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Abstract

In this paper the long standing problem of a heavy tailed power azimuth spectrum and the associated scattering
mechanism that triggers its observance is undertaken using the geometry-based stochastic approach that was initially
developed in [1], and is further extended herein. More specifically, the unimodal power azimuth spectrum (PAS) and
joint power angular scattering response (PASR) are derived under the 2-D Gaussian scattering model. The developed
methodology concentrates on two-dimensional (2-D) propagation and therefore provides theoretical insights for the
azimuthal domain. At first, it is formally shown that a Gaussian scatter distribution in 2-D space gives rise to an
angular power spectrum that may be well modeled by the Gaussian function; under the assumption of free space
propagation. Numerical results are presented for higher path-loss exponents, where it is shown that heavier tailed
functions such as the Lorentzian and Laplacian functions provide good fits to the derived spectrum. To complement
earlier research works in this area, the geometry-based stochastic model developed in [1] is extended in order to
express the instantaneous multimodal PASR, which significantly contributes to the estimated correlation statistics
as shown in the paper. The 2-D spatial channel model developed herein, allows the distance from the observation
point to vary, which enhances the validity of the derived PAS and PASR. Statistical results are provided for various
distances from the observation point in order to facilitate any potential practical use of the derived 2-D model.
Finally, an analytical expression for the correlation experienced between two antenna patterns is derived under
the proposed model. The correlation function is expanded in a series of cylindrical harmonics and the correlation
experienced is estimated, which reveals the impact of the instantaneous PASR and average PAS on the correlation
function.

Index Terms

Angular power scatttering response, power angular spectrum, wireless spatial channel modeling, antenna arrays.

I. INTRODUCTION

COMMUNICATION architectures that employ multi-element antennas have gained considerable

attention in the academic community in recent years. In particular, the considerable throughput

capacity benefits potentially offered by these systems have increased interest in spatial channel modeling.

In fact, spatial channel modeling is fundamental in estimating one of the key performance indicators in

multi-element antennas, i.e., the correlation experienced between adjacent links which, in turn, depends

on the response of each antennae in the array. Therefore, a full understanding of the physical mechanisms

governing spatial correlation may help us to resolve some of today’s intriguing tasks in antenna design

and pattern diversity. Correlation is largely affected by the so-called angular power spectrum (APS),
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also known as power azimuth spectrum (PAS) in the two-dimensional (2-D) plane. The PAS has been

extensively used for the estimation of channel statistics in various standardized spatial channel models,

e.g., [2], [3]. In the 2-D case, the authors of [4] observed through experimental investigations that a

Gaussian distribution in angle of arrival (AoA) gives rise to a Laplacian-like PAS. The Laplacian function

was also considered in [5]. In general, many different shapes of AoA and APS have been proposed

in the literature, considering different scatterer distributions such as Gaussian, von Mises and uniform

[6], [7]. A related geometry-based approach was also proposed in [8] to cover both macro and micro

types of cells. Among the fundamental works in this area is [9], where Fuhl et al. developed a modeling

approach to estimate the spatial correlation coefficients for a variety of angular distributions. Modeling

the dependency of the directional channel impulse response and the associated parameters is the primary

objective in spatial channel modeling.

The main goal of this paper is to provide a theoretical framework for a complete (i.e., including PAS)

2-D spatial channel characterization under the Gaussian scatterer assumption and therefore complete the

analysis already presented in [1]. The authors in [1] laid the foundations of the model extended herein,

by jointly deriving distance and angular statistics, thus allowing a theoretical characterization of the

expected PAS under the 2-D Gaussian model. The notions of PAS (a time-averaged estimation of the

power spectrum at the receiver) and PASR (an estimation of the instantaneous power spectrum observed

at the receiver) were first explained in [1], with particular emphasis given to the latter definition, i.e.,

PASR. While PASR characterization is important for the statistical analysis of a single channel impulse

response (CIR) snapshot (provided adequate resolution in space-time), the time-averaged version obtained

from the averaging of many CIR snapshots, i.e. PAS, is fundamental for estimating important performance

parameters such as spatial correlation between antenna elements, link capacity, etc. Thus, a major goal

of this paper is to provide a thorough characterization of the PAS under the 2-D spatial channel model

introduced in [1], considering not only free-space propagation as done in [1], but also for higher path-loss

exponents. A major finding of our analysis is that the expected PAS attains a Gaussian functional form for

the free space exponent, while a heavier tailed function provides a more accurate fit for higher path-loss

exponents. Therein, the Lorentzian function is an excellent candidate, but the Laplacian function performs

very well too, thus providing a theoretical framework for explaining functional forms of the PAS observed

in real-world measurements. The fits are assessed using the mean square error metric.

Another major contribution of this paper is the derivation of the PASR in presence of multiple scatterer
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clusters in the propagation environment. This extension of the model is fundamental to improve its

accuracy, since radio environments with multiple scatterer clusters are frequently observed in real world.

An important feature of the derived multi-cluster model is that, differently from previous approaches, in the

presented model the “weight” of a scatterer cluster is implicitly computed as a byproduct of the distance

of the cluster from the transmitter and receiver station. To prove the practicality of this approach, we

consider a simulation scenario with two scatterer clusters, and compute the observed PASR accordingly.

Finally, the analysis continues by estimating the spatial correlation experienced between adjacent antenna

elements under the derived unimodal and multimodal power angular scattering responses, and extensive

comparisons with other well-known angular power fields are presented. These comparisons indicate that

existing models tend to over-estimate the correlation between the adjacent links, which may be attributed

to the fact that other models such as Laplacian and von-Mises do not account for distance from/to

transmitter and receiver station when computing the correlation statitistics. To achieve the above, the

correlation function is derived as a result of the expansion of a plane wave into a series of cylindrical

harmonics, which reveals the response of an antenna to the derived angular power scattering field.

The rest of this paper is organized as follows: in Section II the full derivation of the expected PAS

experienced under the Gaussian model for various path-loss exponents is presented. Section III derives

the angular power scattering response experienced at the observation point in space under the existence of

multiple scatter clusters, giving rise to the multimodal PASR. In Section IV, the response of an antenna

to the derived angular power field is assessed by correlating it to an adjacent antenna’s response for the

derived and other well-known angular power fields; essentially, serving as a performance metric. In the

same section the field is expanded under a circular array topology from which various correlation matrices

are obtained. Results are presented for the derived, Laplacian and von-Mises fields. Finally, Section V

summarizes the main contributions of this work.

