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Abstract
In this paper, we revisit the wireless link scheduling prob-
lem under a graded version of the SINR interference
model. Unlike the traditional thresholded version of the
SINR model, the graded SINR model allows use of “im-
perfect links”, where communication is still possible, al-
though with degraded performance (in terms of data rate
or PRR). Throughput benefits when graded SINR model
is used instead of thresholded SINR model to schedule
transmissions have recently been shown in an experimen-
tal testbed. Here, we formally define the wireless link
scheduling problem under the graded SINR model, where
we impose an additional constraint on the minimum qual-
ity of the usable links, (expressed as an SNR threshold
βQ). Then, we present an approximation algorithm for
this problem, which is shown to be within a constant fac-
tor from optimal. We also present a more practical greedy
algorithm, whose performance bounds are not known, but
which is shown through simulation to have much better
average performance than the approximation algorithm.
Furthermore, we investigate, through both simulation and
implementation on an experimental testbed, the tradeoff
between the minimum link quality thresholdβQ and the
resulting network throughput.

1 Introduction
Ever since Gupta and Kumar’s classical result [10]

showing that the capacity of multi-hop wireless networks
does not scale linearly with the number of nodes, re-
searchers have studied a multitude of ways to increase
throughput in such networks. Many of the considered
approaches focus on increasing the concurrency of com-
munications in the wireless medium, by separating com-
munications either in frequency or in space. Concurrent
communications can be separated in frequency by using
multiple channels, with or without multiple radios. A va-
riety of techniques exist for improving spatial separation,
or spatial reuse, within the wireless channel. These tech-
niques apply different methods for reducing or eliminat-
ing interference. For example, directional antennas fo-
cus the signal in a certain direction, thereby preventing a
transmission from interfering with other communications
outside of the focused area. Transmission power control
can reduce the overall “inteference footprint” of a com-
munication. More recently, MIMO technology has been
considered, both as a means to improve throughput on in-
dividual links and for its ability to suppress interference,
thereby permitting increased spatial reuse.
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Another research focus has been TDMA approaches
for multi-hop wireless networks [14]. TDMA has been
considered for its ability both to improve throughput
and to provide fairness to flows of differing lengths,
which has been shown to be a significant problem in
CSMA/CA-based wireless multi-hop networks. TDMA
has been adopted for use in the IEEE 802.16 standard for
WiMax [1]. With use of TDMA, comes the opportunity
to develop scheduling algorithms that can carefully sepa-
rate communications in space, thereby maximizing con-
currency and presumably throughput, as well.

When considering the scheduling of transmissions in
a multi-hop wireless network, it is necessary to model in-
terference. Over time, the research in wireless schedul-
ing has considered more accurate interference models.
Early work used a simplek-hop interference model, while
later work employed more accuracte distance-based mod-
els. In the last few years, several papers [3, 4, 9] have
considered transmission scheduling under more accurate
physical interference models, which are based on signal
to interference and noise ratio (SINR) at the receiver.
However, all of this recent work has considered that
packets are successfully received only when SINR ex-
ceeds a given threshold, and assumes that packet recep-
tion rate (PRR) is zero below this threshold. In reality,
PRR falls off gradually with decreasing SINR. This phe-
nomenon has been well documented in the literature, and
the SINR region corresponding to imperfect (but consid-
erably greater than 0) reception rates is known astran-
sitional region, or gray region[15, 16, 23]. In this pa-
per, we formulate a graded physical interference model,
which accounts for this more accurate relationship be-
tween PRR and SINR, and we investigate the question of
whether scheduling algorithms can effectively use links
that operate below the SINR threshold in order to increase
spatial reuse and thereby improve throughput.

To the best of our knowledge, non-thresholded SINR-
based interference models have been seldom used in the
wireless scheduling literature, with a few notable excep-
tions [7, 8]. However, the emphasis in [7, 8] is on jointly
optimizing routing, scheduling, and transmit power in or-
der to minimize the total average transmit power, given
some constraints on the minimum data rate achieved on
each link. Furthermore, the approach of [7] is based on
convex programming, which has exponential time com-
plexity, while that of [8] is based on solving a complex
fixed point equation.

In addition to developing a graded SINR model of
packet reception, we consider the design of scheduling al-
gorithms that take advantage of this more accurate model.
We present a scheduling algorithm,GradedSINR, and we



prove that this algorithm is within a constant factor of
optimal in terms of the length of the schedules it pro-
duces. We then turn to evaluation of the graded SINR
model and associated scheduling algorithms in practical
settings. We present both simulation-based results and an
experimental evaluation carried out using a Mote-based
testbed. Simulation results demonstrate thatthroughput
increases of up to 50%are possible relative to thresh-
olded SINR models. The throughput increase achieved
is dependent upon node density, with more improvement
seen for sparse networks, where additional opportuni-
ties for spatial reuse can have more impact. However,
even in dense networks, throughput improvements of al-
most 20% were achieved. Results from the Mote-based
testbed confirm that use of lower-quality links can im-
prove throughput. In fact, even greater throughput in-
creases, up to 70% improvement over using only 100%
quality links, were seen in the testbed. This proof-of-
concept implementation also demonstrates the practical-
ity of our approach. Thus, we believe that graded SINR-
based scheduling algorithms hold great promise for dra-
matically improving performance of TDMA-based multi-
hop wireless networks.
2 The graded SINR model

The graded SINR model is motivated by the observa-
tion that, in a practical scenario, the packet reception rate
(PRR) vs. SINR is not sharply thresholded, but rather
presents a smooth transition between close to 0 and close
to 1 reception rate. The region in which packet reception
is not perfect is known as thetransitional region, or gray
region in the literature [15, 16, 23], and typically spans 5
to 10 dBs.

