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Abstract—This paper studies the fundamental properties of
broadcasting in multi-hop wireless networks. Previous studies
have shown that, as long as broadcast capacity is concerned,
asymptotically optimal broadcasting is possible in wireless multi-
hop networks under very general conditions. However, none of
the existing work on broadcast capacity has considered latency
in message delivery, which is simply assumed to be finite (but
not explicitly bounded). In this paper, the issue of investigating
the fundamental properties of broadcast communications for
what concerns both capacity and latency using a realistic, SINR-
based interference model is investigated. In particular, a novel
topological notion of network connectivity is introduced, and it
is shown that, if the network satisfies this property, asymptot-
ically optimal broadcast capacity and latency can be achieved
simultaneously. The above result holds in the general scenario in
which an arbitrary number of broadcast sources arbitrarily share
the available (optimal) network capacity. The result presented in
this paper is in sharp contrast to similar results obtained for
the case of unicast transmissions, where asymptotically optimal
latency in message delivery can be achieved only at the expense
of asymptotically reducing network capacity. Thus, the results
presented in this paper show that scalable broadcasting in multi-
hop wireless networks is, in principle, possible.

Index Terms—broadcast capacity; broadcast latency; cell con-
nectivity; SINR interference model; wireless networks.

I. INTRODUCTION

Investigation of fundamental properties of wireless multi-
hop networks has received considerable attention in the re-
search community, since it can help understanding what can
and cannot be done in such networks. In their seminal work
[10], Gupta and Kumar investigate the asymptotic network
capacity of a wireless multi-hop network for unicast transmis-
sions, and show that network capacity does not scale: as the
number n of network nodes increases, the per-node available
capacity decreases as O(1/

√
n) in arbitrary networks, and as

O(1/
√
n log n) in random networks1. This lack of scaling of

network capacity is due to the relay burden on intermediate
nodes caused by the multi-hop nature of communications: due
to interference, the node transmission ranges must be kept
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1In this paper, we will extensively use the big-O and similar notation for
describing asymptotic behavior of functions. Formally, given two functions
f(x) and g(x), we have: f(x) = O(g(x)) if and only if limx→∞

f(x)
g(x)

<

∞; f(x) = Ω(g(x)) if and only if limx→∞
g(x)
f(x)

< ∞; and f(x) =

Θ(g(x)) if and only if f(x) = O(g(x)) and f(x) = Ω(g(x)).

limited; hence, a packet must travel several hops in order to
reach the destination. Thus, a single transmission results in
a series of relay re-transmissions interfering both with other
packets on the same flow, and with packets on different flows.
For this reason, we say that unicast transmissions in a wireless
multi-hop network are relay limited. Note that use of relay
nodes not only limits capacity, but it also has a negative impact
on latency, which is increased with respect to the case of direct,
single-hop transmission.

In [9], Grossglauser and Tse proved that mobility can be
used to lessen the relay burden and achieve optimal network
capacity scaling (i.e., Θ(W ) per-node capacity, where W is the
channel capacity). However, the capacity achieving scheduling
and routing schemes defined in [9] assume unlimited buffer
capacity on the nodes. Furthermore, Grossglauser and Tse
results do not consider latency in message delivery, which can
grow unboundedly. More recently, Ozgur et al. [16] argued
that Ω(W ) per-node capacity can indeed be achieved also in
a static network. The idea is to use hierarchical cooperation
among network nodes aimed at realizing a distributed MIMO
communication. However, this result is quite controversial,
since it implicitly assumes availability of an arbitrarily large
number of independent information channels between group
of nodes. Franceschetti et al. [7] have shown that the actual
number of independent channels across two regions in a two-
dimensional domain is indeed upper bounded by O(

√
n),

which implies a O((log n)2/
√
n) per-node capacity in case of

random networks. Note that, similar to [9], latency in packet
delivery is not considered in [7], [16].

Since these seminal works, many authors have tried to gain
a better understanding of the fundamental tradeoffs between
network capacity and latency in packet delivery [1], [15],
[23], [24]. The tradeoff stems from the fact that, in order
to reduce latency, relatively long transmission ranges should
be used, with optimal latency achieved with direct, single-
hop communications. On the other hand, as the results of
[9], [10] have shown, using long transmission ranges is
suboptimal for what concerns capacity, which is optimized
when nodes use very short transmission ranges. In [4], [5],
the authors show that the optimal tradeoff for static networks
is achieved when D(n) = Θ(nT (n)), where T (n) is the
average per-node throughput in a network with n nodes,
and D(n) is the average packet delay2. Note that this result

2In this paper, terms per-node throughput and per-node capacity, as well
as terms latency and delay, are used interchangeably.
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implies that Ω(W ) (i.e., optimal) per-node throughput can
be achieved only by allowing relatively high (O(n)) packet
delay. The same throughput/delay tradeoff can be achieved
also with hierarchical cooperation [17]. In case of mobile
networks, in [4] it is shown that the optimal tradeoff remains
D(n) = Θ(nT (n)) as long as T (n) = O(1/

√
n log n),

i.e., when the per-node throughput does not exceed the one
achieved in static networks. If higher throughput values are
sought, the achievable delay becomes Θ(n log n), and worse
throughput/delay tradeoff is achieved. The worse tradeoff in
case of mobile networks can be explained observing that
higher throughput than in static networks can be obtained
only by exploiting physical node mobility which, however,
is several orders of magnitude slower than the speed of radio
propagation in the air. Thus, exploiting physical node mobility
to increase throughput causes a significant degradation of
delay performance.

Investigation of fundamental properties of broadcast com-
munications has received attention from the research com-
munity only very recently. In [25], Zheng investigated the
broadcast capacity for the case of random networks with single
broadcast source under the generalized physical interference
model, and presented a broadcast scheme providing a capacity
within a constant factor from optimal. The authors of [13]
considered a more general network model, in which arbitrary
node positions are allowed, and an arbitrary subset of the
network nodes is assumed to generate broadcast packets. The
results of [13] confirms the findings of [25], i.e., that the
(aggregate) broadcast capacity is within a constant factor from
the optimal capacity. More recently, the same authors have
proved in [12] that the same result holds using more realistic
interference models, namely the physical and the generalized
physical interference model. However, none of the existing
work on broadcast capacity has investigated the latency in
message delivery. More specifically, in the network models
used in [12], [13], [25] it is assumed that broadcast packets
are eventually received by all network nodes, but no explicit
nor implicit upper bound on delivery time is given. Zheng in
[25] also investigated the information diffusion rate, which
is closely related to latency, and provides matching upper
and lower bounds for this quantity. However, the broadcast
schemes used for lower bounding broadcast capacity and
information diffusion rate are different, and the problem of
finding an optimal broadcasting scheme for both capacity and
information diffusion rate in the model of [25] remains open.

The above discussion highlights that the fundamental ques-
tion of whether asymptotically optimal capacity and latency
can be achieved simultaneously in case of broadcast commu-
nications remains, to the best of our knowledge, open.