II. A TWO-DIMENSIONAL GAUSSIAN POWER ANGULAR SPECTRUM

In this section, the observed PAS under the Gaussian scattering mechanism is derived, which was

not presented in [1]. Additionally, this work investigates the effect of higher path-loss exponents on the

corresponding spectrum. The final result is therefore in a spectrum form and not a distribution function, that

characterizes the average spatial channel statistics and not the instantaneous response (PASR). Hence, it is

of interest to estimate the expected amount of power outgoing in an arbitrary direction ψ. In mathematical
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terms the PAS is equivalent to:

PAS = E[f(%e|ψ)]f (ψ) ,

where %e defines the outgoing power along direction ψ, and f(%e|ψ) denotes a conditional distribution.

The above definition was also given in [4]. To derive the above, two random quantities need to be derived:

the density of scatterers observed by Tx along direction ψ – i.e., the angular scatterer density f(ψ)–, and

the density of power transmitted by Tx, outgoing to a scatterer along direction ψ – i.e., the scatterer power

density f(%e) (see Fig. 1). In [1], explicit expressions for the characterization of the radial and angular

domain were provided, some of which will be re-stated here for convenience.

A. PAS Derivation under 2-D Gaussian Scattering

First, consider the transformation of the Gaussian distribution in polar co-ordinates and the resultant

expression, which could be summarized as follows:

fR,Ψ(‖Ωρ2,sc‖, ψ) =
‖Ωρ2,sc‖

2πσ2
e−(‖Ωρ2,sc‖2+‖Ωo‖2)/2σ2

e‖Ωρ2,sc‖‖Ωo‖ cos(ψ−ψo)/σ2

. (1)

In (1), ‖Ωo‖ denotes the distance of the mean directional vector Ωo to the scatter cluster (see Fig. 1) and

ψo the associated azimuthal angle to this vector. This function represents the so-called distance-dependent

AoA spectrum as observed at Tx = ρ2. Under this representation, the density at ρ2 is taken with respect

to the center of gravity (xo, yo) of the scatterers in its vicinity. Note that Fig. 1 has been created in view

of the multiple cluster scenario that is also of interest in this work. Consequently, the angular distribution

f(ψ) is obtained by integration of the joint distribution over the whole radial space:

f(ψ; ‖Ωo‖, σ) =

∫ ∞
0

f(‖Ωρ2,sc‖, ψ)d‖Ωρ2,sc‖

=
1

4π
e−‖Ωo‖2 sin[ψ−ψo]2/2σ2

(
2e−‖Ωo‖2 cos[ψ−ψo]2/2σ2

+
1

σ
‖Ωo‖

√
2π cos[ψ − ψo]

(
1 + Erf

[
‖Ωo‖ cos[ψ − ψo]√

2σ

]))
.

(2)

This is the general form of the distribution of angles for a Guassian distribution of scatterers in 2-D.

The distribution of angles is a function of ψ. As shown in [1], increments in the length of Ωo cause an

increase in the concentration of angles, which is in accordance with intuition, since by increasing the

distance from the observation point the concentration of angles increases. The functional form of (2) can

be found in [1].

Fig. 1 HERE
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To proceed in estimating the PAS, the conditional distribution of distances on the angle ψ is obtained,

which after normalization obtains the following form:

f(‖Ωρ2,sc‖|ψ) =
f(‖Ωρ2,sc‖, ψ)

f(ψ)

= 2e(−‖Ωρ2,sc‖2+2‖Ωρ2,sc‖‖Ωo‖ cos[ψ−ψo])/2σ2‖Ωρ2,sc‖/D,

D = 2σ2 + e‖Ωo‖2 cos[ψ−ψo]2/2σ2‖Ωo‖σ
√

2π cos[ψ − ψo]
(

1 + Erf
[
‖Ωo‖ cos[ψ − ψo]√

2σ

])
.

(3)

The derived density, defining distance density conditioned on an infinitesimal angular sector, closely

resembles the derived distribution of distances in terms of functionality [1]; with the dependency being

shifted to the angular domain. The derived distribution is two-fold; it obtains a symmetric or asymmetric

to the mean shape within an angular sector ∆ψ depending on the characteristics of the mean direction

vector, i.e. the angle ψo, and length of Ωo. The distribution is symmetric provided that conditioning on

angle ψ occurs within the angular sector ∆ψ.

In the following, the conditional distribution of distances is transformed into a power distribution ac-

cording to the free-space propagation model. Subsequently, the expectation of each conditional distribution

is obtained and as shown a Gaussian-like angular power spectrum emerges. To proceed, the conditional

distribution of distances near the mobile ρ2 is assumed to be f(‖Ωρ2,sc‖|ψ) with a small ‖Ωo‖/σ ratio,

which is representative of a macrocellular scenario with the scatterers being relatively close to the receiver

as opposed to the transmitter. A hypothetical transmitter is placed in another point on the Euclidean plane.

The length of the mean distance vector Ωc � Ωo. As shown in [1] the power extracted at the scatter

cluster may be well described by an Inverse-Gamma distribution, which makes the presented analysis

more tractable. To proceed, consider the following transformation function:

%e = α/‖Ωρ2,sc‖2, (4)

where α typically accounts for the transmit power, antenna gain and the cluster’s cross sectional area.

We denote w = ‖Ωρ2,sc‖ for notational convenience. Subsequently, transforming the conditional distance

distribution into a power conditional distribution, we re-write (4) as follows:

%e =
α

w2
⇒ w =

√
α

%e
, (5)

whose derivative with respect to the variable %e is given by

dw

d%e
= −

√
α

2%e
√
%e
. (6)



SUBMITTED FOR REVIEW TO IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 6

After substitution of (5) into (3) and making use of the above derivative, the conditional distribution of

power in each angle obtains the following form:

f(%e|ψ) = αe

(
−α/%e+2

√
α/%e‖Ωo‖ cos[ψ−ψo]

)
/2σ2

/%2
eD,

D = 2σ2 + e‖Ωo‖2 cos[ψ−ψo]2/2σ2‖Ωo‖σ
√

2π cos[ψ − ψo]
(

1 + Erf
[
‖Ωo‖ cos[ψ − ψo]√

2σ

])
.

(7)

In Fig. 2 the derived distribution is examined under the conditional case of angles ψ = 180◦ and ψ = 230◦

respecticely. The cluster is centered at ψo = 180◦, at a mean distance of ‖Ωo‖ = 10 and σ = 3.