In graded SINR models, originally proposed in [15,
16], the PRR achievable on a certain link is a function of
the SINR value experienced at the receiver. The PRR vs.
SINR curve has the following properties in these mod-
els: i) the PRR is 0 when the SINR is below a certain
value, which we denoteβ0 in the following; ii) the PRR
is 1 when the SINR is above a certain value, which we
denoteβ1 in the following; iii ) the PRR is anincreasing
function of the SINR in the transitional region. We adopt
this model in this paper, with the further requirement
(needed for technical purposes) that limx→β+

0
f (x) = 0 and

limx→β−1
f (x) = 1, where f () is the function represent-

ing the PRR vs. SINR curve in the[β0,β1] interval. We
also assume in the following thatβ0 > 0, which is per-
fectly reasonable in a realistic scenario (note that SNR
and SINR are expressed as linear ratios, not indB). An
example of such a function whenf is a linear function
is shown in Figure 1. For clarity of presentation, in the
following we extend functionf () as follows: f (x) = 0 if
x≤ β0, and f (x) = 1 if x≥ β1.

In the following, we denote a communication link as
l i = (si , r i), wheresi is the sender andr i is the receiver
node. According to our model, the PRR experienced
on link l i , in the absence of interference,is given by
f (SNRi), whereSNRi is the signal-to-noise ratio at node
r i . Formally,SNRi = Pi

N , wherePi is the received power at
noder i of the signal transmitted by nodesi , andN is the

PRR (rate)

SINRβ1β0

1

βQ

minimum link
quality requirement

Figure 1. The graded SINR model. Therate is in-
tended as normalized w.r.t. maximal possible rate
Wmax.
background noise power.

In presence of multiple concurrent transmissions on
links l1, . . . , lk, the PRR on linkl i = (si , r i) is given
by f (SINRi), where SINRi is the signal-to-noise-and-
interference ratio measured atr i when all thesjs are trans-
mitting. Formally,

SINRi =
Pi

N+∑ j 6=i Pj
,

wherePj denotes the received power at noder i of the sig-
nal transmitted by nodesj , for eachj 6= i.

It is worth observing the similarities between the
graded SINR model and the generalized physical interfer-
ence model (see, e.g., [13]), according to which thedata
rate Wi observed on linkl i is given by Shannon’s channel
capacity formula, i.e.,

Wi = Blog2 (1+SINRi) , (1)

whereB is the channel bandwidth1. The graded SINR in-
terference model introduced above can be interpreted in
terms of data rate as follows. Assume the channel has a
maximal nominal data rateWmax. We can interpret the
PRR vs. SINR curve as a data rate vs. SINR curve.
The idea is that, when the SINR value is below the min-
imum thresholdβ1 required for successful transmission
of a packet at rateWmax, PHY layer parameters such as
coding (e.g., increasing bit redundancy in packet trans-
mission) and/or symbol sending rate are modified, so that
packets can be successfully received atr i . Hence, we can
view the situation as if packets are always correctly re-
ceived when transmitted on linkl i , but with the achieved
data rate depending on the experienced SINR value atr i .
Given this interpretation, the main difference between the
graded SINR model and the generalized physical interfer-
ence model is that actual data rate on linkl i is 0 under the
graded SINR model whenSINRi ≤ β0, while it is always
greater than 0 with a positive received signal power under
the generalized physical interference model.

Unless otherwise stated, in the following we will use
the data rate interpretation of the graded SINR model,
since it eases the derivation of clean approximation
bounds for the considered scheduling problem. In order
to keep the values off () in the [0,1] interval, we will in-
terpret functionf () as giving, for a certain SINR value,

1Note that the SINR in the formula forWi is expressed as a
linear ratio, notdBs.



the resulting data rate normalized with respect to the max-
imal nominal data rateWmax. Hence, the actual data rate
on link l i with SINR valueSINRi will be f (SINRi) ·Wmax.
To simplify notation and when clear from the context, in
the following we will sometimes overload thef (SINRi)
notation to denote the data rate on linkl i . Since the data
rate interpretation of the graded SINR model assumes ac-
curate control of PHY layer parameters is possible, which
is not always the case in practical scenarios, in the experi-
mental setup reported in Section 5 we have used the origi-
nal, PRR-based interpretation of the graded SINR model.

3 Scheduling Algorithm
3.1 Problem Formulation

The problem we consider is often referred to as the
wireless link scheduling problemin the literature, al-
though we are introducing here an extension to deal
with the case of imperfect link transmissions (or, equiv-
alently, flexible data rates). We are given a set of links
L = {l1, . . . , ln} to schedule, withl i = (si , r i). Note that
the sis andr is are not necessarily distinct, i.e., a single
node can be involved in multiple communication as ei-
ther transmitter, or receiver, or both.

A link l i is assigned a weightdi , which represents the
current traffic demand on linkl i . To simplify presentation,
in the following we assume unit link demands (i.e.,di = 1
for i = 1, . . . ,n). However, the presented results can easily
be extended to the case of arbitrary integer demands by
replacing each linkl i with di copies of the same link.

Links experience different SNRs at the receiver end;
i.e., when only transmittersi is transmitting, noder i will
experience a certain SNR valueSNRi , which is in gen-
eral different for different receivers. However, in the fol-
lowing we assume theSNRi ≥ βQ for eachi, for some
constant valueβQ ≥ β0. Given our model, this is equiva-
lent to assuming that data rate (or, equivalently, PRR) on
each link is at leastk, for some constantk > 0 (see Fig-
ure 1). The SNR lower boundβQ on the links to sched-
ule is introduced to reflect the fact that, in practical situa-
tions, only relatively high quality links (i.e., with accept-
able data rate, or with a PRR considerably above 0) are
used to transmit packets.

