead) through simulation under different
levels of node cooperation. The main finding of their study
is that two-hops routing in general appears more resilient
to less cooperative node behavior amongst the considered
routing protocols. The above works, though, are based only
on simulations, and do not provide any theoretical insight on
routing protocol performance in presence of different degrees
of node cooperation within the network.

III. THE ROUTING ANALYSIS FRAMEWORK

Consider a delay-tolerant network composed of M nodes,
and denote by M the set of nodes. Among the M nodes, a
node s is chosen uniformly at random as the packet source,
and another node d 6= s is chosen uniformly at random
as the packet destination. The goal of this section is to
present a framework for analyzing the performance of DTN
routing protocols used to route the packet from s to d. More
specifically, we are interested in characterizing the probability
distribution of the packet delivery delay and communication
cost, which are defined as follows. The packet delivery delay
is defined as the time elapsing between the instant at which
a packet is generated at s, and the instant at which a copy
of the packet is first received by d. The communication cost
is defined as the number of nodes holding at least one copy
of the packet present in the network at the instant at which a
copy of the packet is first received by d.

The proposed framework is based upon the following as-
sumptions:
1) low load: network traffic is low, so that buffer capacity on
the nodes is not an issue (i.e., it can be considered as virtually
infinite).
2) transmission range and encounter: two nodes can commu-
nicate iff they are within distance r, where r is the transmission
range; this is equivalent to assuming isotropic, deterministic
propagation of the radio signal with distance. We say that an
encounter between two nodes occur when they come into each
other transmission range.
3) no contention: any communicating pair of nodes does not
interfere with any other pair communicating at the same time.
This assumption is justified by the very low node density in a
typical DTN scenario, and by the relatively low network load
scenario considered in this paper.
4) fast transmissions: relative speed between arbitrary node
pairs is very low compared to transmission time; in other
words, we assume that the duration of node encounters is
always sufficient for the two nodes to exchange the content
of their buffers.

The process of packet dissemination within the network, by
means of which a packet is eventually delivered to destination,
is governed by a routing protocol. The routing protocol defines
the rules according to which new copies of the packet are

U
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Fig. 1. Transition diagram of the coloring process.

generated, and buffered packets are exchanged between nodes
upon encounters. The presented framework can be applied to
any stateless, deterministic routing protocol for DTNs. By
stateless, we mean that decisions about whether a copy of
the packet should be delivered to an encountered node do not
depend on a notion of state (such as, e.g., history of past
encounters, information related to social relationships between
nodes, etc.). By deterministic, we mean that routing decisions
are not influenced by random choices.

The packet dissemination process is modeled as a coloring
process. Nodes in M−{s, d} can be in one of the following
states:

– uncolored (U): nodes in this state have not yet received
a copy of the packet;

– colored active (CA): nodes in this state have at least two
copies of the packet; these nodes are allowed to deliver
one or more copies of the packet to any uncolored node;

– colored inactive (CI): nodes in this state have one copy of
the packet; these nodes are allowed to delivery the only
copy of the packet they have only to the final destination.

The source node can only be in either CA or CI state, while
the destination can only be in either U or CI state.

Possible transitions between states for non-source nodes are
depicted in Figure 1: a node starts from the U state, and
eventually transitions to either the CA or CI state depending
on the specific routing protocol. A node in CA state may
eventually transition to CI state, while the opposite transition
is not possible. In the following, we say that a node is colored
if it is in either CA or CI state, while it is uncolored otherwise.
It is evident from the transition diagram reported in Figure 1
that the number of colored nodes within the network cannot
decrease over time.

Let L be the maximum number of copies of a packet
(excluding possible copy delivered to the destination) allowed
to circulate in the network by the routing protocol at hand. The
coloring process starts at time t0 = 0, when the source node
is in state CA, and all other nodes are in state U (see Figure
2). The relevant events in the considered stochastic process are
“coloring events”, representing the situation in which a node in
CA state encounters a node in U state, or a node in CA/CI state
encounters the destination. The i-th coloring event is denoted
Ei, and occurs at time Ti. Upon occurrence of Ei (i.e., at time
t > Ti), the number of colored nodes in the network becomes
i + 1. Thus, a simple relationship is established between the
number of coloring events, and the number of nodes holding
at least one copy of the packet in the network. As we shall
see, this relationship can be used to derive the communication
cost distribution by simply estimating the probability that the
destination is the i-th colored node, with 1 ≤ i ≤ L.
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Fig. 2. The stochastic coloring process. In the example, L = 4. Initially,
only the source node is colored (and active). At time T1, the first node is
colored and transitions to state CI. At time T3, four copies of the packet are
circulating in the network: the spray phase ends, and the wait phase starts.
At time T4, the destination node is colored and the coloring process ends.

The coloring process ends when the destination node be-
comes colored. It is easy to see that the number of colored
nodes (including the source) at any point in time before
the destination is colored is at most L. Thus, the maximum
possible number of coloring events occurring in the process is
L, accounting for up to L− 1 coloring events between a node
in CA and a node in U state, and coloring of the destination.

The coloring process can be thought as divided into two
phases (see Figure 2), called the spray and the wait phase
[15]: in the spray phase, some of the colored nodes are in
CA state, and they can deliver extra copies of the packet to
any uncolored node; in the wait phase, all colored nodes are
in CI state, and the only possible coloring event occurs when
the destination first encounters a colored node and becomes
colored. Given the upper bound L on the number of packet
copies circulating in the network, it is easy to see that, unless
the destination is colored earlier, the spray phase ends at time
TL−1, i.e., when the (L− 1)-th node is colored.