Fig. 2 HERE

The derivations thus far are based on the fundamental inverse square law assumption, which is only

valid in the far-field of the antenna response. The distance variable r ∈ [0,∞) and the corresponding

transformation function introduces an ambiguity into the derived spectrum. This ambiguity originates

from the fact that %e will be similarly defined, %e ∈ [0,∞), if left unchanged. However, the power

extracted at the scatter cluster and subsequently received by the receiver cannot exceed the power at the

boundary of the far-field zone Pf . Therefore, instead of defining the conditional random variable Pe|ψ

within 0 ≤ Pe|ψ < ∞, it should be defined as 0 ≤ Pe|ψ ≤ Pf . To introduce this dependency into

the model there are two methodologies that could be followed: i) posing a restriction to the distance

variable r by left-truncating the joint density function in (1), or ii) transform (7) such that the conditional

distribution of power on angle is truncated from the right, i.e. 0 ≤ Pe|ψ ≤ Pf . The first case is equivalent

to creating a circular region in space, inside which the probability of finding a scatterer is zero and

resultantly the distance variable can only be defined outside this circular region, whose minimum distance is

dictated by rmin = 2D2/λ (Fraunhofer region), with D being the antenna dimension and λ the wavelength

of radiation. The truncated density can then be obtained by computing (1 − F (rmin))–where F (rmin)

denotes the cumulative distribution function– and by dividing this probability by the original joint density

f(r, ψ). Alternatively, one is forced to use the second method proposed herein, under which the truncated

conditional power density takes the following form:

ftr(%e|ψ;Pe ≤ Pf ) = f(%e|ψ)/F (Pf ),

F (Pf ) =

∫ Pf

0

f(%e|ψ)d%e.
(8)

Not only this definition is more intuitive, but it also assists in finding the appropriate limits when evaluating

the expectation of the truncated random variable shown in (9). Essentially, this definition accounts for
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far-field scattering and bounds the average PAS above Pf . It follows directly from (7) and (8) that the

2-D PAS is Gaussian-like, having considered the expectation of the truncated conditional variable in (8):

PAS = f(ψ)E [Pe|ψ] = f(ψ)

∫ Pf

0

%eftr(%e|ψ)d%e, 0 ≤ Pe ≤ Pf . (9)

The expected power in each direction has been scaled by the probability density of finding a scatterer

along the conditioning angle. Therefore, the final spectrum form is actually a weighted angular function.

As discussed, the expected power in each direction is upper bounded by the power Pf = α/r2
min at the

boundary of the far-field zone. In view of the above, it should be highly emphasized that a more general

model, accounting for the near-field dependencies and associated impact on the average PAS would be an

important contribution, especially, considering that the impact of near-field correlation has not received a

full treatment in the literature. Under the proposed approach, the ratio ‖Ωo‖/σ is assumed to be larger than

rmin, in order to obey the far-field dependence. Note that the resultant spectrum may also be truncated due

to the limited angular range of incoming paths, as well as the associated radial characteristics. Truncated

spectrum forms have been observed in practice that may be typically attributed to the directionality of

the antenna pattern. The evaluation of the above expectation for each conditional distribution in the range

[0, 2π) and the corresponding multiplication by the angular density is shown in Fig. 3; superimposed

with the evaluation of higher pathloss exponents. For clarity the y-axis has been logarithmically scaled.

Note that the above integral was evaluated numerically1. Through a statistical goodness-of-fit assessment

it was revealed that a Gaussian function approximates well the derived PAS in free space conditions.

The Gaussian PAS was also proposed in [10]. Additionally, the PAS estimated from measurements in

Stockholm and Aarhus in [11] may serve as another indication of a Gaussian PAS observed in practice.

Fig. 3

To complete the analysis presented herein, the derived transmitting PAS is evaluated under different

path-loss exponents. The transformation function is modified accordingly, %e = α/‖Ωρ2,sc‖n, where n is

the path-loss exponent. As shown in Fig. 3 increasing the path-loss exponent results in a loss of power in

the corresponding angle. This observation follows theoretical intuition, since at higher path-loss exponents

the expected power on each angle should drop in order to compensate for the higher loss encountered in

the propagation path. The effect of path-loss variations on the power angular spectrum is one of the major

1Alternatively, an analytical expression may be obtained by approximating (7) with an Inverse-Gamma distribution, whose first order
moment is given by E [Pe|ψ] = β/α− 1. Mapping the associated expectation in the range 0 ≤ ψ < 2π reveals a Gaussian-like PAS.
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findings of this work, since as shown in Fig. 3 and Fig. 4 the spectrum attains heavier tails, as n increases.

Among various examined functions, the three-parameter Lorentzian2 function performed extremelly well

in capturing the derived spectrum’s sharp peak characteristics. Note that the above analysis complements

the analysis presented in [1], where emphasis was placed on the instantaneous power angular scattering

response, i.e. the probability of observing exactly power %e at an incoming angle ψ, at a generic instant of

time t. In addition to [1], this paper provides an exact derivation of the PAS due to Gaussian scattering,

providing a thorough analysis of this important subject and for the first time a complete theoretical

framework under which a heavier tailed spectrum, e.g. Laplacian spectrum, is observed.

Fig. 4 HERE

Please refer to [4] for the measurement-based approach, where the authors obtained a Laplacian PAS

from a Gaussian distribution in angle of arrival. As shown in Fig. 4 however, although the Laplacian

function serves as a good candidate, the Lorentzian function provides a better fit. The mean square error

(MSE) metric was used as a goodness-of-fit indicator, which confirmed that the Lorentzian fit is superior

for all path-loss exponents n > 2.

B. Transforming the Transmitting PAS into a Receiving PAS

Converting the transmitting PAS into the receiving PAS necessitates the use of a transformation function,

similar to the one used in [1]. In essence, (9) needs to be modified so that it accounts for the mapping

of power %r|ϕ, ψ, so that it express the bi-directional nature of the spectrum. Bi-directionality imposes a

dependency between the transmitting PAS and receiving PAS, independently of whether the study focuses

on the average or instantaneous form of the spectrum. Thus, we are interested in the modification of

the average PAS at the RX-MS due to transmission from the TX-BS. The final transformation function

considering the transmission from TX-BS to the scatter cluster in angle ψ and the associated loss of

power along the incoming scattered direction ϕ is also a function of the distance between the scatter

cluster and the RX-MS. The transformation function due to the derived spectrum form is akin to the

transformation function proposed in [1], equation (10) therein, accounting for the conditional distributions

in this instance, i.e., (7). Its form is equivalent to: Pr|ϕ = Pe|ψ (1/Y |ϕ). Pe|ψ denotes the extracted power

at the scatter cluster in ψ due to transmission from TX-BS. The product of the two random variables

– i.e., the random variable from the distribution in (7) and the transformed random variable 1/Y |ϕ that

2The Lorentzian function, also known as Cauchy function, is typically defined as: f(%) = α/((% − γ)2 + δ), where α, γ and δ are the
parameters of the distribution.
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is also distributed3 as (7), however with different parameters–results in the desired conditional random

variable, which cannot be obtained in an analytical form, unless an approximation is performed in (7)

with possibly other well-known functions. As mentioned in Section II, a good approximation to (7) is

achieved using the Inverse-Gamma distribution, whose application in this instance leads to a closed-form

solution for the PAS (and PASR as we will shortly see). In this respect, we can trivially arrive at E [Pr|ϕ],

which as expected will be a scaled version of E [Pe|ψ]; we recall that the product of two Inverse-Gamma

random variables results in another Inverse-Gamma random variable [1].