The problem we consider is to schedule links in setL
in such a way that:i) the demands on each link are satis-
fied, andii) the length of the schedule is minimum. Note
that, with respect to classical scheduling problems with
non-graded interference models (e.g., with the physical
interference model [3, 9]),we do not impose any feasi-
bility constraint on the schedule. This is because under
the graded SINR model every transmission set is feasi-
ble. What changes is the data rate (equivalently, PRR)
experienced on each link, which is dictated by the graded
SINR model, and can actually be 0 on some of the links.
Feasibility of the schedule is, in a sense, captured by con-
dition i), which states that demands on each link must be
satisfied. This implies that, if we define a unit of time as
the time needed to send a unit of demand (packet) from
transmitter to the intended receiver at rateWmax

2, the total

2Note that this time in practice depends also on the trans-

time allocated for transmission on linkl i in the schedule
must be sufficient to send the packet to destination at the
achieved data rate. To be specific, if linkl i is scheduled
for time intervalst1, . . . , th, and the experienced SINR val-
ues atr i during these intervals areSINRi,1, . . . ,SINRi,h,
we must have∑ j=1,h f (SINRi, j) ·Wmax· t j ≥ S, whereS is
the packet size in bits.

The computational complexity of the link schedul-
ing problem has been studied under different interfer-
ence models, and has been proven to be NP-hard in many
cases, e.g. the physical interference model [9] and most
hop-based interference models [21]. While similarities
of the graded SINR model with the physical interference
model suggest that the problem might remain NP-hard
also in the graded SINR model, a formal proof of this fact
is beyond the scope of this paper and, to the best of our
knowledge, the problem remains open.

In the following, we present an algorithm for this prob-
lem and prove a worst-case bound on its performance
with respect to performance of an optimal scheduling al-
gorithm. In order to prove the approximation bound, we
adopt the classical model for radio signal propagation in
wireless networks, which is referred to as thelog-distance
path loss model. In this model, the radio signal strength
(power) at a distanced from the transmitter is given by
P/dα, whereP is the transmission power andα > 2 is the
path loss coefficient [19] (the actual value of the constant
α depends on the environment – e.g., indoor or outdoor).
Our results should be easily extensible to more general
radio propagation models that account for irregular radio
coverage area, such as the cost-based model proposed in
[20], which approximates log-normal shadowing propa-
gation. In the following, we assume all nodes use the
same transmit power, an arbitrary constantP.
3.2 Algorithm GradedSINR

Algorithm GradedSINR, which is reported in Figure
2, is based on the simple idea of grouping links with sim-
ilar SNR values in the same class, and scheduling them
in consecutive slots. Link classes are defined as follows:
link classCk, with k = 1, . . . , k̄, contain linksl js such that

(1+ ε)k−1βQ ≤ SNRj < (1+ ε)kβQ , (2)

where ε is an arbitrary constant≥ 1/7 and k̄ =
blog1+ε(P/βQN)c+ 1. Note that: i) all links belong to
one of theCks, since the minimum SNR value of links is
βQ, and the maximum SNR value isP/N;3 ii) the number
k̄ of link classes is aconstant, i.e., it does not depend on
the numbern of links to schedule.

Note that, under our working assumption of log-
distance radio propagation with path loss exponentα > 2,
links in thek-th SNR class have length

Dk+1 =
(

P
(1+ ε)kβQN

) 1
α

< Lk≤
(

P
(1+ ε)k−1βQN

) 1
α

= Dk .

mitter/receiver separation. Hence, time unit can be interpreted
as themaximumover setL of the time needed to send a packet
from transmitter to receiver.

3By fundamental laws of physics, the received signal power
can be at most as large as the transmitted power.



Algorithm GradedSINR:

Input: A setL of n links with unit demand
Output: A scheduleS1, . . . , S̄t under graded SINR model

1. t = 1
2. LetC = {C1, . . . ,Cblog1+ε(P/βN)c=k̄} be link classes defined as in (2)
3. for eachCk 6= /0, with 1≤ k≤ k̄
4. Partition network deployment region into squares

of width µk ·Dk+1
5. 4-color the squares such that no two adjacent squares

have the same color
6. for j = 1, . . . ,4
7. Select colorj
8. repeat
9. For each squareA of color j, choose a linkl i ∈Ck

with receiver inA; Lk
j = Lk

j ∪{l i}
10. t = t +1; St = Lk

j

11. set duration of slotSt to 1/ f ((1+ ε)k−2βQ)
12. until all links of Ck in selected squares are scheduled
13.return S1, . . . , S̄t

Figure 2. TheGradedSINRAlgorithm.
When considering links in class 1≤ k≤ k̄, the deploy-

ment region is divided into square cells of sideµkDk+1,
where constantµk is defined as follows:

µ= 2

(
64(1+ ε)k−1βQ(α−1)

α−2

) 1
α

.

Cells in the same class are then 4-colored in such a
way that no two adjacent cells have the same color. Then,
at Steps 6–12 links are greedily scheduled in successive
slots, with the property that only links with the same color
whose receivers are in different cells are assigned to the
same slot.

At Step 11, the duration of slots whose links are in
classk is set to 1/ f ((1+ ε)k−2βQ), which, as shown in
the following, is sufficient to send a unit of demand along
the scheduled links. In fact, cell dimensioning is such
that, under the hypothesis fulfilled byGradedSINRthat
no two links with receivers in the same cell of colorj are
scheduled concurrently, the minimum SINR value at each
scheduled receiver is at least(1+ ε)k−2βQ.