Let Ed denote the event “destination is colored”, which
occurs at time Td. Our goal in the following is to characterize
the probability distribution of random variable Td representing
the time at which the destination is colored. More specifically,
we want to compute

P (Td < t)

for any given t > 0.
We first observe that, given the above description of the

coloring process, we have Td = Ti for some i = 1, . . . , L,
with Td = Ti indicating that the destination is the i-th colored
node in the process. Denote by Ed,i the event “destination is
the i-th colored node”. It is immediate to see that the Ed,is are
mutually disjoint events, and the probability of interest can be
computed as follows:

P (Td < t) =

L∑
i=1

P (Ti < t|Ed,i) · P (Ed,i) .

We have then reduced the problem of computing the dis-
tribution of Td to the two following subproblems: 1) com-

puting the distribution of r.v. Ti, conditioned on Ed,i; and 2)
computing the probability of event Ed,i. Note that computing
probabilities P (Ed,i) is exactly what is needed to derive the
communication cost distribution, which is then a byproduct of
2).

In order to compute the distribution of Ti, we observe that
Ti can be expressed as a sum of random variables τ1, . . . , τi,
where r.v. τ1 = T1 − t0, and τj = Tj − Tj−1 for 1 < j ≤ i.
Thus, we can write:

P (Ti < t|Ed,i) = P (

i∑
j=1

τj < t|Ed,i) .

Clearly, the distribution of τj random variables depends
on the features of the mobility pattern, and more specifically
on the expected meeting time between nodes. The expected
meeting time of a mobility model is defined as the time
elapsed between a random time instant (after node spatial
distribution has reached the stationary state) and the first
encounter between a pair of nodes moving according to the
model [17]. In the following, to simplify derivations, we make
the assumption that nodes move according to an arbitrary
mobility model with exponentially distributed meeting time
with rate 1

emt between arbitrary node pairs, where emt is the
expected meeting time between arbitrary node pairs. This is a
quite standard assumption in the analysis of DTN performance
[15], [16], [19], which has been formally proved to hold for
some mobility models (e.g., random walks [1]), and validated
through simulation-based analysis for common mobility mod-
els such as random waypoint, random direction, and so on
[17]. Indeed, recent analyses of real-world DTN traces [12]
have shown that meeting time follows a mixed power law and
exponential (for the tail) distribution. Extending our analysis
to mixed power law/exponential meeting time distributions is
beyond the scope of this paper, and is left for future work.

IV. PRELIMINARIES

In the rest of this paper, we will present examples showing
how the analytical framework described in the previous section
can be used to derive or to accurately approximate the packet
delivery delay and communication cost distribution of pop-
ular DTN routing protocols. Before presenting the technical
derivations, we need some preliminary definitions and basic
results.

The following notation will be used throughout the paper.
We use notation f(λ, x) and F (λ, x) to denote the pdf and
cdf of an exponential random variable of parameter λ, namely
f(λ, x) = λe−λx and F (λ, x) = 1− e−λx.

Consider n i.i.d. continuous random variables X1, . . . , Xn,
and let X1, . . . , Xn be a realization of the n random variables.
We now order the values of the realization in increasing order,
starting from the smallest, and denote with X(1), . . . , X(n)

the ordered values. Each of the X(i), for i = 1, . . . , n,
can be considered as a realization of a random variable
X(i), which is known as the i-th order statistic of random
variables X1, . . . , Xn (note that X(1) = min{X1, . . . , Xn}
and X(n) = max{X1, . . . , Xn}). Denoting by ψ(x) and Ψ(x)
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the pdf and cdf, respectively, of each of the Xi, the pdf of the
i-th order statistic of random variables X1, . . . , Xn is [7]:

Ord(n, i, x) =
n!

(i− 1)!(n− i)!
Ψ(x)i−1(1−Ψ(x))n−iψ(x) .

In the following, we denote by Ord(n, i, λ, x) the pdf of the
i-th order statistic of a set of n i.i.d. exponential random
variables of parameter λ.

Fact 1: The first order statistic (minimum) of a set of
n i.i.d. exponential random variables of parameter λ is an
exponentially distributed random variable of parameter nλ.
Formally,

Ord(n, 1, λ, x) = nλe−nλx .

The following lemma from [4] will be useful in the follow-
ing:

Lemma 1: Let (Xi)i=1...n, n ≥ 2, be independent ex-
ponential random variables with pairwise distinct respective
parameters λi. Then the pdf of their sum is

fX1+X2+···+Xn
(x) =

[
n∏
i=1

λi

]
n∑
j=1

e−λjx

n∏
k 6=j
k=1

(λk − λj)
, x > 0.

The specific DTN routing protocols considered in the
applications of the proposed analytical framework are the
following:
i) Epidemic [18]: the maximum number of allowed packet
copies circulating in the network is set to L = M . Initially,
only the source is in CA state. Each time a CA node encounters
an uncolored node, it generates two new copies of the packet,
and deliver them to the uncolored node. This mechanism en-
sures that all colored nodes (except the destination) are in CA
state, thus maximizing the speed of packet spreading within
the network. Under our working assumption of unlimited
buffer capacity, epidemic routing is optimal in terms of packet
delivery delay, at the expense of a significant communication
cost.
ii) Two-hops [8]: the maximum number of allowed packet
copies circulating in the network is set to L ≤M . The source
node initially generates L copies of the packet, and delivers
a single copy of the packet to the first L − 1 encountered
uncolored nodes. This mechanism ensures that only the source
node can be in CA state, while all other colored nodes are in
CI state and can deliver the packet only to the destination. This
routing algorithm is equivalent to Spray and Wait routing with
source spraying [15].

V. ANALYSIS OF EPIDEMIC ROUTING

In this section, we provide a first example of usage of our
framework to derive the probability distribution of the packet
delivery delay and communication cost with epidemic routing.