In this paper, we give a positive answer to this question by
showing that, at least under certain, quite general, assump-
tions on node deployment, asymptotically optimal capacity
and latency can indeed be achieved simultaneously. More
specifically, we restrict our attention to a network setting
in which optimal per-node capacity can be achieved. This
network setting naturally imposes a lower bound D(n) on the
achievable delay performance, mainly due to the fact that a
certain value of the transmission range is used to optimize

per-node capacity. The main result of this paper is presenting
a broadcasting scheme that simultaneously achieves optimal
(i.e, Ω(W )) per-node capacity and latency D(n) = Θ(D(n)),
which is then optimal under the assumption of maximizing
capacity.

To derive the above result, we introduce a novel topological
notion of network connectivity which we call cell connectivity,
and show that asymptotically optimal broadcast capacity and
latency can be achieved simultaneously (in the sense explained
above) if the network is cell connected. Our result is proved
using the realistic physical interference model of [10], and
holds when an arbitrary number of broadcast sources arbi-
trarily share the available broadcast capacity. Thus, in sharp
contrast with the case of unicast transmissions, our result
suggests that broadcasting is not relay limited, and scalable
broadcasting in multi-hop wireless networks is, in principle,
possible.

We stress that latency is a fundamental parameter of
broadcast communications, at least in some scenarios such
as multimedia and real-time applications. For instance, if a
wireless multi-hop network is used for communication of
multimedia information among members of a disaster rescue
team.

The problem of latency optimal broadcasting (with no
consideration on broadcast capacity, though) is studied, for
instance, in [8], and, more recently, in [11], where the authors
study the problem also under the physical interference model.

II. NETWORK MODEL AND PRELIMINARIES

We consider a wireless network composed of n wireless
nodes distributed in a two-dimensional domain. We assume
nodes communicate through a shared wireless channel of a
certain, constant capacity W , and that the nodes transmission
power is fixed to some value P . Correct message reception
at a receiver node is subject to a SINR-based criterion, also
known as physical interference model [10]. More specifically,
a packet sent by node u is correctly received at a node v (with
rate W ) if and only if

Pv(u)

N +
∑
i∈T Pv(i)

≥ β ,

where N is the background noise, β is the capture threshold, T
is the set of nodes transmitting concurrently with node u, and
Pv(x) is the received power at node v of the signal transmitted
by node x.

We also make the standard assumption that radio signal
propagation obeys the log-distance path loss model [20],
according to which the received signal strength at distance d
from the transmitter (for sufficiently large d, say, d ≥ 1) equals
P · d−α, where α is the path loss exponent. In the following,
we make the standard assumption that α > 2, which is often
the case in practice. We then have3 Pv(x) = P · d(x, v)−α,
where d(x, v) is the Euclidean distance between nodes v and
x, and the SINR value at node v can be rewritten as follows

SINR(v) =
d(u, v)−α

N
P +

∑
i∈T d(i, v)−α

.

3To simplify notation, in the following we assume that the product of the
transmitter and receiver antenna gain is 1.
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For given values of P , β, α, and N , we define the
transmission range rmax of a node as the maximum distance
up to which a receiver can successfully receive a message
in absence of interference. From the definition of physical
interference model, we have:

rmax = α
√
P/(βN) .

The maximal communication graph is a graph GM =
(V, EM) representing all possible communication links in the
network, i.e., V is the set of the n nodes, and (undirected)
edge (u, v) ∈ E if and only if d(u, v) ≤ rmax.

Given an arbitrary set S ⊆ V of broadcast source nodes in
a network with n nodes, and denoting with λ(s) the rate at
which source s ∈ S generates packets, we define the broadcast
capacity of the network as the maximum possible feasible
aggregate rate λ(n) =

∑
s∈S λ(s). Rate λ(n) is feasible if and

only if all packets generated by source s ∈ S are received by
all nodes in V−{s} within a certain time Tmax, with Tmax <
∞. Observe that the aggregate capacity λ(n) is expressed as
a function of the number n of nodes, and not of the set S of
broadcast sources. This is because all the results presented in
this paper, once fixed the number n of network nodes, hold
for arbitrary broadcast source sets. To simplify presentation, in
the first part of the paper we focus our attention on the case
of single broadcast source, i.e., S = {s}, for some s ∈ V .
Then, we show how our results can be extended to the case
of arbitrary broadcast source sets.

Our results indeed hold under a more general model, which
includes proportional fairness in the definition of broadcast
capacity. More specifically, a bandwidth allocation vector B =
(b1, . . . , bn) representing the proportional bandwidth allocated
to each broadcast source (where bi = 0 means that node i is
not a broadcast source), with

∑n
i=1 bi = 1, is given in input.

The proportionally fair broadcast capacity of the network is
defined by the maximum weight δ(n) such that the aggregate
broadcast rate λ(B, δ(n)) =

∑n
i=1 bi · δ(n) is feasible.

The broadcast latency of the network is the minimal time
T (n) such that, for all possible sources s ∈ S , all nodes in
V−{s} receives a packet generated by s at time t within time
t + T (n). It is clear that, in order to have meaningful values
of broadcast capacity and latency, the maximal communication
graph of a network must be connected. Thus, the assumption of
connected maximal communication graph is made throughout
this paper.

III. CELL CONNECTED NETWORKS

In order to obtain non-trivial bounds for the broadcast
latency, some assumptions on network deployment must be
made. In fact, while broadcast capacity is somewhat indepen-
dent of the shape of the deployment region and node positions
as long as the maximal communication graph is connected
(see, e.g., [12]), broadcast latency depends on the distance
between the broadcast source and the farthest node, which, in
turn, depends on how nodes are deployed in the plane.

In the following we introduce the notion of cell connectivity,
which is sufficient to obtain asymptotically optimal upper
bounds to broadcast latency. Our results are valid for any

CH(V )
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Fig. 1. Example of network deployment (left), and corresponding cell graph
(right). The convex hull of the network nodes is shaded. Network nodes on
the left are labeled with their cell distance to node s.

network deployment (i.e., maximal communication graph)
satisfying cell connectivity. In particular, in this section we
show that a widely investigated class of network deployments,
known as random networks or homogeneous networks and
used, e.g., in [4], [5], [7], [10], [16], [17], satisfies the condi-
tions for cell connectivity w.h.p.4. Thus, the results presented
in this paper are valid for a quite general class of network
deployments including random network deployments.

Before introducing cell connectivity, we define a square
lattice of the plane, and introduce the notion of cell distance
between an arbitrary pair of network nodes.

Definition 1 (Cell graph): Assume the plane is partitioned
into a lattice of square cells of side l, with l = rmax

2h
√

2
, for some

constant h > 1, and let v1, . . . , vn denote the positions of the
n network nodes in the plane. The cell graph of the network is
the graph CG = (C, EC), with a vertex corresponding to each
cell c such that c ∩ CH(V) 6= ∅, with CH(V) denoting the
convex hull of points v1, . . . , vn, and undirected edge (x, y) ∈
EC if and only if cells x, y are adjacent (horizontal, vertical,
and diagonal adjacency).

Definition 2 (Cell distance): Let cell(x) denotes the cell to
which node x ∈ V belongs to. The cell distance cd(u, v)
between nodes u, v ∈ V is defined as the hop distance between
the corresponding vertexes cell(u) and cell(v) in the cell
graph.