We now formally prove that the schedule computed by
GradedSINRsatisfies the traffic demands of all links in
L.
THEOREM 1. Assume that17 ≤ ε ≤ 63 and βQ ≥ 1.
Then, the schedule computed by Algorithm GradedSINR
satisfies the traffic demands of all links in L.
PROOF. Let us consider a slot containing links in class
Ck, for some 1≤ k ≤ k̄. We now upper bound the in-
terference experienced by a receiverr in a certain cell
C in the partitioning obtained for classCk. Once we
focus on a receiverr i in specific cellC , the cells con-
taining receivers of the interfering links can be arranged
in circumcentric square frames aroundC . The inner
frame contains 32−12 = 8 cells, the second frame con-
tains 52− 32 = 16 cells, and in general theh-th frame
will contain (2h + 1)2 − (2h− 1)2 = 8 · h cells. The
generic receiver contained in theh-th frame will be at
least(2h− 1)µkDk+1 apart fromr i . Considering that in
classk all links have a length smaller thatDk, the mini-
mum distance betweenr i and asenderrelative to frameh
is (2h−1)µkDk+1−Dk =(2h−1)µkDk/(1+ε)1/α−Dk =

Dk((2h−1)µk(1+ ε)−1/α−1). Hence, the total interfer-
enceIr experienced byr i can be upper bounded by

Ir <
∞

∑
h=1

8h·P
Dα

k · ((2h−1)µk(1+ ε)−1/α−1)α (3)

≤ 8P
Dα

k

∞

∑
h=1

h

(1
2(2h−1)µk(1+ ε)−1/α)α

(4)

=
8(1+ ε)P

(1/2)αµα
k Dα

k

∞

∑
h=1

h
(2h−1)α (5)

≤ 8(1+ ε)P
(1/2)αµα

k Dα
k

∞

∑
h=1

h
(2h−h)α (6)

=
8(1+ ε)P

(1/2)αµα
k Dα

k

∞

∑
h=1

1
hα−1 (7)

≤ 8(1+ ε)P
(1/2)αµα

k Dα
k
· α−1

α−2
(8)

where (4) follows becausex−1 > x/2 for x > 2 and in-
deed(2h−1)µk(1+ε)−1/α is greater than 2 under the the-
orem assumptions, and (8) follows from a known bound
on Riemann’s zeta function.
The SINR for the receiverr i can thus be bounded by

SINRi ≥
P

Dα
k

Ir +N
≥

P
Dα

k

8(1+ε)P
(1/2)αµα

k Dα
k
· α−1

α−2 +N
=

=
P

Dα
k

P
8(1+ε)k−2βQDα

k
+N

=
(1+ ε)k−1βQN
(1+ε)k−1βQN
8(1+ε)k−2βQ

+N
=

=
(1+ ε)k−1βQ

(1+ε)
8 +1

=
8· (1+ ε)
(1+ ε)+8

· (1+ ε)k−2βQ ≥

≥ (1+ ε)k−2βQ , (9)

where (9) follows sinceε ≥ 1
7.

Since linkl i in classCk, for some 1≤ k≤ k̄, is sched-
uled in a slot of duration 1/ f ((1 + ε)k−2βQ), and the
(normalized w.r.t. Wmax) data rate on linkl i is at least
f ((1+ ε)k−2βQ) (recall thatf () is an increasing function
of SINR), we have that at least one unit of demand can be
transmitted on linkl i in the scheduled slot, and the theo-
rem follows.
DEFINITION 1. Given a set L of links to schedule, the
SNR densityfor link class Ck, with 1≤ k≤ k̄, is the max-
imal number of receivers in a cell of class Ck, and is de-
noted∆k.
DEFINITION 2. Given a set L of links to schedule, the
normalized SNR densityfor L, denotedΨ(L), is defined
as

Ψ(L) = max1≤k≤k̄

{
∆k

f ((1+ ε)k−2βQ)

}
.

We now prove an upper bound on the length of the
schedule computed by AlgorithmGradedSINR.
THEOREM 2. The schedule computed by Algorithm
GradedSINR has O(Ψ(L)) length.



PROOF. Links in classCk, for 1≤ k≤ k̄, whose receivers
are in a cell of color, say,j, are scheduled in parallel
if they are in different cells; hence, the number of slots
needed to accommodate all links in classCk is the num-
ber of colors (four) times the number of receivers in the
maximally occupied cell, i.e.,∆k. Since slot duration for
links in classk is 1/ f ((1+ε)k−2βQ), total schedule length

is upper bounded by∑k̄
k=14· ∆k

f ((1+ε)k−2βQ) ≤ 4· k̄ ·Ψ(L) ∈
O(Ψ(L)) sincek̄ is a constant.

We are now ready to prove the approximation bound
for Algorithm GradedSINR.
THEOREM 3. Algorithm GradedSINR computes a
schedule whose length is within a factor O(1) from
optimal.
PROOF. Let us consider a link classCk̃ for which the
normalized SNR densityΨ(L) is achieved, and letLk̃ =
l1, . . . , l∆k̃

be links in classCk̃ whose receivers are in a
maximally occupied cell. Call this cell thecritical cell.
We lower bound the time needed to schedule links inLk̃
only. Clearly, since the optimal schedule must accom-
modate a possibly larger set of links, the computed lower
bound applies also to the optimal schedule for link setL.
We start by proving an upper bound on the number of fea-
sible transmissions with receivers belonging to the criti-
cal cell, under the assumption that the feasible rate on the
links is at leastf (β), for some 0< β0 < β < (1+ ε)k̃βQ.
Note thatβ must be greater thanβ0 in order to have a non-
zero data rate on the link, and that the maximum data rate
of links in classCk̃ is < (1+ ε)k̃βQ. In particular, we
prove that no more than

qk̃,β = ((1+ ε)1/α +
√

2µk̃)
α · (1+ ε)k̃βQ−β

β(1+ ε)k̃βQ

such transmissions can occur in parallel. The value ofqk̃,β
is obtained by solving the following inequality