Theorem 1: The cumulative density function of random
variable Td representing delivery time with epidemic routing
is defined as

P (Td < t) =
1

M − 1

M−1∑
i=1

P (Coli,t) ,
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where P (Col1,t) is defined in equation (3) of the proof, the
P (Coli,t)s are defined in equation (4) of the proof, and the
pdf of r.v. Ti−1 needed to compute the P (Coli,t)s is obtained
according to Lemma 1, where the rates of the involved
exponential r.v.s are defined as in formula (5) in the proof.

Proof: The proofs of all results presented in this paper
are reported in the supplemental material.

Corollary 1: Let C be the random variable representing the
number of nodes holding at least one copy of the packet in
the network at delivery time. With epidemic routing, we have

P (C = i) =

{
1

M−1 for 1 ≤ i ≤M − 1

0 otherwise
.

To validate our analysis, we have performed a set of sim-
ulations using a self-developed simulator, in which M = 30
nodes are initially distributed uniformly at random in a square
area of 10km side. Nodes have a transmission range of
250m, and move according to the random waypoint (RWP)
mobility model [11] with no pause time and fixed speed
v. Since the stationary node spatial distribution generated
by the RWP model is not uniform [5], we let the nodes
initially move for a large number of steps (1000) in order
to reach the stationary distribution. After stabilization, a ran-
domly selected node generates a packet directed towards a
randomly selected destination, and the corresponding packet
delivery delay is recorded when the packet first reaches the
destination. Similarly, we record the number of packet copies
in the network at delivery time. We performed a large set of
such experiments (more than 105 for each parameter setting),
and grouped stored packet delivery delays in bins of 4min
duration. The experimental cdf and pdf of packet delivery
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delay is then derived by computing the number of elements in
each bin. Note that, since the communication cost distribution
is discrete, no binning is needed and we simply keep trace of
the number of packet copies recorded in each experiment to
estimate the probability distribution.

We have considered three settings of parameter v, ranging
from pedestrian (v = 2m/sec) to vehicular (v = 15m/sec)
mobility. Figures 3 and 4 reports the derived packet delivery
delay experimental distributions when v = 2m/sec (very
similar results have been obtained also with other settings of
v). The figures also report the analytical packet delivery delay
distribution computed (using MathematicaTM) according to
the analysis reported in the supplemental material, where ε
is set to 0.1 in the definition of the λj terms. The values of
the emt for the random waypoint mobility model has been
computed according to the formula reported in [17], which
we report for completeness:

emt =
N

3.5 · v · r
,

where N is the area of the mobility region, r is the node
transmission range, and v is the node speed.

For the sake of comparison, we report also the asymptotical
packet delivery delay distribution derived in [19] (ZNKT
curve). As seen from the figures, differently from the deriva-
tions of [19], the analysis reported in this paper can be used
to faithfully reproduce the packet delivery delay distribution.

The distribution of communication cost obtained with ex-
periments when v = 2m/sec is reported in Figure 5. As seen
from the histograms, our theoretical characterization matches
experimental results very well.

VI. ANALYSIS OF TWO-HOPS ROUTING

In this section, we show how the framework presented in
Section III can be used to approximate the packet delivery
delay distribution of two-hops routing. The derivation in case
of two-hops routing is much more involved than in case of
epidemic routing, since the process of spreading the packet
in the network is asymmetric. More specifically, during the
spraying phase the coloring process is asymmetric, since only
the source is in CA state, while the other colored nodes
are in CI state and can color only the destination. In the
wait phase, the coloring process becomes symmetric, since all
colored nodes (including the source, which now holds only
the last copy of the packet) are in CI state. As we shall see,
the difficulty in deriving the exact packet delivery delay and
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communication cost distribution with two-hops routing lies in
the asymmetry of coloring during the spraying phase.

The derivation of the (approximate) packet delivery delay
and communication cost distribution with two-hops routing are
reported in the supplemental material.

In order to estimate the impact of the several approxima-
tions made in our analysis on the accuracy of the analytical
estimation of the packet delivery delay and communication
cost cdf, we have done extensive simulations, using the same
setting as in the experiments with epidemic routing. Figures
6 and 7 report the results of the simulation experiments with
velocity v = 15m/sec, along with our analytical estimation,
for two values of L (L = 3 and L = 6). The results reported in
the figure confirms that our analysis is indeed very accurate
as long as the L

M ratio is low (≤ 0.1), i.e., for most cases
of practical relevance. As the L

M ratio increases, the approxi-
mation reported in equation (12) – see supplemental material
– becomes looser, yielding to a less accurate estimation of
the packet delivery delay distribution. This effect is evident in
Figure 7, where the analytical curve for L = 6 has a quite
different shape from the experimental distribution. Similar
results have been obtained with lower values of velocity.

The experimental communication cost distribution is re-
ported in Figure 8 for the case of L = 6, which is the
most critical for packet delivery delay distribution. As seen
from the histogram, the approximations made in computing
the communication cost distribution – mainly due to assumed
independence of the coloring events at intermediate hops
(see supplemental material) – result in some minor difference
between the predicted communication cost distribution and the
one derived from experiments.
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VII. COMPARISON OF EPIDEMIC AND TWO-HOPS ROUTING

In this section, we show how our proposed theoretical
framework can be used to faithfully predict and compare per-
formance of epidemic and two-hops routing. More specifically,
we will compare performance of the two protocols with respect
to expected packet delivery rate and expected communication
cost.

We first notice that, once a notion of TimeToLive (TTL)
of a packet is defined, the expected packet delivery rate of
a certain routing protocol can be easily derived through our
framework by computing the probability that random variable
Td is at most TTL, i.e., by using the cdf of random variable
Td as computed in sections V and VI. Similarly, the expected
communication cost can be computed in a straightforward
manner using the communication cost distributions derived
in sections V and VI. Figure 9 reports the expected packet
delivery rate as a function of TTL for epidemic routing, and
two-hops routing with L = 3 and 6. Node velocity is set
to v = 15m/sec. As seen from the figure, epidemic routing
is more effective than two-hops routing in terms of expected
PDR: for instance, when TTL = 60min, epidemic routing
achieves an expected PDR of 98.9%, compared to 60.2%
achieved by two-hops routing with L = 3 and to 76.8%
achieved by two-hops routing with L = 6. However, the
price to pay for this packet delivery performance increase
is communication cost, which is 15.04 for epidemic routing,
2.86 for two-hops routing with L = 3, and 4.96 for two-hops
routing with L = 6 (see Table I).