An example of network deployment and correspondent
cell graph and distances is shown in Figure 1. Note that
the condition on l relative to rmax is needed to ensure the
following claim holds:

Claim 1: Let u be an arbitrary node located in cell cell(u);
all the nodes located in the 8 cells adjacent to cell(u) (hor-
izontal, vertical, and diagonal adjacency) are within distance
rmax from u.

In the following, we use the term communication graph (or,
simply, graph) to refer to an arbitrary subgraph G = (V, E) of
the maximal communication graph GM . Intuitively speaking,
a communication graph represents the set of links used by
a certain communication scheme, which does not necessarily
coincide with the set of all possible links in the network.
Unless otherwise stated, in the following (u, v) ∈ E denotes
a directed transmission link between node u (the sender, or
transmitter, node) and node v (the receiver node).

4In this paper, w.h.p. means with probability approaching 1 as n → ∞.
While stronger notions of w.h.p. are sometimes used in the literature (e.g.,
requiring the probability to converge to 1 as 1−O(1/n)), the relatively weak
notion of w.h.p. used in this paper is sufficient for our purposes.
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Fig. 2. The notion of cell connectivity.

Definition 3 (Cell connectivity): Let G = (V, E) be an
arbitrary communication graph. Graph G is cell connected
with respect to node s ∈ V if and only if, for any node
v ∈ V − {s}, there exists at least one path P connecting
s and v in G such that for all nodes w in P − {v}, we have
cd(s, w) < cd(s, v).

The notion of cell connectivity is pictorially explained in
Figure 2: the network on the left is not cell connected w.r.t.
s5, since the only path connecting s and v contains nodes
whose cell distance to s is greater than cd(s, v)− 1 = 1. On
the contrary, the network on the right is cell connected, since
the rightward path connects s to v through a node whose cell
distance to s is less than cd(s, v). As we shall see, the notion
of cell connectivity is fundamental to ensure an asymptotically
optimal progress of broadcast packets generated at s towards
nodes in V−{s}, i.e., optimal broadcast latency. Note also that
the notion of cell connectivity is a monotonic graph property,
i.e., G′ ⊆ G and G′ is cell connected implies that also graph G
is cell connected, where G is any super-graph of G′ obtained
by adding edges (but not nodes) to G′.

Definition 4 (Strong cell connectivity): Let G = (V, E) be
an arbitrary communication graph. Graph G is strongly cell
connected if and only if it is cell connected with respect to
any node s ∈ V .

Definition 5 (Cell adjacency): A communication graph
G = (V, E) is said to satisfy the cell adjacency property if
and only if set E is a superset of the set of links (u, v) with
nodes u, v belonging to either adjacent (horizontal, vertical,
and diagonal adjacency) cells or to the same cell.

In other words, the cell adjacency property implies that all
links whose endpoints lie in the same or adjacent cells are part
of the communication graph.

Given the above property, the following claims are trivial
to show:

Claim 2: If every cell in the cell graph corresponding to
a certain communication graph G = (V, E) satisfying cell
adjacency contains at least one node, then graph G is strongly
cell connected.

Claim 3: If every empty cell in the cell graph correspond-
ing to a certain communication graph G = (V, E) satisfying
cell adjacency is adjacent only to non-empty cells, then graph
G is strongly cell connected.

Note that the number and patterns of empty cells depends
on the step l of the square lattice used to partition the plane.

5When the actual node s w.r.t. a graph G is cell connected is not relevant,
we will simply say that G is “cell connected”.

Intuitively speaking, fixed arbitrary positions of the network
nodes, the larger the step l of the square lattice, the less likely
it is to have empty cells. On the other hand, the larger the value
of l, the smaller the cell distance between arbitrary nodes tends
to be, hindering existence of “cell connected” paths in the
communication graph. We have verified through simulations
with random uniform node deployment that, even for low
density scenarios – i.e., regimes in which the transmission
range is below the critical value for connectivity w.h.p. –
the vast majority (above 98%) of networks such that the
maxpower communication graph is connected are also strongly
cell connected.

To ease presentation, in the following we consider a network
to be cell connected w.r.t. a certain node s if there exists at
least one square lattice partitioning of side l̄ = rmax

2h̄
√

2
, where

h̄ is a constant greater than 1, such that the network is cell
connected w.r.t. node s for that specific lattice. This specific
square lattice (or one of them, in case the network is cell
connected for more than one square lattices) is assumed to
be used in the derivation of optimal broadcast capacity and
latency bounds.

We conclude this section with the proof that a relevant
network deployment scenario, known as homogeneous net-
works or random networks in the literature, satisfies strong
cell connectivity. More specifically, we consider the following
node deployment scenario:
a1. a number n of nodes is distributed uniformly at random

in a square region 6 of side (rmax/j) ·
√
n/ log n, where

j > 1 is a constant defined in Lemma 1.
In the above setting, the critical transmission range for connec-
tivity ctr(n), i.e., the minimal value of the transmission range
such that the resulting network topology is connected w.h.p.
(this is a necessary condition for having meaningful notions
of broadcast capacity and latency) is [6], [12]:

ctr(n) =

√(
rmax
j

)2

· n

log n
· log n

n
=
rmax
j

,

i.e., it is a constant fraction of the maximum transmission
range. In other words, we are considering a situation in which
node density (defined here as the average number of nodes
within transmission range) is minimal (up to a constant factor)
for obtaining network connectivity w.h.p.

Let us now assume the deployment region is divided into
C = 8h

j ·
n

logn non-overlapping square cells of side l = rmax
2h
√

2
,

where h > 1 is an arbitrary constant. We now prove a quite
standard concentration result showing that, under the above
conditions, all the cells contains at least one node w.h.p.,
which, by Claim 2, implies strong cell connectivity under
the assumption that the communication graph satisfies cell
adjacency. The interested read can find the formal proof of
the lemma in the Appendix.

Lemma 1: Assume n nodes are distributed uniformly at
random in a square region of side rmax

j ·
√

n
logn , for some

6Up to straightforward technical details, this result can be extended to the
case where the nodes are distributed in an arbitrary convex region of volume(

rmax
j

)2
· n
logn

.
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arbitrary constant j > 1, and that the deployment region is
divided into C = 8h2

j2 ·
n

logn non-overlapping square cells of
side l = rmax

2h
√

2
. If j2 ≥ 8h2, then the minimally occupied cell

contains at least one node, w.h.p.
Corollary 1: Assume a1; if a communication graph G

satisfies cell adjacency, then G is strongly cell connected
w.h.p.

IV. TRIVIAL BOUNDS ON BROADCAST CAPACITY AND
LATENCY

The following upper bound on the broadcast capacity triv-
ially follows by observing that the maximum rate at which any
receiver can receive broadcast packets is W [12]. The bound
holds for an arbitrary network and arbitrary broadcast source
sets.

Claim 4: In any network with n nodes, we have λ(n) ≤W .
Define d(n), the diameter of the network, as the maximum

Euclidean distance between any two network nodes u, v ∈ V .
The lower bound on the broadcast latency immediately follows
by the definition of transmission range rmax. Also this bound
holds for an arbitrary network and arbitrary broadcast source
sets.