P
(Dk̃+1)α

N+x · P
(
√

2µk̃Dk̃+1+Dk̃)
α

=
(1+ ε)k̃βQN

N+x · (1+ε)k̃βQN

(
√

2µk̃+(1+ε)1/α)α

< β

(10)
which, after straightforward algebraic manipulation,
leads to

x < ((1+ ε)1/α +
√

2µk̃)
α · (1+ ε)k̃βQ−β

β(1+ ε)k̃βQ

from which the above value ofqk̃,β is obtained. Inequality
(10) comes from assuming the largest possible received
power at the numerator, and the minimum possible con-
tribution to interference from links whose receiver end is
in the critical cell.
Let us consider the schedule computed by the optimal
algorithm, and letx > 0 be the minimum data rate of a
link in the optimal solution. Definēβ as the SINR value
corresponding to data ratex according to functionf (),
i.e., f (β̄) = x. Given the previous result, we have that at
mostqk̃,β̄ links, each with rate≥ x, can be scheduled in
parallel. The data rate on each of these links is at most

0 time

l 1

l 2

l 3

l 4

S1 S2 S3 S4 S5 S6 S7 S8 S9

Figure 3. Example of possible link schedule under the
graded SINR model. The data rate on, e.g., linkl1
is different in slot S1,S2,S3,S4,S6,S7,S8 in which it is
activated.
f ((1+ ε)k̃βQ), since all the links in the critical cell be-
longs to classCk̃. Since valuesqk̃,β are adecreasingfunc-
tion of β, we have that the maximum demand that can
be satisfied in a unit of time in the optimal schedule is
qk̃,β̄ · f ((1+ ε)k̃βQ). Since the total demand of links in
the critical cell is∆k̃, we have that the length of the opti-
mal schedule is at least

∆k̃

qk̃,β̄ · f ((1+ ε)k̃βQ)
.

We now have that the ratio between the schedule
length of the optimal solution and that of the schedule
computed byGradedSINRis

O

(
Ψ(L) ·qk̃,β̄ · f ((1+ ε)k̃βQ)

∆k̃

)
=

= O

(
∆k̃

∆k̃
·
qk̃,β̄ · f ((1+ ε)k̃βQ)

f ((1+ ε)k−2βQ)

)
= O(1)

since functionf (x) has values in the interval(0,1] when
x > β0, and(1+ ε)k−2βQ > β0. This concludes the proof
of the theorem.

Note the importance of the result stated in Theorem
3: under the graded SINR model, different transmission
sets can be active at different times, possibly using flex-
ible slots of very different time duration (see Figure 3).
Hence, finding the optimal schedule in such a large set of
possible solutions appears to be a very difficult task (al-
though not yet formally proved to be NP-hard). Theorem
3 states that by imposing a strict structure on the schedule
(all links of the same SNR class are scheduled in con-
tiguous slots of fixed duration), we can still obtain a solu-
tion which is close to optimal (in asymptotic sense). This
is especially important since, while general schedules al-
lowed under the graded SINR model as the one depicted
in Figure 3 can be difficult to realize in a practical setting
(due to, e.g., required PHY layer parameter tuning while
a packet is in the air), the well structured schedule com-
puted byGradedSINRcan be implemented more easily
in a practical setting.

4 Simulation-based evaluation
In this section we extensively evaluate the perfor-

mance of scheduling algorithms based on the graded
SINR model through simulation. The main goals of the
evaluation are: (1) to identify the throughput maximizing



configuration of the link quality thresholdβQ under dif-
ferent node density and topology/radio propagation sce-
narios, and (2) to quantify the potential throughput ad-
vantages of using the graded SINR model compared to a
strict threshold-based SINR model. In view of (1), the in-
teraction between scheduling and routing has to be con-
sidered: in fact, as the link quality threshold is varied,
different sets of links are made available to the routing
protocol and possibly used to route messages to the des-
tinations. Hence, what specific routing protocol is used is
an important choice that eventually determines the traffic
load experienced on the available links.

In general, maximum throughput can be obtained only
by jointly optimizing routing and scheduling, possibly
exploiting multi-path routes (see, e.g., [2, 6]). How-
ever, joint routing and scheduling optimization under the
graded SINR model is an open problem that is beyond the
scope of this paper. Here, we are concerned with optimiz-
ing the scheduling step after a certain routing algorithm
has been executed, and link demands generated. Hence,
in our simulations, we will consider a simple (yet signif-
icant) routing algorithm coupled with a traffic generation
method tailored to a wireless mesh network scenario, and
use these two components to generate the link traffic de-
mands given as input to the various scheduling algorithms
considered.

4.1 Simulation setup
The simulation setup is tailored to a wireless mesh net-

work scenario. A set ofn nodes is deployed in a square re-
gion of sideL. Two deployment methods are considered:
grid-like, and uniform random. After node deployment,
then×n link matrix M is generated, where entrymi, j of
the matrix represents the channel gain between transmit-
ter nodei and receiver nodej. Channel gains are com-
puted based on node positions, and on the radio propaga-
tion model. Radio signal propagation obeys log-normal
shadowing, with path loss exponentα, for someα > 2,
and varianceσ.4 After the channel matrix is generated,
a fixed fraction of the nodes (0.1) is selected as gateway
nodes, according to a uniform random distribution. For
each non-gateway node, a traffic demand is generated by
randomly and uniformly choosing an integer in the inter-
val [1,5]. The generated traffic is directed to gateways, ac-
cording to the following routing scheme. First, anavail-
able link matrix AMis obtained fromM by retaining en-
triesmi, j such that the SNR value at the receiver nodej is
at leastβQ, whereβQ is the desired link quality threshold.
The other entries in matrixAM are set to 0, in order to pre-
vent the routing algorithm from using the corresponding
links. Using matrixAM, the routing algorithm then builds
shortest path trees rooted at the gateway nodes to set up
the routing paths. In case of ties, the gateway to which a
specific node sends its traffic is selected uniformly at ran-
dom. The link demands, which constitute the input to the
scheduling algorithms, are then computed based on the
node traffic demands and the chosen shortest path trees.

4We have repeated the simulations with log-distance path
loss propagation, obtaining similar results.