We now consider routing protocol performance for a fixed
TTL = 60min and varying node speed. To make a more
through comparison, we consider an additional routing proto-

protocol exp thr
epidemic 15.04 15

two-hops L = 3 2.86 2.85
two-hops L = 4 3.67 3.65
two-hops L = 6 4.96 4.98

binary SW L = 4 3.73 –

TABLE I
EXPECTED COMMUNICATION COST OF THE VARIOUS ROUTING

PROTOCOLS WITH TTL = 60min AND v = 15m/sec.
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Fig. 10. Experimental and analytical estimation of packet delivery rate with
epidemic and two-hops routing and varying node speed. The TTL is set to
3600sec.

col, namely the binary SW protocol defined in [15] as follows:
– the source node initially holds L = 2h copies of the

message, for some integer h > 0; when a node holding
K ≤ L copies of the message encounters a new node, it
delivers to the new node K

2 copies of the message, and
keeps the remaining K

2 with it. When a node remains with
a single copy of the message, it can deliver the message
only to the destination node.

Binary SW routing has been shown in [15] to provide
a very good tradeoff between packet delivery delay and
communication cost. Due to the difficulties in theoretically
analyzing its performance [14], binary SW routing protocol is
evaluated only by means of simulation.

The expected packet delivery rate with epidemic, two-hops,
and binary SW routing for TTL = 60min and different speed
values is reported in Figure 10. Parameter L in two-hops
routing is set to 3 and 4, while binary SW is evaluated only
with L = 4 (recall that L must be a power of 2 in Binary SW).
The figure reports both the plots obtained through simulation,
and those predicted using our theoretical framework (only
for epidemic and two-hops routing). As seen from the plots,
our theoretical framework can be used to faithfully predict
routing performance, especially in case of epidemic routing.
As for the comparison of the three routing protocols, as
expected epidemic routing considerably outperforms two-hops
and binary SW routing in terms of expected PDR, with PDR
almost doubled for intermediate speed ranges. However, the
price to pay is a much higher communication cost, as reported
in Table I, which refers to the case of v = 15m/sec. As
seen from the table, the expected communication cost with
epidemic routing is more than five times larger than in case of
two-hops routing with L = 3, and about four times larger
than in the case of two-hops and binary SW routing with
L = 4. The values reported in the table also show that our
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theoretical framework can be used to provide a very accurate
estimate of average communication cost with both routing
protocols. Finally, we observe that binary SW routing provides
a slight improvement over two-hops routing with the same
value of L = 4 in terms of expected PDR, with a comparable
communication cost, thus confirming its (slight) superiority
over two-hops routing in the considered setting.

VIII. APPLICATION TO NON-COOPERATIVE NETWORKS

The material in this section, reported in the supplemental
material, shows how the packet delivery delay distribution
derived in Section V can be used to evaluate the effects of
different degrees of node cooperation on the performance of
epidemic routing.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a framework for deriv-
ing the exact packet delivery delay and communication cost
distribution for a large class of delay tolerant network routing
protocols. We have also presented examples of application of
our framework to specific routing protocols, namely epidemic
and two-hops routing. Furthermore, we have shown how accu-
rate characterization of the packet delivery delay distribution
can be used to investigate epidemic routing performance in
presence of different degrees of node cooperation within the
network.

While the framework and specific results presented in
this paper advance state-of-the-art in delay tolerant routing
protocol performance evaluation, we admit that our results
can be considered only as a first step towards gaining a
better understanding of DTN routing protocol performance
in general, and in non-cooperative (or partially cooperative)
scenarios in particular. Several avenues for further research
are open, such as deriving an analytical characterization of
packet delivery delay and communication cost distribution
with binary spray and wait routing [15], evaluating the effect
of limited buffer size when network traffic is medium/high,
including more sophisticated non-cooperative node behaviors
in the analysis, and so on. We believe the tools and techniques
presented in this paper will be helpful for those purposes.
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Supplemental Material for Paper “A Framework for
Routing Performance Analysis in Delay Tolerant
Networks with Application to Non Cooperative

Networks”
Giovanni Resta, and Paolo Santi, Member, IEEE,

I. PROOF OF THEOREM 1

We recall that our framework dictates that, in order to
evaluate the packet delivery delay distribution, the following
need to be derived:

P (Td < t) =

L∑
i=1

P (

i∑
j=1

τj < t|Ed,i) · P (Ed,i) . (1)

We starting observing that the maximum number of packet
copies (excluding possible copy delivered to destination) al-
lowed to circulate in the network under epidemic routing is
M−1, implying that the first summation in the above formula
is up to the term M − 1. Furthermore, since with epidemic
routing every colored node is in CA state and the destination
is chosen uniformly at random amongst the M−1 non-source
nodes, we have P (Ed,i) = 1

M−1 for each i, and (1) can be
rewritten as follows:

P (Td < t) =
1

M − 1

M−1∑
i=1

P (

i∑
j=1

τj < t|Ed,i) . (2)

Let us now consider the terms Prob(
∑i

j=1 τj < t|Ed,i) =
P (Coli,t). We treat separately the case i = 1 and i ≥ 2. If
i = 1, the destination node is the first node encountered by
the source, and P (Col1,t) equals the probability that the two
nodes meet within time t. Given that the meeting time between
an arbitrary pair of nodes is exponentially distributed with rate
1

emt , and observing that conditioning on Ed,1 implies that the
distribution of the meeting time between the source and the
destination (which is the first node met by the source amongst
the M −1 nodes) is exponential with rate (M −1)/emt (Fact
??), we have:

P (Col1,t) = F

(
M − 1

emt
, t

)
. (3)

Let us now consider the case i ≥ 2. We recall that, starting
from Ti−1 at which the (i− 1)-th node is colored, there are i
colored nodes in the network. Let MTd,i = τi−1|Ed,i denote
the meeting time between the destination and an arbitrary

An earlier version of this paper has been published in the Proceedings of
the 6th IEEE Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), 2009.