Claim 5: Given any network with n nodes, we have
T (n) ≥ d(n)

rmax
= D(n).

V. MATCHING CAPACITY AND LATENCY BOUNDS: THE
SINGLE SOURCE CASE

In this section, we introduce a broadcast scheme for single
source broadcasting based on a k2 coloring of a subset of
network nodes, which enjoys the following properties: i) the
broadcast source s generates new packets at rate Ω

(
W
k2

)
; and

ii) all generated packets are correctly received by all nodes
in V − {s} within time O

(
d(n)
rmax

)
under the condition that a

properly defined communication graph Gk (see below for a
formal definition) is cell connected w.r.t. source node s.

Note that, in order to have asymptotically optimal broadcast
capacity, the number k2 of colors used by the broadcast
scheme must be a constant. On the other hand, we need that
the communication graph satisfies cell connectivity in order to
have asymptotically optimal latency. We shall see that, fixed
a step l of the square lattice used to partition the plane, and
two possible values k′ and k of the coloring scheme, k′ < k
implies that communication graph Gk′ used to broadcast with
(k′)2 colors is a subgraph of the communication graph Gk
used to broadcast with k2 colors. Given that cell connectivity
is a monotonic graph property, Gk′ ⊆ Gk implies that, from
the point of view of cell connectivity (which is a sufficient
condition to show asymptotically optimal broadcast latency),
a relatively large value of k is desirable. In other words, if
we select a relatively low value of k, it is relatively more
likely that the resulting communication graph Gk is not cell
connected, and optimal latency in packet delivery cannot be
ensured. On the other hand, a very large value of k (say,
k = f(n), where f(n) is some unbounded increasing function
of n) is likely to result in a cell connected communication
graph, but it is not optimal for what concern broadcast
capacity. Thus, the choice of the number of colors k2 in the

Algorithm for a generic node v:
Let i be the color of the current time slot
If v is a leader node, let j be the ID of the
last packet transmitted by node v
1. if color(v) = i then
2. if source(v) then transmit new packet
3. else if cellLeader(v) then
4. if buffer(v) is not empty then
5. transmit packet and empty buffer
6. else // color(v) 6= i
7. if not source(v) then
8. listen to the channel
9. if new packet arrive then
10. receive the packet
11. let j′ be the ID of the received packet
12. if (cellLeader(v)) and (j′ = j + 1) then
13. store packet in transmit buffer

Fig. 3. The broadcasting scheme with single broadcast source.

coloring scheme must fulfill opposite requirements for what
concerns broadcast capacity (which would require minimizing
k) and latency (which would require maximizing k).

In this section, we show how to address this tradeoff, by
showing that there exists a constant value k̄ such that com-
munication graph Gk̄ satisfies cell adjacency, which ensures
that cell connectivity of graph Gk̄ can be guaranteed for the
relevant network deployments characterized in claims 2 and
3 and Corollary 1 (e.g., for random networks). We recall that
a constant value of the number of color guarantees optimal
broadcast capacity. Thus, setting k = k̄ simultaneously achieve
asymptotically optimal broadcast capacity and latency bounds.
More in general, our characterization shows that asymptot-
ically optimal broadcast capacity and latency is achievable
whenever communication graph Gk̄ is cell connected w.r.t. the
source node, which can occur also when none of the conditions
necessary for claims 2 and 3 and Corollary 1 holds.

To prove our result we use the simple broadcast scheme
reported in Figure 3. We assume that the plane is partitioned
into non-overlapping square cells of side l, that each node v is
aware of the cell cell(v) to which it belongs, and that a spatial
TDMA scheme is used at the MAC layer. Each node v in the
network is assigned with a color color(v) chosen among a set
of k2 colors. Details of the coloring scheme, which is similar
to the ones used, e.g., in [12], [25], are given below. Time is
divided into periods composed of k2 transmission slots, one
for each color. We assume slot coloring is periodic with period
k2, i.e., if slot j has color i, then also slots j + zk2, for any
integer z ≥ 1, have color i. All nodes have a single-packet
transmit buffer; i.e., when a new packet arrives, if the previous
packet has not yet been sent, the old packet is overwritten.

The source node s simply transmits a new packet each time
a slot of color color(s) occurs. Leader nodes are selected
arbitrarily in each populated cell. If a node v is selected as
cell leader, i.e., as the only node in cell(v) responsible for
forwarding packets, then v transmits a packet whenever a slot
of color color(v) occurs, subject to the condition that there is a
new packet to send in the buffer. Each non-source node listens
to the channel in the remaining k2−1 slots of the period and,
in case a new packet is received and the node is a cell leader,
the new packet is stored in the buffer (possibly overwriting an
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Fig. 4. Two-dimensional coloring of parameter k = 3.

old packet). Note that new packets can be easily identified by
a sequential packet ID contained in the header of the packet.
Condition j′ = j + 1 at step 12. ensures that the broadcasting
scheme preserves packet ordering, i.e., single packet buffering
at the leader nodes is sufficient (see Theorem 1 for details).

The coloring scheme is as follows. We recall that we assume
a square lattice partitioning as described in Section III. The
cells have side l, and we assume that their bottom left corners
have coordinates (i·l, j ·l) for i, j ∈ Z. The cells are colored in
a checkered fashion with k2 colors, as shown in Figure 4. Each
color can be identified by a pair (a, b), with a, b ∈ {0, 1, . . . k−
1}; then the cell whose bottom left corner has coordinates
(i · l, j · l) has color (i, j) (mod k). For each node v, color(v)
is the color of the cell it belongs to. In the following we
assume, w.l.o.g., that k ≥ 3.

Given a value of k, we define communication graph Gk as
follows:

Definition 6 (graph Gk): Communication graph Gk in-
cludes all and only directed links (u, v) such that u is either the
source or a leader node, and the SINR value at node v relative
to the signal transmitted by node u is at least β, under the
assumption that all leader (or source) nodes of color color(u)
are transmitting simultaneously.

In other words, graph Gk contains all and only the links
that can be used to broadcast packets when the broadcasting
scheme in Figure 3 is used and the number of colors is k2.

We now prove some fundamental properties of the broad-
casting scheme in Figure 3:

Theorem 1: The broadcasting scheme defined in Figure 3
satisfies the following properties:
i) the source s generates broadcast packets with rate W

k̄2
;

ii) let p(i) be the packet generated at time ti by node s
during period i; if communication graph Gk is cell connected
w.r.t. s, packet p(i) is received by all nodes in V −{s} within
time O(ti + d(n)

rmax
).

Proof: We recall that we are assuming a time-slotted
approach at the MAC layer, that time slots are colored using
k̄2 colors, and that slot coloring is periodic with period k̄2.
Property i) is straightforward: the source node s generates a
new broadcast packet each time a slot with color color(s)
occurs, and thus gets 1

k̄2
of the available channel capacity W .