The metric used to build the shortest path trees is hop-
count. Although very simple, this metric is used by most
of the current routing algorithms for wireless multi-hop
networks (e.g., DSR [12] and AODV [18]). Furthermore,
when coupled with a link quality criterion, using minimal
hop routes tends to reduce the total demand on the links,
while only marginally sacrificing link throughput (if the
link quality threshold is relatively high). For this reason,
we believe shortest path routing based on hop-count is a
reasonable heuristic to achieve a relatively high network
throughput.

When using the graded SINR model, functionf () dic-
tating the SINR (indB) vs. link data rate relationship is
defined as follows:f (x) = 0 if x≤ β0 = 10dB, f (x) = 1 if
x≥ β1 = 25dB, and f () linearly varies between these two
values forβ0 ≤ x≤ β1. This setting is coherent with the
SINR vs. PRR measurements for WLAN environments
reported in [16], as well as with Shannon’s capacity for-
mula for intermediate SINR values5. We recall that the
data rates returned by functionf () are normalized with
respect to the maximum nominal bit rate of the link, set
to 55Mbs in our experiments.
4.2 Simulated scheduling algorithms

In addition to AlgorithmGradedSINR, we have also
implemented AlgorithmI-GradedSINR, which is an op-
timized version ofGradedSINR, as well as a greedy al-
gorithm calledGreedyGraded. We do not give details of
GradedSINRdue to length limitations.GreedyGradedis
inspired by the algorithm used in [16] to evaluate through-
put in the WLAN experimental testbed. More specifi-
cally, GreedyGradedorders links randomly, and consid-
ers them sequentially. When a specific linkl has to be
scheduled, the currently formed slots are scanned, and,
for each of them, the duration of the slot if linkl were
to be added is computed. Similarly toI-GradedSINR, the
duration of a slot is set to the minimum value needed to
transmit a packet along all active links and, hence, is de-
termined by the SINR value of the weakest active link.
Note then that the duration of the slot ifl were to be
added is in general longer than that of the original slot,
since addingl to the slot would degrade SINR values
(and, consequently, data rates) at the receiver nodes. Let
S(l) be the currently formed slot such that addingl to the
slot increases slot duration of the minimal amount of time
T(l). The value ofT(l) is compared with 1/ f (SNR(l)),
i.e., the duration of a slot in which only linkl is active.
If T(l) < 1/ f (SNR(l)), then link l is added to slotS(l),
otherwise a new slot is formed at the end of the schedule
with only link l active. This process is repeated until all
links have been scheduled.

In order to understand the relative benefits of the
graded SINR model vs. the commonly used, thresh-
olded version of the model, we have also implemented
the GreedyPhysicalalgorithm of [3], which is a simple
greedy algorithm that schedules a link in the first available
slot(s), subject to the condition that the resulting transmis-

5We recall that a logarithmic SINR vs. data rate relationship
in the linear scale as in equation (1) is equivalent to a linear
relationship indBscale.
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Figure 4. Schedule length improvement for increasing link quality threshold in the dense (left) and sparse (right)
grid-like deployment scenario.
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Figure 5. Schedule length improvement for increasing link quality threshold in the dense (left) and sparse (right)
random deployment scenario.
sion set is feasible under the thresholded SINR model.
We recall that relative benefits of graded vs. thresh-
olded SINR model have been recently quantified in about
30% throughput improvements in an experimental testbed
[15], although these improvements refer to a different but
related scheduling problem (single slot scheduling, also
referred to as one-shot scheduling).

4.3 Simulation results
In a first set of simulations, we distributedn = 100

nodes in a grid-like fashion. Two grid steps are consid-
ered, to mimic relatively dense and relatively sparse net-
work deployments. Considering that PHY layer parame-
ters are set as follows: path loss exponentα = 3, trans-
mit power 100mW(20dBm), and noise power−90dBm,
we have a resulting nominal transmission range (in ab-
sence of shadowing and interference) of about 680m to
obtain the maximum data rate of 55Mbs (which, we re-
call, requires a SINR≥ 25dB). Hence, we set the grid
step in the dense deployment to 150m, and to 500m in the
sparse deployment. In both cases, internode separation is
randomly perturbed by up to 10% to avoid artificial dis-
cretization effects. The shadowing parameterσ is set to
4dB.

In both deployments, 10 nodes are randomly chosen
as gateways, and node traffic, routing, and link demands
generation is performed as described in the previous sec-
tions. The schedule lengths computed byGradedSINR,
I-GradedSINR, andGreedyGradedfor a given link qual-
ity thresholdβQ are returned as the simulation result6.
The simulator returns also the schedule computed by
GreedyPhysical, which is based on the thresholded SINR

6Parameterε in algorithmsGradedSINRandI-GradedSINR
is set to 1/2.

model, and hence invariant to changes in the link quality
thresholdβQ. We have generated 1000 different deploy-
ments for both the dense and the sparse scenarios, and
considered link quality thresholds corresponding to link
data rates ranging from 50% to 100% of the maximum
nominal rate. Simulation results are shown in Figure 4.

We have also considered a random node deployment
scenario, in which nodes are distributed uniformly at ran-
dom in a certain square region. Similarly to the case of
grid-like deployment, we have set the side of the deploy-
ment area to relatively small (1350m) and relatively large
(4500m) values, to mimic relatively dense and relatively
sparse deployments. In case of sparse deployments, we
check that each non-gateway node has a path composed
of only 100% quality links to at least one gateway node,
so that demands can be fully satisfied under the thresh-
olded SINR model. Any deployments not meeting this
criterion are discarded. The results of this second set of
simulations, also averaged over 1000 experiments, are re-
ported in Figure 5.