G. Resta and P. Santi are with the Istituto di Informatica e Telematica del
CNR, Pisa, Italy.

colored node, conditioned on the event that destination is the i-
th colored node. Given the conditioning event, the destination
is the first node among the remaining (M − i) nodes meeting
one of the i nodes with a copy of the packet. Hence, MTd,i
can be expressed as the minimum of a set of i exponential
random variables with the same rate (M−i)

emt , whose distribution
is exponential with rate i(M−i)

emt . We can then write, for i ≥ 2:

P (Coli,t) =

∫ t

0

P (Coli,t|Ti−1 = x)fTi−1
(x)dx =

=

∫ t

0

F

(
i(M − i)
emt

, t− x
)
fTi−1(x)dx, (4)

where fTi−1
is the pdf of random variable Ti−1. In order

to compute fTi−1 , we observe that Ti−1 =
∑i−1

j=1 τj , where
τj is the random variable corresponding to the meeting time
between any of the j colored nodes and one of the remaining
(M − j) nodes. Similarly to above, we have that each of
the τjs is an exponential random variable with rate j(M−j)

emt ,
and that Ti−1 is a sum of exponentially distributed random
variables with different rates, where the rate λj of the j-th
variable is j(M−j)

emt . We can then derive the distribution of
Ti−1 by Lemma 1 which, however, requires the parameters of
the exponential random variables to be distinct. Unfortunately,
this is not the case with the λjs, since the rate of τj equals
the rate of τM−j , for j = 1, . . . , bM/2c. To circumvent this
problem, we artificially decrease the rate λj of the τjs random
variables with j > bM/2c by multiplying them by (1 − ε),
for a small enough ε > 01.

Hence, the rates of the τj variables are defined as:

λj =

{
j(M−j)

emt if j ≤
⌊
M
2

⌋
(1− ε) · j(M−j)emt if

⌊
M
2

⌋
< j ≤M − 2

, (5)

and Lemma 1 can be applied to compute fTi−1
(t).

II. ANALYSIS OF TWO-HOPS ROUTING

According to our framework, the packet delivery delay
distribution can be computed as follows:

P (Td < t) =

L∑
i=1

P (

i∑
j=1

τj < t|Ed,i) · P (Ed,i) . (6)

1Our choice of decreasing, instead of increasing, the actual rate of the
MTjs goes in the direction of providing an upper bound to the actual
packet delivery delay, which is more useful than a lower bound for, e.g.,
QoS estimation.
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Note that the outer summation ends at L, the maximum
number of copies allowed to circulate in the network according
to the two-hops routing protocol.

We start providing an exact characterization of the first and
last term in the summation of (6), which are easy to derive.

The first term in the summation corresponds to the situation
in which the destination is the first colored node, and the
spraying phase does not even start. We are then in the same
conditions as in the case of epidemic routing, and we can
write:

P (τ1 < t|Ed,1) · P (Ed,1) = F

(
M − 1

emt
, t

)
· 1

(M − 1)
. (7)

The case i = L is also easy to handle. When i = L, the
spraying process is finished (i.e., (L − 1) nodes have been
colored by the source), and coloring of the destination occurs
during the wait phase. Note that in the wait phase the coloring
process is symmetric, hence any of the L nodes currently
holding a copy of the packet can color the destination. Denote
by S1, . . . , SM−1 the random variables corresponding to the
first time source node S meets node i after packet generation,
for i = 1, . . . ,M − 1 (see Figure 1). It is easy to see that the
starting time of the wait phase is random variable S(L−1),
i.e., the (L − 1) − th order statistic of random variables
S1, . . . , SM−1, whose pdf is Ord(M − 1, L − 1, 1/emt, x).
Furthermore, conditioned on S(L−1) = x, the probability of
delivering the packet to destination within time t is given by
the cdf at time (TTL− x) of an exponential random variable
with rate L/emt, which represents the time at which the first
amongst the L colored nodes meets the destination. We can
then write:

P (

L∑
j=1

τj < t|Ed,L) =

=

∫ t

0

F

(
L

emt
, t− x

)
Ord(M−1, L−1, 1/emt, x)dx . (8)

The value of P (Ed,L) is computed as follows:

P (Ed,L) = 1−
L−1∑
i=1

P (Ed,i) , (9)

where the P (Ed,i)s when i = 2, . . . , L − 1 are computed
below.

Let us now consider the case 1 < i < L. We first observe
that event Ed,i can be divided into mutually disjoint events
ES

d,i and ES
d,i, corresponding to the situation in which the

destination is colored by the source s or by a non-source node.
Conditioned on ES

d,i, the probability of delivering the packet
to the destination within time t can be computed observing
that the destination is the i-th node encountered by s, and
that the random time of this encounter corresponds to the i-
th order statistic of random variables S1, . . . , SM−1. We can
then write:

P (

i∑
j=1

τj < t|ES
d,i) =

∫ t

0

Ord(M−1, i, 1/emt, x) dx . (10)

We now compute P (ES
d,i), from which P (ES

d,i) can be
trivially derived. We need to introduce some further notation

time

S S1 S2 S3 S4 Si

S1

S2 = k S2
d

S3 = h S3
d

S4 S4
d

y

y’

x

S1
d

Fig. 1. The destination coloring stochastic process during the spraying phase.