III. UNIMODAL AND MULTIMODAL POWER ANGULAR SCATTERING RESPONSES UNDER SPATIALLY
GAUSSIAN CHANNELS

In this section, the instantaneous power angular scattering response is highlighted and used in order

to extend the derived model into the multi-cluster case. The reason of shifting our current focus to

instantaneous power angular scattering response rests on its simplicity in studying multimodal scenarios.

The power angular scattering response is the result of multiplication between the conditional distribution

of power in each angle, i.e. (7), and the distribution of angles given in (2). In this respect, we are able to

study correlation due to the fluctuating instantaneous PAS–named power angular scattering response–and

not only the average PAS. In the following, the power angular scattering response is extended to multiple

scatter clusters and any uncovered statistical dependencies in [1] – between the parameters of the various

distributions – are addressed, at least for the unimodal case.

A. Unimodal Power Angular Scattering Response Formulation

To proceed, first consider the unimodal response resulting from the combination of (2) and (7):

f(%e, ψ) = f(%e|ψ)× f(ψ; ‖Ωo‖, σ) =
1

4π%2
eσ

2
e−(1+‖Ωo‖2%e−2‖Ωo‖√%e cos[ψ−ψo])/2%eσ2

. (10)

The derived distribution jointly accounting for extracted power %e along direction ψ denotes the trans-

mitting power angular scattering response, and needs to be transformed depending on the side of the

link where the received spectrum is to be observed. Bi-directionality imposes a dependency between the

transmitting PASR and receiving PASR, as is the case for the transmitting and receiving PAS. Similarly,

we are interested in the modification of the instantaneous PASR due to transmission from the BS-TX.

Thus, although (10) provides us with an analytical expression of the joint distribution in power and

3The validity of this statement is clarified here for convenience. The random variable Y denotes the new set of squared distances from
the RX-MS to the scatter cluster, ‖Ωρ1,sc‖2. To arrive at this distribution, (3) needs to be transformed accordingly, and this transformation
is exactly the same as the one followed earlier for obtaining f(%e|ϕ).
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angular dimensions (the desired power angular scattering response), it needs to be modified so that it

accounts for the mapping of power %r|ϕ, ψ, in order to express the bi-directional nature of the channel.

The transformation procedure is similar to the one detailed earlier in the closing paragraph of Section II,

and leads directly to f(%r, φ). In this respect, we can trivially arrive at f(%r, φ), which as expected will

be a scaled version of f(%e, ψ). As shown in [1], the product of two Inverse-Gamma random variables

results in a random variable that is also distributed as Inverse-Gamma. The evaluation of (10) for the

exemplary case of ‖Ωo‖ = 10, σ = 3 and ψo = 180o appears in Fig. 5.

Figure 5 HERE

To simplify the derivations and present a more tractable methodology for obtaining the PAS and PASR

at the TX-BS, the authors in [1] instead of dealing with the conditional distributions, directly tranform

distances into power values and finally express the joint distribution of power and angle as a product of two

marginal distributions, i.e., the power density f(%e) and the angular density f(ϕ; ‖Ωo‖, σ) that was derived

earlier. This methodology introduces an error in the approximation of the original joint function, however

as shown in Section III-A1, this error diminishes to zero under certain parameter settings. Accordingly,

the unimodal response was given as:

f(%e, ϕ) = f(%e)× f(ϕ; ‖Ωo‖, σ). (11)

In turn, the power density f(%e) is well approximated with an Inverse Gamma distribution ∼ (α, β) as

shown in [1]. It is then trivial to transform Pe to Pr, which as shown in [1], it is a random variable also

distributed as Inverse-Gamma. Direct substitution in (11) and alternation of the parameters of the angular

density as viewed by the TX-BS leads to the receiving power angular scattering response.

1) Mutual Information: The validity of the independence assumption used in (11) is confirmed by

examining the Kullback–Leibler divergence between the actual joint distribution and the product of

marginals, which at least classifies the circumstances under which independence can be claimed. This

is formally denoted as the Mutual Information (MI) and is a measure of distance between two density

functions or can also be understood as the degree of correlation between them. The MI is attained by

taking the relative entropy of the actual joint distribution with respect to the distribution of the product

of marginals [12]:

I(Pe,Ψ) =

∫∫
%e,ψ

f(%e, ψ) loge(
f(%e, ψ)

f(%e)f(ψ)
)d%edψ. (12)
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It was observed that for large values of ‖Ωo‖ the product of marginals serves as a good approximation.

As found experimentally, this approximation always holds given that the length of the mean directional

vector Ωo > 4σ, where the mutual information reduced practically to zero for every case examined.

B. Multimodal Power Angular Scattering Response Formulation

Several research studies have indicated that the channel tends to cluster the directional components

in space and time. The existence of multiple scatter clusters has been confirmed in the literature [2],

[13]–[15]. Procedures for estimating the parameters of various clusters identified in measurements can

be found in [16], [17], among others. To extend the unimodal PASR into a multimodal PASR it suffices

to represent the spatial domain structure in an additive manner, i.e., summation of the scatter clusters,

the number of which is clearly dependent on the propagation environment, on the methodology used to

identify them (clustering approach), and on various other criteria that fall beyond the scope of this work.