To prove property ii), we first show that a) any leader node
at cell distance j ≥ 0 from the source node s transmits packet
p(i) within period i+ j. We proceed by induction on j. The
base case j = 0 (i.e., the transmitting node is the source) is

v w

period (i+j’) period (i+j’ +1)

w sends packet p(i)
v receives packet p(i)

w sends packet p(i+1)
v receives packet p(i+1)

v sends packet p(i)v sends packet p(i-1)

v w

Fig. 5. Transmission opportunities in consecutive periods.

straightforward. Let us now consider the inductive case. Let
v be a leader node at cell distance j + 1 from the source. By
cell connectivity, there exists a path P in the communication
graph Gk such that all nodes in P −{v} have cell distance at
most j. Observe that, by definition of Gk, path P is composed
only of leader nodes. Assume w.l.o.g. that path P has minimal
hop-length among the paths satisfying the condition for cell
connectivity. Let w denote the only node in P such that link
(w, v) is in Gk. Since cd(w, s) ≤ j, by induction hypothesis
node w transmits packet p(i) within period i+j′, with j′ ≤ j.
Since edge (w, v) is in Gk, packet p(i) is correctly received by
node v during period i+ j′. Hence, when node v has its own
transmission opportunity during period i+ j′+ 1 ≤ i+ j + 1,
packet p(i) is in the transmission buffer and is transmitted
(see Figure 5). Note that step 12. of the broadcasting scheme
requires that node v has transmitted packet p(i − 1) before
being able to store packet p(i) in the transmit buffer. This
is actually the case, since, by induction hypothesis, packet
p(i − 1) is transmitted by node v during period i + j′.
We then conclude that node v transmits packet p(i) within
period i + j + 1, and property a) is proved. The following
property immediately follows from property a) above and cell
connectivity: b) packet p(i) generated by source node s during
period i is received by all nodes at cell distance ≤ j from s
by the end of period i+ j − 1, for any j ≥ 1.
We now observe the following: 1. since k is a constant and
broadcast packets can be sent in a constant amount of time,
the duration of a period does not depend on the number n of
network nodes; 2. the maximum (Euclidean) distance between
s and any other node in V − {s} is at most d(n), and 3.
given that the square lattice step l is within a constant factor
from rmax, the cell distance between two nodes at Euclidean
distance d is O( d

rmax
). Given 2., 3., and property b), we have

that a packet sent by the source during period i is received by
each node in V −{s} within O( d(n)

rmax
) periods; this, combined

with 1., implies property ii), and the theorem is proved.
We now prove the following fundamental lemma, which

shows that there exists a constant value k̄ of the number of
colors such that any packet sent by a node in our broadcast-
ing scheme is correctly received by all the nodes in the 8
surrounding cells. This implies that communication graph Gk̄
satisfies cell adjacency, and cell connectivity of graph Gk̄ is
guaranteed in network deployments characterized in claims 2
and 3 and Corollary 1.

Lemma 2: Assume a cell partitioning as defined in Section
III. There exists a constant value k̄ of the number of colors
such that, for each k ≥ k̄, every packet sent by a node in
the broadcasting scheme is correctly received by all nodes in
adjacent cells.
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The proof of the lemma is similar to the proofs of similar
results proved, e.g., in [12], [13]. The interested reader can
find the formal proof in the Appendix.

Note that, in accordance with the theoretical findings of
[12], the value of k̄ is independent of node density, but depends
only on the step of the square lattice and on the path-loss
exponent.

By observing that the capacity and latency bounds provided
by our broadcasting scheme match the corresponding bounds
stated in Section IV when k = k̄, we have the following
theorem, which is the main result of this section:

Theorem 2: The broadcasting scheme defined in Figure
3 provides asymptotically optimal broadcast capacity and
latency for single broadcast source s under the assumption
that graph Gk̄ is cell connected w.r.t. s.

VI. MATCHING CAPACITY AND LATENCY BOUNDS: THE
MULTIPLE SOURCE CASE

In this section we show how to extend the results of the
previous section to the case of arbitrary set of broadcast
sources. The broadcast sources are arbitrarily located within
the network, and can arbitrarily share the aggregate network
capacity, according to a bandwidth allocation vector B =
{b1, . . . , bn}. Assume the bi are defined as follows. For each
node i, we assign an arbitrary, constant integer value wi ≥ 0
(which is defined as 0 if node i is not an active broadcast
source). The bandwidth share bi of node i is defined7 as

bi =
wi∑n
j=1 wj

.

Define ω =
∑n
j=1 wj . We model broadcast source si, with

1 ≤ i ≤ n and wi > 0, as the composition of wi unitary
broadcast sources (unitary source for short) s1

i , . . . , s
wi
i . The

collection of all the unitary broadcast sources is denoted
us1, . . . , usω , where in general ω might be larger than n. The
location of a unitary source usj is the physical location of
the corresponding broadcast source si. With a slight abuse
of notation, we use notation cell(usj) to denote the cell to
which the broadcast source si corresponding to the unitary
source usj belongs. Our broadcast scheme is designed to have
each unitary source to generate a new broadcast packet in
the network every ω communication rounds, thus satisfying
proportionally fair allocation of the broadcast capacity.

Each communication round is composed of two phases: the
convergecast and the broadcast phase. In turn, each phase is
composed of k̄2 transmission slots, where the mechanism used
to assign colors (transmission slots) to cell leaders is the same
as the one used in the case of single broadcast source. The
purpose of the first phase is to make all the new generated
packets converge toward a specific, selected node S (note that
S is not necessarily an active broadcast source). In the second
phase, node S disseminates all the packets received through
convergecast using a single source broadcast, by means of
the method we have described in the previous section. To
achieve perfect separation between convergecast and broadcast

7In the definition, we assume that at least one broadcast source is active,
i.e., at least one of the wjs is greater than 0.

phases, each node is endowed with two separate, single-packet
buffers: the convergecast buffer and the broadcast buffer.

The main idea is to use the convergecast phase to let
node S receive a new broadcast packet to transmit at each
communication round (except for the initial rounds needed
to fill the pipeline). This way, aggregate broadcast capacity
is halved – new broadcast packets are injected only in one
of the two equally long phases composing a communication
round – with respect to the single source case, and remains
asymptotically optimal. Furthermore, the convergecast scheme
is designed in such a way that a packet generated by a source
usi at cell distance di from S during round t, is received by
node S exactly at round t+ di, and broadcast in the network
through node S during round t + di + 1. This implies that
the latency of a broadcast packet is increased by an additive
O
(
d(n)
rmax

)
term with respect to the latency in the case of single

broadcast source, i.e., it remains asymptotically optimal.
We now show how to construct a convergecast scheme that

satisfies both properties described above. For ease presen-
tation, we cyclically number communication rounds from 0
to (ω − 1), and assume all mathematics is modulo ω. The
convergecast and broadcast phase of a communication round
are numbered similarly.

Given the positions of the ω unitary sources usi, we choose
for each usi the shortest path in the cell graph which leads to
cell(S). In case more than one such paths exist, we arbitrarily
pick one of them. The composition of these paths is a shortest
path tree rooted at cell(S), connecting cell(S) to each of the
cell(usi)s through shortest paths. Starting from this tree, we
build a simplified shortest path tree as follows. With a slight
abuse of notation, in the following we denote by cell(T ) the
cell corresponding to tree node T . Each internal node with
a single child in the tree is removed. Thus, the simplified
shortest path tree contains only leaves, and internal nodes
with at least two children. Edge (U, V ) in the simplified
shortest path tree is labeled with cd(cell(U), cell(V )), i.e.,
with the cell distance between the cells corresponding to
the edge endpoints. An example of shortest path tree, and
the corresponding simplified shortest path tree, is reported in
Figure 6. Unless otherwise stated, in the following by shortest
path tree we mean simplified shortest path tree.