(see Figure 1). We use random variables Sd
h to denote the

time at which node h (which has been colored at time Sh)
first meets the destination. Note that, conditioned on a specific
value of Sh = x, Sd

h − t has exponential distribution of
rate 1/emt, for h = 1, . . . , i − 1. In order to compute
P (ES

d,i), we further subdivide ES
d,i into disjoint events ES

d,i,k,
k = 1, . . . , i− 1, where ES

d,i,k is the event “the destination is
colored by the k-th non-source node”2. Note that the above
occurs if and only if Sd

k < Sd
h for each h = 1, . . . , i− 1 (with

h 6= k) and Sd
k < Si (see Figure 1).

Let us first compute the probability that Sd
k < Sd

h, for
arbitrary distinct k, h, with 1 < k, h < i. Conditioned on
SD
h = y′ and Sk = x, the pdf of event Sd

k < Sd
h equals

the probability that random variable Ŝk = Sd
k − Sk, which

is exponential of parameter 1/emt, is below (y′ − x) (see
Figure 1). We further observe that the pdf of variable Sk is
Ord(M − 1, k, 1/emt, x). We can then write:

P (Sd
k < Sd

h) =

∫ ∞
0

G(y′)fSd
h
(y′)dy′ , (11)

where fSd
h
(y′) is the pdf of random variable Sd

h and

G(y′) =

∫ y′

0

F

(
1

emt
, y′ − x

)
Ord(M − 1, k,

1

emt
, x)dx .

In order to derive fSd
h
(y′), we observe that, by setting Ŝh =

Sd
h − Sh, we can write Sd

h = Sh + Ŝh. Random variable Sh

is the h-th order statistic of random variables S1, . . . , SM−1,
and Ŝh is an exponential random variable of parameter 1/emt.
Hence, fSd

h
(x) is the pdf of a random variable which is the sum

of two independent random variables with different (and non-
trivial) distributions, which is not easy to derive. To circumvent
this problem, we approximate the pdf of Sh with that of S1

(i.e., of the first order statistic), which is exponential with rate
(M − 1)/emt. Now, Sd

h can be considered as the sum of
two independent exponential random variables with different
rates, whose distribution is given by Lemma 1. Summarizing,
we have

fSd
h
(y′) ≈ fS1+Ŝh

(y′) , (12)

where fS1+Ŝh
(y′) is defined as in Lemma 1.

Note that the probability mass of variable Sh is skewed
to the right in the time axis with respect to that of variable
S1, with an increasing skewness for increasing h. Hence, our
approximation of fSd

h
(y′) becomes less and less accurate as

2Implicit here is the assumption that non-source nodes are ordered accord-
ing to their meeting time with the source.
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h increases. However, the simulation results presented in the
following show that the above approximation is very accurate
as long as the ratio L/M is around 0.1 or below. Deriving a
better approximation of fSd

h
(y′) is left for future work.

We now compute the probability that Sd
k < Si, for any

1 < k < i. Similarly to above, we observe that, conditioned
on Si = y and Sk = x, the pdf of event Sd

k < Si equals the
probability that Ŝk = Sd

k − Sk is below (y − x) (see Figure
1). Furthermore, we observe that the pdf of Si is Ord(M −
1, i, 1/emt, y), and that of Sk is Ord(M − 1, k, 1/emt, x).
We can thus write:

P (Sd
k < Si) =

∫ ∞
0

H(y)Ord(M − 1, i,
1

emt
, y) dy , (13)

where

H(y) =

∫ y

0

F

(
1

emt
, y − x

)
Ord(M − 1, k,

1

emt
, x) dx .

We can now approximate P (ES
d,i) as follows:

P (ES
d,i) ≈

i−1∑
k=1

P (Sd
k < Si)

i−1∏
h=1
h 6=k

P (Sd
k < Sd

h)

 . (14)

Note that in the above equation we assume that pairs of events
(Sd

k < Sd
h,Sd

k < Sd
h′ ), with h 6= h′, are mutually independent,

which is not true in general.
We can now compute P (ES

d,i) by observing that the prob-
ability that the i-th node met by the source is the destination
is 1/(M − (i− 1)), implying:

P (ES
d,i) =

(
1− P (ES

d,i)
)
· 1

M − (i− 1)
. (15)

In order to complete the derivation, we are left to compute
the probability P (

∑i
j=1 τj < t|ES

d,i,k), i.e., the probability
that the packet is delivered to the destination within time t
conditioned on the event that the destination is colored by the
k-th non-source node, for some 1 < k < i. Since under such
conditioning the destination is colored at time Sd

k (see Figure
1), we have:

P (

i∑
j=1

τj < t|ES
d,i,k) =

=

∫ t

0

F (
M − i
emt

, TTL−x)Ord(M−1, k,
1

emt
, x) dx . (16)

In the above equation, we have used the fact that, con-
ditioned on event ES

d,i,k, the pdf of random variable Sd
k is

closely approximated by the pdf of an exponential random
variable of parameter (M − i)/emt, corresponding to the first
encounter (which, conditioned on ES

d,i,k, we know is with the
k-th relay node) between the destination and one of the i nodes
(including the source) currently holding a copy of the packet.

Summarizing, we can compute any of the terms
P (
∑i

j=1 τj < t|Ed,i) · P (Ed,i) with 1 < i < L in the
summation of (6) as follows:

P (

i∑
j=1

τj < t|Ed,i) · P (Ed,i) =

= P (

i∑
j=1

τj < t|ES
d,i)P (ES

d,i) +

+

i−1∑
k=1

P (

i∑
j=1

τj < t|ES
d,i,k)P (ES

d,i,k) ,

where P (ES
d,i,k) is defined as follows:

P (ES
d,i,k) = P (Sd

k < Si) ·

 i−1∏
h=1
h 6=k

P (Sd
k < Sd

h)

 .