The multimodal representation of the sum function (analogous to the mixture density function) g(%r, ϕ)

may be written in the following form:

g(%r, ϕ) =
N∑
n=1

fn(%r)× fn(ϕ; ‖Ωo‖, σ), (13)

where the ratio ‖Ωo‖/σ is allowed to vary depending on the distance of each cluster to the observation

point. Typically, each component’s contribution in the mixture density is characterized by an associated

prior weight. The membership contribution in clustering terms is determined by the power emanated from

each cluster. In contrast, this is directly specified in the model derived in this work, since the power of

each path is directly accounted for. To exemplify this, consider the case depicted in Fig. 1, where two

spatial clusters appear. Our objective is to obtain the multimodal PASR at the MS: i) from the power

extracted at each scatter cluster due to transmission from TX-BS ii) and re-emanated towards the RX-MS,

albeit dictated by a new set of distances. Assume momentarily that lengths ρ1 and ρ
′
1 are equivalent,

which translates to the scatter clusters being equi-distant from the TX-BS and RX-MS. This fact does not

necessitate the existence of equally weighted lobes in the multimodal density function, since the power

extracted at each cluster may be due to different distances between them and the TX-BS. The assumptions

made for simulating the above scennario are listed below:

1) The length of vector Ωo = Ω
′
o = 5.

2) The length of vector Ωc = 10 and Ω
′
c = 16.

3) The standard deviation σ = 3 for both clusters.
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4) Free-space propagation n = 2.

It follows directly from the pre-stated assumptions and Table I that the estimated parameters for the

transmitting side are: αc = 3.7346, βc = 0.0311 for the cluster at a mean distance of ‖Ωc‖ = 10, and

αc′ = 7.7332, βc′ = 0.0281 for the cluster at ‖Ωc‖ = 16. On the other side, the estimated parameters are

αo = αo′ = 1.5887, βo = βo′ = 0.0358. After considering the analysis in [1]–more specifically formulae

(13) detailed therein–the estimated parameters that characterize the power density function at the TX-

BS (as a result of re-transmission from the scatter cluster) for each pair of clusters are: αo1 = 0.95,

βo1 = 0.0002 and αo′1
= 1.2, βo′1 = 0.0001 respectively. The resultant mixture density appears in Fig.

6. Note that the proposed modeling approach captures the effect of increased distance due to the second

cluster, i.e. Ω
′
c = 16, and reflects it on the PASR by assigning a lower power weight on the second

lobe at ϕo = 180◦. In the next section, an application of the derived unimodal and multimodal fields is

provided. The fields are assumed to be impining on an antenna array of a circular topology, aiming at the

assessement of the spatial correlation between the patterns.

Fig. 6 HERE

1) Characterizing the Inverse Gamma Distribution: To characterize various cases and facilitate the

modeling process, a statistical analysis has been performed for the approximation of the Inverse-Gamma

distribution in all instances encountered under the assumption of independence. The estimated parameters

presented below correspond to various mean distances from the observation point. In order to derive the

parameters of the receiving PASR f(%r, ϕ), it is essential to first obtain the parameters of the transmitting

power density function f(%e). To achieve this, equation (10) in [1] needs to be considered and any desirable

pair of ‖Ωo‖, ‖Ωc‖ specified apriori. A rejection sampling technique was used to sample from the derived

power density function and a maximum likelihood estimation procedure followed in order to estimate and

assess the fit of the Inverse Gamma distribution to the drawn sample. The estimated parameter values

can then be inserted into equation (13) in [1] to obtain the receiving PASR parameter values. This is

exactly the procedure followed to estimate the parameters for the two cluster scenario analyzed ealier. For

a detailed analysis the reader is referred to [1]. Herein, the addition of Table I serves as an assisting tool

for the simulation of a wide range of scenarios of the derived model. Finally, all derived distributions and

associated approximations (where applicable) are listed in Table II.

Table I,II HERE
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IV. AN APPLICATION: SPATIAL CORRELATION STATISTICS

A potential application of the derived model is for the assessement of spatial correlation in antenna

patterns. In essence, the derived field may be used to assess the responses of two adjacent antenna elements,

due to the derived angular power field impinging on them. The antenna response of a radiating element is

dependent on various factors, which cannot all be accounted for in this work. For instance, the mounting

platform, mutual coupling between the radiating elements, individual radiation patterns (embedded), power

angular field and associated directions in space, as well as, polarization properties are among the main

contributing factors. The associated complexity in analyzing such systems has always been deterring from

a modeling perspective. To simplify the analysis and concentrate on the main targets of this work, let us

assume that there exist a circular topology of elements that possesses omnidirectional (2-D) properties.

The question that naturally arises is the following: “How does the antenna response due to an impinging

power angular field f(%r, ϕ) at element r1 differs from the antenna response at an adjacent element r2

due to the same power angular field?”.

In the literature, research works attempting to provide an insight of the spatial correlation estimation

[17], [18] have mostly assumed normalized power angular fields, i.e., power angular fields originating from

distributions that are strictly defined on the circle or the sphere, e.g., von-Mises or von-Mises Fisher. Thus,

the above assumption explicitly states that each incoming plane wave is of unit amplitude. Admittedly, this

is a questionable statement, since the restriction of the angular power field on the circular circumference or

the surface of the sphere essentially removes the power dimension from the whole approach and conditions

the power angular response to a particular distance, which is at least inaccurate from a geometry-based

stochastic modeling perspective. Additionally, the array response is dependent on the amplitude/power of

each incoming plane wave. It is therefore expected that the strength of each plane wave scales equally all

harmonics in the wavefield decomposition process, and this should be considered.

A. Spatial Correlation Function

The analysis of the antenna response directly accounts for the normal Fourier tranform in 2-D. This

basis function represents a plane wave that is expandable in a series of cylindrical functions, namely

the circular harmonics. As expected, a series of plane waves impinge on the array with a power %r and

from an angular direction ϕk. All plane wave contributions on the array’s aperture are then weighted

and integrated to yield the pattern-weighted response. A graphical representation of the above scenario is

illustrated in Fig. 7. Note that the array is mounted on a cylindrical platform.
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Fig. 7 HERE

The decomposition of a plane wave into circular harmonics on a circular aperture of radius R = r can

then be expressed by the following series:

eik
T r = eikr cos(ϕr−ϕk) =

∞∑
n=−∞

inJn (kr) ein(ϕr−ϕk), (14)

where Jn (·) denotes the Bessel function of order n. In (14), k is the wavevector of the incoming planewave

with k = ‖k‖ = 2πf/c, where f denotes the frequency of the planewave and r is the position of the

observation point. The above equation is also known as the Jacobi-Anger expansion. More specifically,

in polar coordinates the individular vectors are:

k = k

cosϕk

sinϕk

 , and r = r

cosϕr

sinϕr

 . (15)