Note that the leaves of the shortest path tree correspond
to cells containing a unitary source, while internal nodes
correspond to cells that do not necessarily contain a unitary
source. If the cell corresponding to an internal node T contains
one or more unitary sources, we can model each of such
sources as a leaf node with T as parent node, and set the
corresponding edge weight (cell distance) to 0. Thus, in the
following we assume without loss of generality that all unitary
sources are represented as leaf nodes in the shortest path
tree. Internal nodes in the shortest path tree act as forwarders
towards the upper levels of the tree. When forwarding, one of
the nodes within the corresponding cell (the cell leader) will
be in charge of propagating broadcast packets up in the tree.

The designed convergecast scheme forces a synchronization
of the unitary sources in order to avoid buffering at interme-
diate nodes (thus preserving asymptotically optimal broadcast
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Fig. 6. Tree construction in the convergecast phase. Active unitary sources are denoted by a square. Cells at which two or more shortest paths intersect are
denoted by a circled letter. Non-intersecting cells on the shortest paths are denoted by small circles. In the simplified shortest path tree (center), each unitary
source is labeled with the round (modulo 9) at which a new packet is transmitted. The resulting transmission schedule is shown on the right.

latency), and can be recursively described as follows.
Let us consider an internal tree node T , and let us assume

that T has z incoming edges, hence z subtrees, containing
v unitary sources overall. Each subtree of T can be either a
single leaf or a proper tree. Let us assume that the parent of
node T in the tree requests T to send a new broadcast packet
from round t to round t + v − 1. Let the distances labeling
the edges connecting T to the subtrees be equal to d1, d2,...,
dz , and let mi be the number of incoming new packets from
edge i in a complete set of ω convergecast rounds. Clearly∑z
i=1mi = v.
In order to obtain perfect synchronization, and to be able to

resend a new broadcast packet at each time step with constant
size buffering, node T requests each subtree to send packets in
specific, non-overlapping communication rounds. In particular,
the i-th subtree should send its messages in such a way they
reach T in mi consecutive rounds, from round

αi = t+

i−1∑
j

mj to βi = t+

i∑
j

mj − 1 (1)

where round numbering is performed cyclically, modulo ω.
Given the delays di determined by cell distances, and recur-

sively assuming that the packet transmitted (either generated
or forwarded) by a node at cell distance di from cell(T ) at
round t are received by nodes in cell(T ) at round t+ di, we
have that the root of the i-th subtree must send its mi messages
in the time steps αi − di to βi − di.

In practice, each subtree is requested to send its new packets
in a specific time window, which is computed in such a way
that the delays from T to the roots of the subtrees make the
messages reach T in a continuous flow, from step t to step
t+ v − 1.

It is now clear that this mechanism can be repeated at each
level of the tree, starting from the root S. The requirement
of S is to receive the v = ω messages from its subtrees
at the contiguous steps 0 to ω − 1. This request is then
recursively propagated toward the leafs. At the end of the
process each leaf, i.e., each unitary source, knows at which
communication round (of every cycle of ω communication
rounds) it should send its new packet. See Figure 6 for an
example of convergecast schedule computation.

We now prove that our proposed combined converge-
cast/broadcast scheme provides asymptotically optimal broad-
cast capacity and latency.

Lemma 3: Assume the above described convergecast
scheme is used. The packet generated by a unitary source usi
at cell distance di from node S during the convergecast round
t is received by node S during convergecast round t+ di.

Proof: We prove the lemma by induction on the structure
of the shortest path tree. More specifically, we prove that,
given an arbitrary internal tree node T , the packet generated
at round t by a unitary source usi in the subtree rooted at T
is received by node T 8 at round t+ di, and re-transmitted up
in the tree at round t+ di + 1.
The convergecast scheme is designed so that packets generated
by unitary sources arrive at node T in consecutive rounds.
Denote by v the total number of unitary sources in the subtree
rooted at T , and let t, . . . , t+v be the round interval at which
node T wants to receive the packets generated by the unitary
sources. The convergecast scheme dictates that the i-th child
of T sends its messages in such a way that they reach T in mi

consecutive rounds, where mi is the number of unitary sources
in the subtree rooted at the i-th child of T . The endpoints of
this interval are round αi and βi, as defined in (1). We now
have two cases: a) the i-th child of T is a leaf, and b) the
i-th child of T is an internal node. In case a), the i-th child
of T is a unitary source, denoted usi, which is connected
to T through a path of length di in the cell graph (di = 0
in case the unitary source is located in cell(T )). Since all
cells in the path from cell(usi) to cell(T ) do not contain
unitary sources, and given that the leader node of any cell
has a transmit opportunity in every convergecast round (recall
the coloring scheme), it is sufficient to have usi transmits its
packet at time t′ = αi − di. This ensures that the packet
generated by usi at time t′ is received by T at time t′+ di =
αi. In case b), denote by I the i-th child of node T , and
let dI be the cell distance between cell(I) and cell(T ). By
induction hypothesis, the packet transmitted at time t′′ by any
unitary source usj in the subtree rooted at I is received by
node I at time t′′+djI , where djI is the cell distance between
cell(usj) and cell(I). The convergecast scheme ensures that

8With a slight abuse of terminology, by “received by node T ” we mean
“received by all nodes belonging to cell(T )”.
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all packets generated by unitary sources in the subtree rooted
at I arrive at I in consecutive rounds, i.e., they do not conflict
at I . Hence, the packet arrived at I at a certain round t can be
transmitted at the next round t+ 1, i.e., the packet generated
by usj at round t′′ is transmitted by I at round t′′ + djI + 1.
Given that the cells in the path connecting cell(I) to cell(T )
do not contain unitary sources, a packet transmitted by I at
time t′′+djI+1 is received by T at time t′′+djI+dI=t′′+dj ,
where dj is the cell distance between usj and node T . Thus,
we have formally proved that the property stated in the lemma
holds for arbitrary nodes in the shortest path tree. The lemma
then follows by considering the root node S in the tree.

Lemma 4: Assume packets are broadcast using the com-
bined convergecast/broadcast scheme described above, and
assume graph Gk̄ is cell connected w.r.t. node S. Then, the
packet generated by a unitary source at time t is received by
all network nodes within time t+O

(
d(n)
rmax

)
.

Proof: The packet generated by a unitary source is
broadcast to all network nodes in two phases: 1) delivery to
node S (convergecast) and 2) broadcasting from node S. Given
the properties of single source broadcasting, the fact that Gk̄ is
cell connected w.r.t. S, and considering that convergecast and
broadcast phases have the same duration and are interleaved,
we have that the packet latency during 2) is at most twice as
much as the latency of single source broadcasting, i.e., it is
O
(
d(n)
rmax

)
. It remains to prove that also packet latency during

phase 1) is O
(
d(n)
rmax

)
. To this purpose, we first observe that

cell connectivity w.r.t. node S implies that, given any node u in
V−{S}, there exists at least one path P connecting u and S in
Gk̄ such that for all nodes w in P−{S}, cd(u,w) < cd(u, S).
This property (call it property a)) is trivially implied by the
fact that all links in Gk̄ are bi-directional and the notion
of cell distance is symmetric, hence existence of a forward
“cell connected” path between S and u implies existence
of a backward “cell connected” path between u and S. By
applying similar arguments to those in the proof of Theorem
1, property a) implies asymptotically optimal latency during
phase 1), namely that the packet generated by a unitary source
at time t is received by node S within time t + O

(
d(n)
rmax

)
.