The communication cost distribution can be readily obtained
from the above derivations, and is defined as follows:

Proposition 1: Let C be the random variable representing
the number of nodes holding at least one copy of the packet in
the network at delivery time. With two-hops routing, we have

P (C = i) =


1

M−1 if i = 1(
1− P (ES

d,i)
)
· 1
M−(i−1) if 1 < i < L

1−
∑L−1

j=1 P (C = j) if i = L

0 otherwise

,

where P (ES
d,i) is defined in equation (14).

III. APPLICATION TO NON-COOPERATIVE NETWORKS

We consider the following cooperation scenarios:
a) Coop: in this scenario, nodes behave according to the
routing protocol specifications (full cooperation).
b) Def: in this scenario, nodes discard packets received by
other nodes (unless the node itself is the destination), and
correctly send own packets (no cooperation).
c) Rand: in this scenario, nodes forward a packet received by
other nodes with fixed probability p.
d) TfT: in this scenario, nodes forward a packet received by
other nodes with probability p, where p depends on network
conditions; for definiteness, in the following we assume that
p equals the observed PDR for own packets.

Routing performance will be evaluated in terms of expected
PDR, where a packet is considered to be correctly received
by the destination if and only if the packet is delivered
within time TTL (time to live) since its generation, where
TTL is a tunable parameter. Observe that, by the Law of
Large Numbers, evaluating the expected PDR is equivalent to
computing the probability of the event “a packet generated at
an arbitrary node u and destined to node v is delivered to v
within time TTL”. Hence, the expected PDR can be readily
obtained by computing P (Td < TTL), i.e. the value of the
packet delivery delay cdf at point TTL.

A. Full cooperation scenario

Given the above discussion, the expected PDR of epidemic
routing in the full cooperation scenario can be simply obtained
by computing the packet delivery delay cdf derived in Section
V at t = TTL.

To validate the accuracy of our analysis, we have performed
a set of simulations. The simulation setting is similar to the one
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Fig. 2. Probability of correctly delivering a packet within time TTL = 3600s
with epidemic routing for RWP mobile networks with M = 30 nodes and
increasing node velocity. Fully cooperative scenario.

used in Section V, except that the outcome of an experiment is
a binary value 0/1 computed depending on whether the packet
is delivered to the destination within time TTL = 3600s
(value 1) or not (value 0). We performed a large set of such
experiments (more than 20000 for each parameter setting), and
experimentally estimated PFC(Td < TTL) (where FC stands
for Full Cooperation) as the number of successful experiments
(i.e., experiments returning value 1) over the total number of
experiments.

The results of this experimental estimation of PFC(Td <
TTL) when M = 30 and nodes’ speed v is varied between 2
and 15m/sec are reported in Figure 2. The figure reports also
the analytical estimation computed according to the analysis
reported in Section V, as well as the asymptotical bound for
the PDR derived in [1] (ZNKT curve). As seen from the figure,
our analytical PDR estimation is very accurate for all the range
of speed considered, while the bound of [1] is accurate only
when the experimental PDR is either very low or very high.

B. No cooperation scenario

In case all nodes are defective, the protocol used to route
packets between nodes is irrelevant, since the only possible
way to deliver a packet to destination is through direct trans-
mission between source and destination. Under our working
assumption of exponentially distributed meeting times, the
probability that source and destination come into each other
transmission range within time TTL is given by:

PNC(Td < TTL) =
(

1− e−TTL
emt

)
,

where NC stands for No Cooperation.
The above characterization has been validated through simu-

lation, which has shown an almost perfect overlapping between
simulation results and analytical estimate.

C. Rand cooperation scenario

We recall that in case of Rand cooperation, a node which
is not the final destination forwards the packet with a given
fixed probability p. The relevant cases are when 0 < p < 1,
since otherwise we are either in the no cooperation (p = 0)
or full cooperation (p = 1) scenario.

The node coloring process under epidemic routing and Rand
cooperation is more complex than in the full cooperation

scenario, due to one additional source of randomness in packet
propagation, namely, the probability p of forwarding the packet
when a node in CA state meets an uncolored one. Since node
coloring is no longer deterministic, not only the expected
meeting time, but also the expected inter-meeting time3 of
the underlying mobility model comes into play. To better
understand this point, let us analyze the process of coloring
the first non-source node. When the source meets the first
(uncolored) node – which occurs according to an exponential
random variable with rate (M − 1)/emt –, the new node is
colored with probability p < 1. So, with probability p, the rate
of the first coloring is the same as in the fully cooperative
scenario. However, with probability (1 − p), the new node
(call it u) remains uncolored, and the rate of first coloring is
determined not only by the rate of encounter of the source
with the second uncolored node – which is a random variable
with distribution equal to the pdf of the second order statistics
of random variables Sis defined in the previous section –,
but also by the rate of re-encounter of the source with node
u. More specifically, denoting by S(i) the i-th order statistic
of the Sis, and by Su the time between the first and second
encounter between the source and node u, we have that the
second encounter between the source and an uncolored node
is given by min{S(2), S(1) + Su}. At the time of the second
encounter, we again have a node coloring with probability p,
and the above reasoning is re-iterated.

As seen from the above description, the characterization of
relevant stochastic properties of epidemic routing under Rand
cooperation is very complex, as it involves mixing estimation
of expected meeting and inter-meeting times between different
groups of nodes. For this reason, we consider a related stochas-
tic coloring process, in which potential forwarding nodes are
a-priori divided into cooperative and non-cooperative nodes.
More specifically, we assume that a fixed fraction p of the
M − 2 potential forwarders are cooperative (i.e., forward a
packet with probability 1), while the remaining (1−p)(M−2)
nodes are non-cooperative (i.e, forward a packet with prob-
ability 0). The analysis of this second coloring process is
straightforward, since it is equivalent to performing epidemic
routing in a fully cooperative network with p(M−2)+1 – the
p(M −2) cooperative relays plus the destination – (instead of
(M − 1)) nodes. Thus, the expected PDR of epidemic routing
under probabilistic cooperation with parameter 0 < p < 1 can
be closely approximated by the packet delivery delay cdf at
t = TTL in a network composed of p(M − 2) + 1 nodes.