The plots reported in Figures 4 and 5 report the
average throughput length improvement of the various
scheduling algorithms, which is normalized with respect
to the schedule length of the sequential schedule when
only 100% quality links are used. As seen from the fig-
ures, the trends for the grid-like and random scenarios
are similar. In all cases,GreedyGradedwas by far the
best scheduling algorithm, achieving as high as a near
three-fold throughput improvement with respect to the
sequential schedule7. The other scheduling algorithms
for the graded model, for which, we recall, we have

7In the rest of this section, throughput improvements are al-
ways considered to be with respect to the sequential schedule
using only 100% quality links.
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Figure 6. Total link traffic demand in the grid-like (left) and random (right) deployment scenario.
provable performance guarantees with respect to optimal,
achieve only marginal throughput improvements (below
1.4), withI-GradedSINRconsistently performing slightly
better thanGradedSINR. Note that, due to the large size
of the cell partitioning used inGradedSINR, the sched-
ule computed by this algorithm always coincided with
the sequential schedule; i.e., due to the very conserva-
tive choice of the cell size driven by worst-case consid-
erations,GradedSINRwas unable to achieve any spatial
reuse. This lack of spatial reuse, coupled with possible
usage of lower quality links (hence, longer slots) when
the lower bound on link quality is below 100%, and with
the fact that the total demand does not depend on the link
quality threshold in dense deployments (see Figure 6), ex-
plains the relative throughputdegradationwith respect to
the sequential schedule with 100% quality links experi-
enced byGradedSINRin dense deployments when using
weak links is allowed.

When comparing the dense and sparse scenarios, we
observe higher throughput improvements in the sparse
scenario: close to three-fold improvements are achieved
in the sparse deployments, compared to no more than 1.5-
fold improvements in the dense setting. This difference is
due to the additional opportunities for spatial reuse in a
larger, i.e. sparser, network deployment.

Concerning the impact of link quality threshold on
schedule length, we observe a clear effect of node den-
sity for the more aggressive scheduling algorithm, namely
GreedyGraded: when the network is dense, the sched-
ule length tends to increase as the lower bound on link
quality decreases, implying that allowing use of relatively
weak links is detrimental for network throughput. To
the contrary, in sparse network deployments, using rel-
atively weak links can improve throughput: about 10%
(5%) further improvements are observed when the link
quality threshold is reduced from 100% to 80% (85%)
in the grid-like (random) case. In both cases, further re-
ducing the link quality threshold has negative effects on
throughput.

The radically different behavior in case of dense or
sparse networks can be explained by the data reported in
Figure 6, which shows the total traffic demand as a func-
tion of the link quality threshold. In case of dense de-
ployments, the total demand does not depend on the link
quality threshold, indicating that, even for the most strin-
gent link quality requirement, relatively short paths to the
gateways are available. The throughput degradation that
is observed in case of lower link quality thresholds is due

to the fact that the routing algorithm is oblivious to link
quality when building the shortest path tree; hence, if rel-
atively weak links are included in the tree, the average slot
duration is increased (lower link rates) which, coupled
with the unchanged total demand, results in an overall
throughput degradation. On the other hand, in sparse net-
work deployments total traffic demand considerably in-
creases as the link quality threshold increases, indicating
the short paths to the gateways can be found only if rela-
tively weak links are used. Although usage of weak links
tends to increase average slot duration, the lower total de-
mand compensates this increase with a reduction in the
total number of slots, resulting in an overall throughput
increase. However, if very weak links (≤ 75%) are used,
the reduction in total traffic demand is no longer sufficient
to compensate for the increased average slot duration, re-
sulting in an overall throughout degradation.

Finally, we comment on the relative throughput bene-
fits of using the graded vs. thresholded SINR interference
model: with similar greedy approaches to schedule links,
we observe a throughput improvement ofGreedyGraded
over GreedyPhysicalof about 18% for dense deploy-
ments, and about 50% for sparse deployments. This is
true, even though we are using a routing algorithm that
is oblivious to link quality (except in a relatively crude
way, through use of the link quality threshold). Hence,
we expect even larger throughput improvements can be
attained when using a link-quality-aware routing algo-
rithm. Study of this aspect is left for future work. Nev-
ertheless, throughput improvements of up to 50%, even
with the simple routing algorithm used herein, show that
very substantial benefits can be achieved through use of
the graded SINR model.

5 Experimental evaluation
The main purpose of the experimental evaluation is

to study how the choice of link quality threshold affects
throughput in a real network. We use TelosB motes [17]
that are equipped with CC2420 radio [5]. The radio is
compliant with the IEEE 802.15.4 [11] PHY layer stan-
dard in the 2.4 GHz ISM band and operates at a fixed
nominal bit rate of 250 Kbits/s. We have implemented
a simple TDMA protocol in TinyOS-2.0 [22] in which
motes transmit at designated time instants without per-
forming carrier sensing or backoff as in the default MAC
implementation in TinyOS.

The data rate is fixed due to the choice of hardware.
For simplicity, we also fix the transmission power to



−32.5 dBm uniformly on all nodes. Hence, in this sec-
tion we use the PRR interpretation of the graded SINR
interference model. Furthermore, we focus our attention
on the simpler and more practical (as well as best per-
forming on the average) greedy approach for transmission
scheduling.

The setup of the experimental testbed is similar to
the one used in simulations. More specifically, we de-
ploy n = 20 nodes, placed randomly on a 10 foot by 3
foot tabletop in an office environment. Through exten-
sive measurements we derive the input parameters to the
“routing/scheduling” module, which are the following: 1)
the n×n channel gain matrixCG, reporting the channel
gain between each possible node pair; 2) then×1 noise
vector NV, reporting the noise level at each node; and
3) the PRR vs. SINR functionf (). The measurement
methodology used to collect 1)–3) is similar to the one
used in [15]. The PRR vs SINR function we obtained is
similar to the one presented in [15]. The function has a
graded region from -3 to +5 dB. Beyond a SINR of 5 dB,
links always have PRR close to 100%.