This concludes the proof of the lemma.
Lemma 5: Assume packets are broadcast using the com-

bined convergecast/broadcast scheme described above. The
aggregate rate at which new broadcast packets are injected
in the network is Θ(W ).

Proof: The convergecast and broadcast phase have equal
duration, hence the aggregate rate at which new broadcast
packets are generated is half of the rate during the broadcast
phase, which is Θ(W ) (see Theorem 1), i.e., it remains Θ(W ).

The theorem below, which is the main result of this paper,
trivially follows by combining Lemma 3, Lemma 4, and
Lemma 5.

Theorem 3: The combined convergecast/broadcast scheme
described above provides asymptotically optimal broadcast
capacity and latency, under the assumption that graph Gk̄ is
cell connected w.r.t. an arbitrary node S.

u

S

Fig. 7. Network topology which satisfies cell connectivity w.r.t. node S, but
not w.r.t. node u.

It is worth observing that the above theorem holds under
the assumption that Gk̄ is cell connected w.r.t. an arbitrary
node S. Hence, the network topology requirement is much
looser than in the case of the broadcast scheme of Figure
3, which required cell connectivity with respect to a specific
node (the broadcast source). For instance, consider the net-
work reported in Figure 7, and assume node u is the only
broadcast source. In this case, the broadcast scheme of Figure
3 cannot guarantee asymptotically optimal latency, since the
network is not cell connected w.r.t. u. However, if we use
the combined convergecast/broadcast scheme presented in this
section, packets generated by node u can be convergecast to
node S, and then broadcast in the network starting from S.
Since the network is cell connected w.r.t. S, Theorem 3 implies
that asymptotically optimal broadcast capacity and latency can
be achieved. The price to pay to have optimal guarantees on
packet delivery latency is a reduced broadcast rate, which is
halved with respect to that achieved by the broadcast scheme
of Figure 3.

VII. DISCUSSION AND PRACTICAL CONSIDERATIONS

The results presented in this paper have shown that, contrary
to what happens in case of unicast transmissions, broadcasting
in wireless multi-hop networks is not relay limited. This
discrepancy originates from the fact that a single wireless
communication is potentially correctly received by all nodes
within transmission range. While in case of unicast only one
of these potentially many receivers is actually interested in
the packet, and all the other nodes treat the incoming signal
as interference, in case of broadcast all potential receivers are
interested in receiving the packets.

It is interesting to compare the throughput/delay values
achieved by our optimal broadcasting scheme with those
dictated by the optimal throughput/delay tradeoff in case
of unicast communication derived in [4], [5]. First, we no-
tice that the notion of throughput in broadcast and unicast
transmission is slightly different, since in the former case
one is interested in characterizing the aggregate rate of all
broadcast sources, while in unicast transmission the quantity of
interest is the per-node throughput. In case of random networks
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(the network setting considered in [4], [5]), our broadcasting
scheme achieves a throughput T (n) = Θ(1) and a delay
of D(n) = Θ

(
d(n)
rmax

)
= Θ

(√
n

logn

)
. In case of unicast

communication, a throughput of T (n) = Θ(1) implies a delay
value of D(n) = Θ(n), which is much larger than the value
obtained with broadcast communication. Thus, our results
seem to indicate that a much more favorable throughput/delay
tradeoff can be obtained with broadcast than in the case of
unicast transmission.

We also want to mention that, up to tedious technical details,
the results presented in this paper can be extended to a network
setting in which nodes use different transmission power, as
long as the ratio between the largest and smallest transmission
power used by nodes is an arbitrary constant. Furthermore, our
results can be proved to hold also under the cost-based radio
propagation model of [22], which is shown to closely resemble
the log-normal shadowing model.

While the results presented in this paper are mostly in-
teresting from a theoretical point of view, they also have
implications on the design of practical broadcast schemes.
In particular, our results suggest that, if some topological
properties of the communication graph are satisfied (cell
connectivity), latency and capacity optimal broadcasting can
be achieved by:
a) properly partitioning the network deployment region;
b) selecting a leader node in each cell of the partitioning;
c) assigning a color to each cell;
d) executing a simple (convergecast/)broadcasting scheme.
The partitioning is used to spatially separate concurrent

transmissions, so that they do not corrupt each other. While
in this paper we have used a square partitioning, the actual
partitioning used in a practical scenario mainly depends on the
features of the radio propagation environment. On the other
hand, the shape of the partitioning does not depend on node
density, as long as the cell connectivity property is guaranteed.

Steps a) and b) can be easily accomplished if nodes are
aware of their location, e.g., if they are equipped with GPS
receivers. GPS receivers are becoming increasingly present in
smart cellular phones and PDAs, and are standard equipment
in some types of wireless networks (e.g., vehicular networks)
or wireless sensor networks. While the techniques presented
in this paper are based on absolute node locations, they in
principle can be extended to deal with virtual coordinate
systems, such as that proposed in [19] for wireless sensor
networks.

For what concerns b), the results presented in this paper
are based on the implicit assumption that the overhead for
electing leader nodes consumes a negligible share of the
available network capacity and does not impact broadcast
latency. This assumption is straightforwardly satisfied if leader
nodes are, e.g., selected once and for all at the beginning of
the network operational lifetime. However, in many cases the
role of leader node should be rotated based on time evolving
network properties, e.g., node battery levels, node mobility,
etc. In these situations, the message overhead induced by
the leader election process should be carefully estimated. For
instance, the SCREAM primitive proposed in [2] can be used

to complete the leader election process in O(log n) steps,
which implies that asymptotically optimal broadcast capacity
and latency is still possible in a homogeneous network as long
as the leader election process is repeated at most once every
O(log n) repetitions of the broadcast scheme.

Concerning c), we observe that coloring is based on the
assumption that a spatial TDMA scheme is used at the
MAC layer. Hence, a relatively tight time synchronization
mechanism should be implemented. Time synchronization is
typically available in some application scenarios, such as
wireless sensor networks. More in general, we observe that
time synchronization is relatively easy to achieve if nodes are
equipped with GPS receivers. Once time synchronization is
achieved, building the communication schedule is straightfor-
ward, and can be easily implemented in a fully distributed
environment in the case of single broadcast source: all a
node needs to know is whether it is acting as the leader
node in its cell, and what is the cell color. The case of
arbitrary broadcast source set is more complex, as it requires
network-wide coordination of broadcast sources for sending
the respective packets. Similarly to the case of leader election,
if the broadcast source set (and relative proportional capacity
allocation) does not change with time, coordination of the
broadcast sources can be determined once and for all at the
beginning of the network operation, and broadcast optimality
is not compromised. In presence of dynamic broadcast source
set and/or capacity allocation, coordination of the broadcast
sources should be periodically re-determined, and the induced
message overhead should be carefully estimated.