The inner product of the two vectors is given by:

kTr = kr [cos (ϕr − ϕk)] . (16)

The spatial correlation function (SCF) experienced between any two antenna responses can then be

estimated using the following formulae, which serves as an extension of the SCF derived in [19]:

ρ (r1, r2) ≡ ρ (r2 − r1) =

∫ ∞
0

∫ 2π

0

f (%r, ϕ) ei(r2−r1)·k%rdϕkd%r. (17)

Combining (14) and (17) results in an analytical expression for the level of correlation between the two

antenna responses:

ρ (r2 − r1) =

∫ ∞
0

∫ 2π

0

f (%r, ϕk)
∞∑

n=−∞
inJn (k‖r2 − r1‖) einϕ‖r2−r1‖e−inϕk%rdϕkd%r

=
∞∑

n=−∞
inJn (k‖r2 − r1‖) einϕ‖r2−r1‖

∫ ∞
0

∫ 2π

0

f (%r) f (ϕk) e
−inϕk%rdϕkd%r

=
∞∑

n=−∞
inδn(%r)Jn (k‖r2 − r1‖) einϕ‖r2−r1‖ .

(18)

The coefficients of the power angular scattering response, i.e. δn(%r), may be obtained analytically by

partioning the marginal densities and solving the two integrals independently. However, as explained in

Appendix VII, the derived analytical expression is only a valid approximation for the case of ‖Ωo‖ ≥ 2σ.

In case ‖Ωo‖ < 2σ, the coefficients need to be computed numerically4. To validate the derived formulae,

4It was observed that although the angular density in (2) cannot be well-approximated by the von-Mises distribution for the ‖Ωo‖ < 2σ
case, the associated contribution to the spatial correlation estimates was minor.
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i.e. (27) in Appendix VII, the coefficients were also evaluated numerically. The coefficients derived in

Appendix VII are therefore relevant only for the ‖Ωo‖ ≥ 2σ case. Initially, a unimodal cluster case is

examined, under which the corresponding coefficents are computed and compared with the coefficients

of other well-known fields. An excellent fit between the numerical and the derived coefficients was

observed. Note that the standard deviation of the von-Mises model was computed in accordance with the

derived definition in Appendix VII and for the Laplacian distribution the definition in [19] was adopted.

The concentration parameter of the von-Mises distribution was estimated using the length of the mean

direction vector Ωo, as: κ = ‖Ωo‖2/σ2 (see derivation in Appendix VII). The comparisons presented in the

following not only present a useful insight on the discrepancies between the derived and the other models

(e.g. Jakes, von-Mises), but also show the 2-D model’s performance with respect to the modified von-Mises

power angular field. The radial dimension is suppressed in the classic von-Mises representation. However,

in Appendix VI a definition is provided that translates the angular spread of the von-Mises distribution so

that it becomes representative of the distance at which the cluster is observed. We encourage the adoption

of the presented von-Mises functional form, since it is more intuitive and at least captures some of the

interesting spatial properties for clustered types of channels.

B. Pattern Correlation Dependency on 2-D Power Angular Scattering Response

In the following, an evaluation of the derived correlation function in (18) is performed under the assumed

circular array topology employed at the receiving end for all pre-discussed power angular fields. In Fig. 8,

the derived model is assessed for different lengths of the mean direction vector Ωo, and as shown increasing

this length increases spatial correlation; attributed to the increased concentration of incoming power in a

smaller angular sector. Note also the Bessel oscillatory behavior of the correlation function as the length of

Ωo tends to zero. The preceding point serves as another validation of the derived 2-D model, since at short

lengths of the mean directional vector, the observation point is attracted to the centre of mass of the scatter

points; indicating a full angular span. This follows Jakes model (also plotted in Fig. 8), in accordance to

which, narrowband spatial correlation varies with frequency as a Bessel function, given the inter-element

spacing, as expressed through: J0 (k(r2 − r1)) [20]. As shown, there is an excellent agreement between

the two models. In the same figure the von-Mises model is also presented, allowing a fair comparison

only when conditioned at a particular distance ‖Ωo‖ (see Appendix VI). Of course, the shortfall of the

von-Mises model lies in its inability to explicitly relate distance to angular concentration, in addition to

the exclusion of power as a dimension. The relationship between distance and angular concentration is
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only handled implicity through parameter κ. As shown, the derived model may be well approximated by

the von-Mises density function when the concentration parameter is set appropriately (see Appendix VI).

To exemplify this, consider the case where the length of the mean directional vector is set to ten (Fig. 8)

and the corresponding estimate of the von-Mises field under the derived parameter, i.e. κ = ‖Ωo‖2/σ2.

The goodness-of-fit is excellent. As depicted in the same figure, the correlation experienced under the two

cluster model (recall discussion at Section III) drops–confirming intuition–since the addition of spatial

clusters should de-correlate channel statistics. Rich multipath propagation decreases the spatial correlation

by spreading the signal such that multipath components are received from different directions in space.

Increasing the number of spatial clusters to five clearly shows this de-correlation tendency, which further

validates the model’s practicality.

Fig. 8 HERE

C. Pattern Correlation Dependency on 2-D Power Angular Spectrum

In Section IV-A the correlation due to the derived 2-D PASR was evaluated, indicating that a good

approximation is provided by the von-Mises model under appropriate parameter settings. Although there

are numerous evaluations of the correlation function in the literature, the impact of a more general

model–accounting for the expected power on angle–has not been thoroughly analyzed, since a theoretical

characterization of the expected power conditioned on angle poses more difficulties in contrast to the

simple alternative of a probability density in the angular domain. Thus, the experienced correlation is

subject to investigating the instantaneous spatial statistics (PASR) or the average spatial channel statistics

(PAS). Both definitions have been widely used for simulating the SCF. Recall the analysis in Section

II, where definiton (9) expresses the expected power conditioned on angle ϕ. Direct use of (9) in (18)

transforms the latter into:

ρ (r2 − r1) =
∞∑

n=−∞
inJn (k‖r2 − r1‖) einϕ‖r2−r1‖

∫ 2π

0

∫ ∞
0

%rf(%r|ϕ)d%r︸ ︷︷ ︸
Conditional Expectation

f(ϕ)e−inϕkdϕk

=
∞∑

n=−∞
inδn,EJn (k‖r2 − r1‖) einϕ‖r2−r1‖ .