We have verified the accuracy of our analytical estimation of
PDR with epidemic routing under Rand cooperation through
extensive simulation. The simulation setting is the same as
in the previous section, with the only difference that packets
are propagated with fixed probability p upon encounters. Note
that we have chosen settings for p such that p(M − 2) is
an integer. Figures 3 and 4 report the experimental cdf and
pdf obtained with v = 15m/sec (very similar results have
been obtained with other values of v). The figures also report
the corresponding distribution obtained using our proposed

3The expected inter-meeting time is defined as the expected time between
two successive meetings between an arbitrary node pair.
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Fig. 4. Experimental and analytical packet delivery delay pdf with v =
15m/sec in the Rand cooperation scenario with p = 0.25 and p = 0.75.

approximation, and the one reported in [1]. As seen from
the figure, our proposed approximation is significantly closer
to the actual distribution than that presented in [1]. Most
significantly, our approximation can be used to lower bound
the probability of packet delivery at a certain time, while that
of [1] upper bounds such probability. This can be seen very
well in Figure 4, which shows that while our approximated pdf
skews the probability mass towards larger delivery times with
respect to the actual distribution, the opposite happens with the
pdf derived from [1]. We can then conclude that, differently
from the estimation of [1], our bound can be used to provide
minimal performance guarantees of epidemic routing under
Rand cooperation.

We have also evaluated, for a fixed value of TTL =
3600sec, the PDR as obtained through simulations, and
through the formulas presented herein and in [1]. The results
are reported in Figure 5. Confirming the previous observation,
our estimation turns out to be a relatively accurate lower
bound to the actual PDR, in contrast to the ZNKT bound,
which considerably overestimates performance. It is also worth
observing that while ZNKT characterization turns out to be
relatively accurate only for relatively low or high PDR values,
our characterization is relatively accurate for the whole range
of PDR values, and it is indeed very accurate for p = 0.75.

D. TfT scenario

The characterization of epidemic routing performance under
Rand cooperation presented in the previous sub-section can
be used to predict stationary operational points of a network
under the TfT scenario. We recall that with TfT cooperation,
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Fig. 6. Probability of correctly delivering a packet within time TTL = 3600s
with epidemic routing and Rand cooperation with various values of p.
The 2m/s curves for both analytical bounds are overlapped with simulation
results, and are not shown.

the packet forwarding probability is adaptive to network con-
ditions: more specifically, the packet forwarding probability pu
for node u equals the long-term observed PDR of the packets
sent by u.

Stationary network operational points can be estimated by
characterizing the PDR under Rand cooperation with different
values of the parameter p, and finding the value(s) p̄ of p such
that the resulting PDR equals p̄. To see that these are stationary
operational points of a network under TfT cooperation, assume
all nodes are currently observing a PDR of p̄; given TfT
cooperation, all nodes will forward packets with probability
p̄, i.e., they behave like a network with Rand cooperation of
parameter p̄, which will keep the observed PDR (and, hence,
the cooperation level) at p̄.

The characterization of stationary operational points under
TfT cooperation by means of simulation, and using our ana-
lytical bound and the one of [1], are reported in Figure 6. We
first observe the existence of stationary operational points for
all considered speed values; operational points can be very bad
(below 0.1 at 2m/s), relatively good (around 0.7 at 8m/s), or
even close to optimal performance (at 15m/s). This indicates
that the effect of TfT cooperation on epidemic routing perfor-
mance is highly dependent on network conditions: the better
the network conditions, the lesser the effect of the reduced
cooperation level. To be more specific, when the underlying
network performance is bad (lowest speed), the performance
drop due to TfT cooperation w.r.t. fully cooperative scenario
is in the order of 50% (PDR drops from 0.13 to 0.06); in the
average speed case, the performance drop is in the order of
16% (PDR drops from 0.83 to 0.7); finally, in case of very
good network performance (highest speed), the performance
drop is negligible.

Concerning the accuracy of the analytical bounds, we ob-
serve that while the ZNKT bound can be used to accurately
estimate stationary operational points only when epidemic
routing performance under full cooperation is either very bad
of very good, it considerably overestimates the stationary op-
erational point for the intermediate speed value. In particular,
according to ZNKT bound the stationary operational point
when the speed is 8m/s is around 0.9, while it is around
0.7 according to the simulation results. On the other hand,
our analytical bound is able to provide an accurate estimate of
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Fig. 5. Probability of correctly delivering a packet within time TTL = 3600s with epidemic routing for RWP mobile networks with M = 30, Rand
cooperation, and varying node velocity for different values of p.
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Fig. 7. Probability of correctly delivering a packet within time TTL = 3600s
with epidemic routing in different cooperation scenarios and varying speed.

stationary operational points for the entire range of considered
speeds (the estimate is around 0.6 when speed is 8m/s).

E. Performance comparison

In Figure 7, we report the bounds on PDR with different
degrees of node cooperation computed with our formulas for
varying node speed. As seen from the figure, even a modest
degree of node cooperation (Rand cooperation with p = 0.25)
is sufficient to substantially increase performance with respect
to the most pessimistic scenario of no cooperation. In partic-
ular, PDR is increased of as much as of a factor of two for
the highest speed value. It is also interesting to observe that
TfT cooperation even more substantially increases performance
over the most pessimistic cooperation scenario (up to a factor
of three improvement), providing a performance similar to the
one obtained with full cooperation for the higher speed values.
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