VIII. CONCLUSIONS

In this paper, we have investigated the fundamental question
of whether asymptotically optimal broadcast capacity and
latency can be simultaneously achieved in a wireless multi-
hop network. To answer this question, we have introduced
a novel topological notion of graph connectivity, called cell
connectivity, and shown that asymptotically optimal capacity
and latency can be achieved in a cell connected network, even
in presence of an arbitrary number of broadcast sources that
arbitrarily share the broadcast capacity.

Several issues are left open by this paper, such as in-
vestigating whether our results can be extended to mobile
networks. Initial results in this direction are presented in [21].
Furthermore, whether the broadcasting scheme presented in
this paper can be generalized to achieve a (possibly optimal)
throughput/delay tradeoff is another question of interest. Fi-
nally, understanding whether cell connectivity, which is a suf-
ficient condition for having asymptotically optimal broadcast
latency, is also a necessary condition is another question left
open by this paper.
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IX. APPENDIX

Proof of Lemma 1. The proof is based on the following
result from [14] (Thm. 5, page 111):

Proposition 1: Assume n nodes are distributed uniformly
and independently at random into C cells, and let η = n

C .
If η

logC → 1 as n,C → ∞ and k = k(η, C) is chosen so
that k < η and Cpk → λ, where λ is a positive constant
and pk = ηk

k! e
−η , then Prob{Min ≥ k} → 1, where Min

is the random variable denoting the number of nodes in the
minimally occupied cell.

We first prove the lemma under the assumption that j2 =
8h2. It is easy to verify that for j2 = 8h2 we are under the
hypothesis of Proposition 1. In fact:

η

logC
=

log n

log n− log log n
→ 1

as n → ∞. We now verify that Cpk → λ = 1 when k =
k(n) = 1 (note that k < η, for any large enough value of n).

We have:

Cpk =
n

log n
· log n

1!
· 1

elogn
→ 1

when n→∞.
Hence, we can apply Proposition 1, which implies that each

cell contains at least 1 node w.h.p.
The proof for the case j2 > 8h2 is straightforward: by setting
j2 > 8h2, we distribute the same number n of nodes into
strictly fewer cells than in the case j2 = 8h2. Hence, the
minimum cell occupancy in this case cannot be lower than
that in the case when j2 = 8h2, which is at least 1. This
concludes the proof of the lemma.

Proof of Lemma 2. Let us fix

k ≥ k̄ =
⌈
2 + 2

3
2 + 4

α (βζ(α− 1)hα/(hα − 1))
1
α

⌉
,

where ζ is the Riemann’s zeta function. We first observe that
the broadcasting scheme ensures that in each cell there is at
most one transmitting node.
We consider an arbitrary sender-receiver pair (S,R), as in
Fig. 4. We obtain the lower bound on k by considering
the minimum possible received power at R of the signal
transmitted by S, and deriving an upper bound to the total
interference experienced at node R. The worst case, with
respect to the power received by R from S, is obtained when
R and S are as far apart as possible, yet in adjacent cells. This
happens when the two cells are diagonally adjacent, and the
two nodes are in the two opposite corners of their respective
cells. It follows that d(S,R) ≤ 2

√
2l, where l is the side of a

cell (note that condition h > 1 in the definition of l ensures
that d(S,R) < rmax). The received power PR(S) is thus at
least P/(2

√
2l)α.

Let us consider now the interference experienced by R under
the condition, ensured by our broadcasting scheme, that in
each cell with the same color as S there is at most one (in
the worst case, exactly one) active transmitter. Assume w.l.o.g.
that cell(S) has coordinates (0, 0). Given the coloring scheme,
interferers lie in the cells with bottom left corner at (x · k ·

l, y · k · l) with x, y ∈ Z and (x, y) 6= (0, 0) (shaded cells in
Figure 4).
The distance d(x, y) between R and an interferer located in
cell (x · k · l, y · k · l), with x, y 6= 0, can be lower bounded as
follows:

d(x, y) ≥
√

(|x|kl − µ1l)2 + (|y|kl − µ2l)2 , (2)

where µ1, µ2 ∈ {0, 1, 2} depending on the actual cell (among
the 8 surrounding cell(S)) in which the receiver R lies. We
recall that we are lower bounding PR(S) and upper bounding
interference, hence we can assume that R is located in a
diagonally adjacent cell when lower bounding PR(S), and that
it is located in another, arbitrary, cell adjacent to S when upper
bounding interference.
Similarly, when either x or y are 0, we have

d(x, y) ≥ max{|x|kl, |y|kl} − µ3l , (3)

where µ3 ∈ {0, 1, 2}. Since a2 + b2 ≥ (max{a, b})2, from (2)
we obtain

d(x, y) ≥ max{|x|kl − µ1l, |y|kl − µ2l}
≥ max{|x|kl − 2l, |y|kl − 2l}

for x, y 6= 0. When either x or y is 0, equation (3) implies

d(x, y) ≥ max{|x|kl, |y|kl} − 2l .

Hence, combining the two inequalities we obtain the following
lower bound on d(x, y), which is valid for each (x, y) 6= (0, 0):

d(x, y) ≥ max{|x|, |y|}kl − 2l = l(kmax{|x|, |y|} − 2) ≥
≥ (k − 2)lmax{|x|, |y|} .

Note that the last bound is always strictly positive, since we
are assuming k ≥ 3 and |x|, |y| are not both 0.
The interference received by R thus satisfies

PI <
∑ P

((k − 2)lmax{|x|, |y|})α
=

=
P

(k − 2)αlα

∑ 1

max{|x|, |y|}α
, (4)

where the sum is extended over all the pairs (x, y) 6= (0, 0),
with x, y ∈ Z.
Counting twice the contributions along x = 0, y = 0, and
|x| = |y|, we have∑

(x,y)6=(0,0)

1

max{|x|, |y|}α
< 8

∞∑
x=1

x∑
y=0

1

xα

due to the 8-fold symmetry of the summation shown in Figure
8. Collecting the values for which max(x, y) = x we obtain

8

∞∑
x=1

x∑
y=0

1

xα
= 8

∞∑
x=1

x+ 1

xα
< 16

∞∑
x=1

1

xα−1
= 16ζ(α− 1) ,

where ζ(·) is the Riemann’s zeta function.
Summarizing we have

PI <
16Pζ(α− 1)

(k − 2)αlα
.
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Fig. 8. 8-fold symmetry in the derivation of the upper bound to the total
interference.

We now plug the value of l = rmax
2h
√

2
in the inequality

PR(S)

N + PI
≥ β

and solve the inequality for k, obtaining

k ≥ k̄ =

⌈
2 + 2

3
2 + 4

α

(
βζ(α− 1)

hα

hα − 1

) 1
α

⌉
. (5)

Hence, for any value of k ≥ k̄, the message sent by node S
is correctly received at R, no matter how many simultaneous
transmissions whose transmitters have the same color as S are
occurring. Given the arbitrary choice of the sender-receiver
pair (S,R), the lemma is thus proved.