(19)

Numerically evaluating (19) results in Fig. 9, which clearly illustrates the difference between the instan-

taneous PASR and average PAS on the behavior of the correlation function. For comparison purposes,

the PAS’s contribution to correlation is compared with the von-Mises model used earlier. The von-Mises

model in this instance does not follow the correlation function estimated using the expected PAS. This
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reveals the difference between the power-angular model (based on the expectation of power in angle) that

is developed in this work and other unscaled angle of arrival models, in evaluating spatial correlation.

High fidelity models such as the one developed herein, indicate that the performance of the average PAS

significantly deviates from the probabilistic PASR approach, which seems to be very well approximated

by known probability density functions such as the von-Mises, under appropriate parameter settings.

To accurately exploit the spatial correlation properties polarization should be included in the model.

As this contribution highly focuses on the derivations on a geometry-based stochastic model, it would be

difficult to also include a polarization assessement. A good treatment is provided in [21], and can trivially

be replicated for the power angular fields developed in this work.

Fig. 9 HERE

V. WORK SUMMARY

In this paper, a spatial channel model has been developed under which it is formally shown that

a Gaussian distribution of scatterers can justify both Gaussian, as well as, heavy-tailed (Lorentzian,

Laplacian) functional forms of the PAS, depending on the path-loss exponent. The presented spatial

channel model completes the initiatory work in [1], which has now been extended in order to account

for the average incoming power from each direction due to the presence of a Gaussian-scatter cluster in

space. The model was enhanced so to account for various path-loss exponents and therefore generalize

the proposed methodology. The average PAS was fully derived and as shown it attains a Gaussian shape

for the free space exponent, while the spectrum tends to Lorentzian as the exponent increases. Notably

the Laplacian function provided a very good fit to the derived spectrum, validating earlier measurement-

based findings in the literature that claim the observance of a Laplacian power angular spectrum due

to Gaussian scattering in the angular domain. Further, it was shown how the model can be extended to

account for multiple scatterer clusters, with the flexible property that the “weights” used to balance the

contribution of the various clusters to the observed PAS are directly derived from the reference geometry.

Finally, various contributions in terms of the spatial correlation experienced between adjacent antennas

were made, especially concerning the derivations of the coefficients for the derived power angular field. As

shown earlier, the average PAS statistics significantly differ from the instantaneous PASR in terms of the

experienced correlation. The derived PASR can always be well-approximated by other probabilistic models

such as the von-Mises model under appropriate parameter settings. To assist the reader and allow a fair
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comparison between the PASR and the von-Mises model, an exact relationship between the concentration

parameter of the von-Mises distribution and the model parameters was derived.

The model presented in this paper can prove extremely useful in improving accuracy of MIMO channel

performance parameter estimation, especially in those settings where co-existence of several spatially

separated MIMO links is considered. To this purpose, we believe a major avenue for future work is

complementing the proposed model with techniques aimed at estimating MIMO link channel capacity as

a function of the scatterer geometry. The above is a challenging task considering that the authors have

introduced a dependency between the transmitting and receiving power angular spectrums.

VI. APPENDIX: DERIVING THE VON-MISES CONCENTRATION CONSTANT

The von-Mises distribution is a well-known directional distribution suitable for the statistical description

of directional variables. It is obtained by conditioning the Normal distribution on the circle. As shown

in [1], the joint density function in polar co-ordinates after transformation of the corresponding Gaussian

density in Cartesian co-ordinates takes the following form:

fR,Φ(‖Ωr‖, ϕ) =
‖Ωr‖
2πσ2

e−(‖Ωr‖2+‖Ωo‖2)/2σ2

e‖Ωr‖‖Ωo‖ cos(ϕ−ϕo)/σ2

. (20)

It was also shown that the distribution of distances closely resembles the Rician distribution, whose

functional form depends on the ratio of ‖Ωo‖/σ. The distribution of distances may therefore be expressed

as follows [1]:

f(‖Ωr‖; ‖Ωo‖, σ) =

2π∫
0

f(‖Ωr‖, ϕ)dϕ

=
‖Ωr‖
2πσ2

e−(‖Ωr‖2+‖Ωo‖2)/2σ2

2π∫
0

e‖Ωr‖‖Ωo‖ cos(ϕ−ϕo)/2σ2

dϕ

=
‖Ωr‖
σ2

e−(‖Ωo‖2+‖Ωr‖2)/2σ2

I0

(
‖Ωo‖‖Ωr‖

σ2

)
, ‖Ωr‖ ≥ 0.

(21)

In accordance with the above and after some simple algebraic manipulations, the conditional angular

distribution takes the following form:

f (ϕ|‖Ωr‖) =
fR,Φ(‖Ωr‖, ϕ)

f(‖Ωr‖; ‖Ωo‖, σ)
= e‖Ωr‖‖Ωo‖ cos(ϕ−ϕo)/σ2

/2πI0

(
‖Ωo‖‖Ωr‖

σ2

)
. (22)

Formulae (22) is another form of the von-Mises distribution, with the ratio ‖Ωr‖‖Ωo‖/σ2 being equivalent

to the well-known concentration parameter κ. Conditioning the above to solely one distance (circumference

of circle), translates to κ = ‖Ωo‖2/σ2. Restricting the value of ‖Ωo‖ to lie on the unit circle results in the
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classic formulae that relates angular concentration and standard deviation, i.e. σ = 1/
√
κ. To counteract

the loss of the radial dimension, the parameter κ should be divided by ‖Ωo‖2 in order to capture the

effect of increased concentration due to changes in the mean directional vector.

VII. APPENDIX: FOURIER COEFFICIENTS

Any 2-D function f (%r, ϕk) defined on the whole space can be expanded with respect to the Normal

Fourier basis function, i.e. Ψ = e−inϕk . This signifies that a function is expandable in a series of cylindrical

functions, the so-called cylindrical harmonics, that need not necessarily be of unit length. In mathematical

terms this translates to:

f (%r, ϕk) =

∫ ∞
0

∞∑
n=−∞

δ (%r) e
−inϕk%rd%r. (23)

The coefficients of the Fourier transform become a function of %r and may be directly obtained from:

δ (%r) =

∫ ∞
0

∫ 2π

0

f (%r, ϕk) e
−inϕk%rd%rdϕk =

∫ ∞
0

f (%r) %rd%r︸ ︷︷ ︸
First-order moment of I-G Power Density

∫ 2π

0

f (ϕk) e
−inϕkdϕk︸ ︷︷ ︸

Characteristic Function of Angular Density

.

(24)

The coefficients are formed by the product of the expected power of the Inverse-Gamma distribution

and the characteristic function of the angular density function in (2). The first-order moment of an I-G

distributed random variable, Pr, is given by:

E[Pr] =
βα

Γ[α]
β1−αΓ[α− 1] =

β

α− 1
. (25)

The situation is more complicated for the integral involving the angular density function. To proceed,

(2) should be simplified in order to succeed in obtaining an analytical expression for the integral in

consideration. It was found that the von-Mises density provides a good approximation of the angular

density in (2), at least for ‖Ωo‖ ≥ 2σ. The degree of approximation in case the length of the mean

directional vector Ωo is greater than 2σ follows a similar reasoning as the one attributed to the symmetrical

and asymmetrical regions of the distance distribution, explained in [1]. However, the parameters of the

original density are lost by this approximation, and is left purely to the parameters of the von-Mises density

to characterize any changes in distance. The proof of this relationship was given earlier in Appendix VI.

Proceeding with the approximation and using (9.6.19) in [22], we have:

γn =

∫ 2π

0

f (ϕk) e
−inϕkdϕk = einϕo

In(κ)

I0(κ)
. (26)
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Thus, the coefficients take the following form:

δ = E[Pr]γn =
β

α− 1
einϕo

In(κ)

I0(κ)
. (27)
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Fig. 1: This figure presents the geometrical structure of a two-cluster channel topology.
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Fig. 2: This figure illustrates the effect of altering the angle at which the power distribution is conditioned
for a constant set of parameters Ωo, σ, ψo on the derived power conditional density function. Note that a
direct comparison between the expected conditional values of the two curves does not lead to intuitive
results since both should be scaled by the probability density in angle of arrival.
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Fig. 3: Estimated PAS in accordance with (9) for various path-loss exponents. To focus on the impact
that higher path-loss exponents exhibit on the power angular profile, i.e. PAS, the y-axis has been
logarithmically scaled [dB]. The derived PAS seems to follow a Gaussian distribution for the free-space
path loss exponent, while it more accurately approximates a heavily tailed function, e.g. Lorentzian, as the
exponent increases. To place an upper limit on the original power conditional distribution and thus obtain
the truncated conditional density, f(%e|ϕ) has been truncated at 10% of the length of the mean directional
vector. This places the boundary of the far-field zone at rmin = 1, corresponding to a frequency f in the
MHz range.
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(a) Model assessement for path-loss exponent n = 3.
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(b) Model assessement for path-loss exponent n = 5.

Fig. 4: This figure illustrates a comparison between the estimated normalized PAS for n = 3 and n = 5,
and the corresponding Lorentzian, Laplacian and Gaussian fits in linear scale. The x-axis is scaled in
radians. As shown, the Lorentzian function provides an excellent fit with an estimated scale parameter in
the order of 1.8. In fact the computed mean square error indicated that the Lorentzian function outperforms
all other candidate models for both n = 3, n = 4 and n = 5 types of exponents. Path-loss exponents in
the range of n = 3 are typical in urban micro type of cells, while path-loss exponents n > 3.7 typically
characterize urban macrocells [23]. Note that as the path-loss exponent increases the tails of the PAS
extend further.
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Fig. 5: The transmitting power angular scattering response is shown for the exemplary case of ‖Ωo‖ = 10,
σ = 3 and ψo = 180o. The response is plotted against power %e (dB-scale) and the azimuthal angle ψ.
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Fig. 6: Estimated multimodal PASR for two clusters located at ϕo = 90◦ and ϕo = 180◦ respectively.
The derived modeling approach captures the effect of increased distance due to the second cluster, i.e.
Ω
′
c = 16, and reflects it on the PASR by assigning a lower power weight on the second lobe at ϕo = 180◦.
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Fig. 7: A series of plane waves originated from a distant cluster, impinge on a circular array of radius R.
Two horizantally oriented dipoles are present in the array, on position r1 and r2 respectively. The plane
waves are characterized by the wavevector k, whose associated angle is ϑ, ϕ. Observe that in practical
implementations the dipole elements are vertically oriented. The array is mounted on a cylindrical platform.
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Fig. 8: Correlation estimates between antenna patterns for different impinging fields and various inter-
element spacings. These estimates were computed for various lengths of the mean directional vector. For
the multimodal two cluster case depicted also on the same figure the parameters are as detailed in Section
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Fig. 9: Correlation estimates between antenna patterns for estimated PAS and various inter-element
spacings reveals the resultant over-estimation of the von-Mises model. Two different cases are drawn:
‖Ωo‖ = 10 and ‖Ωo‖ = 5.
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TABLE I: Parameter estimates of the power density function for various lengths of the mean distance
vectors and σ = 3.

‖Ωo‖or‖Ωc‖ α β
1 1.2648 0.0632
2 1.2527 0.0545
3 1.3056 0.0418
4 1.3411 0.0386
5 1.5887 0.0359
6 1.8764 0.0339
7 2.2971 0.0334
8 2.6421 0.0316
9 3.0233 0.0302

10 3.7346 0.0311
12 4.6736 0.0287
14 5.9937 0.0279
16 7.7332 0.0281
20 11.814 0.0282
25 17.771 0.0276
30 25.381 0.0276
35 34.572 0.0277
40 45.075 0.0278
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TABLE II: List of Derived Distributions and Associated Approximations.

Derived Distributions Approximations Performed
f(ψ; ‖Ωo‖, σ) The derived angular distribution remains unchanged throughout the paper.

Nonetheless, the distribution can be approximated by a von-Mises distribution
in case ‖Ωo‖ ≥ 2σ.

f(‖Ωρ2,sc‖|ψ) The derived conditional distance density also remains unchanged in this work.
f(%e|ψ) This distribution expresses the conditional power density in each angle and is a

key function for the analysis presented herein. It is well approximated using the
Inverse-Gamma distribution.

f(%e, ψ) The joint distribution of power and angle defining the so-called power angular
scattering response.

f(%r|ϕ) The conditional distribution at the TX-BS is derived by using the appropriate
transformation function, resulting in the product of two Inverse-Gamma random
variables. The first random variable is due to f(%e|ψ) and the second arises directly
from the new set of distances between the TX-BS and the scatter cluster, which
has exactly the same distribution (detailed analysis in Section II-B). Therefore,
f(%r|ϕ) is a scaled version of f(%e|ψ).

f(%e) If the assumption of independence between the radial and the angular domain
is claimed, then as shown in [1], f(%e) may be well approximated using the
Inverse-Gamma distribution.

f(%r) Similarly, and by using the transformation function presented therein, the power
density at the receiver resulting from the product of two Inverse-Gamma random
variables can also be approximated by an Inverse Gamma distribution.