The input parameters are fed to a centralized node (a
PC) which runs the “routing/scheduling” module as fol-
lows. Similarly to the simulation-based evaluation, two
of the nodes are randomly selected as gateways. Non-
gateway nodes are assigned an integer demand chosen at
random in the interval[1,5]. Then, given the link quality
thresholdSNRQ and matrixCG, the set of available links
is determined, and shortest path trees routed at the gate-
way nodes are built. Given node demands and the set of
routes, link demands are computed, which are fed to the
scheduling algorithm.

Given the PRR interpretation of the graded SINR in-
terference model, a re-design of the link scheduling al-
gorithm is needed. In particular, variable slot duration
is no longer needed, since link data rate is fixed and
the same for all links. However, a packet scheduled for
transmission along linkl in slot S under the PRR in-
terpretation is received only with probabilitypl ,S, with
0≤ pl ,S = PRRl ,S≤ 1, wherePRRl ,S is the PRR on linkl
in slot S. Packet transmissions in a specific slot can then
be interpreted as Bernoulli trials with a certain, fixed suc-
cess probability8. If the schedule is repeatedN times, by
the LLN we have that the expected number of successful
transmissions along linkl in slotSconverges toN · pl ,S as
N grows larger. Hence, the expected long-term effective
data rate on linkl in slot S is pl ,S. Based on this obser-
vation, the greedy scheduling algorithm described below
considers that an amount of demand equal topl ,S is satis-
fied when linkl is scheduled for transmission in slotS.

The scheduling algorithm is as follows. The approach
is again greedy: links are initially ordered, and are pro-
cessed sequentially. The algorithm keeps extracting ele-
ments from the list of links to be scheduled, till the de-
mand on all links is satisfied. The main difference with
GreedyGradedis that a single link might be considered
repeatedly when building the schedule (see below).

8This holds true only under the assumption that the radio
environment is relatively stable.

Figure 7. Normalized aggregate throughput at the
gateway nodes as a function of the link quality thresh-
old.

When link l is considered, the algorithm sequentially
scans all currently built slots. For each slotS, the algo-
rithm first checks whether addingl to the slot would keep
it “feasible” (this is a soft notion of feasibility, described
below); if the slot remain “feasible”, the algorithm com-
putes a “fitness” measure, namely the difference between
the increase in expected throughput due to adding the new
link, and the throughput decreases on the already sched-
uled links. The throughput of a slotSis the sum of allpl ,S
values on the scheduled links. If the “fitness” of the slot
is positive (i.e., we have a throughput increase by adding
l to the slot), then the slot is a candidate slot for linkl .
After scanning all currently available slots, the algorithm
addsl to the slotS with best positive fitnessf it (S). If
f it (S) < 0, a new slot is created at the end of the sched-
ule, and linkl only is put in the new slot.

Once link l has been included in a slot, link demands
are updated as follows.
Case1. Link l is added to an existing slotS: the demand
of l is decreased ofpl ,S; furthermore, the demands of all
links in S\ {L} is increasedof (pl ,S\{L}− pl ,S). This is
to possibly account for PRR degradation of links inS\
{L} due to addingl to the slot. Note that if the demand
on some of these links were 0 (link already successfully
scheduled), a new instance of the link with the remaining
demand has to be included again in the list of links to be
scheduled.
Case2. Link l is added to a new slotS′: the demand ofl is
decreased ofpl ,S′ = PRR(l), since only linkl is scheduled
in S′.

The soft notion of “feasibility” used in the algorithm
is an optimization aimed at ensuring that the demand on
a link is decreased of a significant amount when sched-
uled in a slot. In particular, we define a set of trans-
missionsl1, . . . , lk to befeasibleif pl i ,{l1,...,lk} ≥ PRRq for
eachi, wherePRRq < PRRQ is a PRR quality threshold
(e.g., 0.5). Note that this threshold is different (and lower)
than the quality threshold used to define which links are
“good” and usable by a routing algorithm. In fact, the lat-
ter threshold refers to the link quality based on the SNR,
while the formed on the link quality based on the (lower)
SINR value when all scheduled links are simultaneously
transmitting.



5.1 Experimental Results
Different schedules are obtained by choosing different

link quality thresholds. Once the schedule is computed,
it is fetched to the testbed nodes, which repeatedly exe-
cute the schedule and transmit packets. Each schedule is
repeated 100 times. The outcome of an experiment is the
aggregate throughput measured at the two gateway nodes.
Note that, sometimes links can be over-scheduled. This
means that the sum of PRRs of a link scheduled in dif-
ferent slots might exceed the weight on that link. Thus,
as a result, the number of packets successfully received at
the gateways might exceed the number of packetssched-
uled to be received. We do not consider these extraneous
packets in our calculation of the throughput.

We present the results of our testbed experiments in
Figure 7. The X-axis enumerates the various schedules
generated with different link quality thresholds. The link
quality thresholds are varied from SNR values of 1 dB to
upto 7 dB. On Y-axis we plot the throughput in terms of
packets successfully received at the gateways normalized
with the schedule length, or as packets per slot. As can
be seen, using a lower link quality threshold – even in the
transition region – results in improving the throughput.
Infact, 70% better throughput is obtained by using weak
links (a link quality threshold of 1 dB) compared to very
strong links (7 dB). We conjecture that this is because,
by letting the routing protocol utilize weak links, a packet
ends up taking fewer number of hops to the gateways –
thus making the schedule more compact. Lowering link
threshold further does not give any performance benefit
in our testbed giving same results as for the threshold of
1 dB. These results show that theGreedyGradedalgo-
rithm works quite well in a realmeshnetwork scenario,
where packets are routed towards gateways, giving high
end-to-end throughput even with relatively weak links.

6 Conclusions and future work
We believe this paper delivers several contributions,

and opens numerous avenues for further research. From
the methodological point of view, the paper encompasses
all stages of the “from ideas to testbed implementation”
process: 1) starting from the formalization of a new inter-
ference model and related problem definition; 2) contin-
uing with presentation of algorithms with proven approx-
imation bounds for the problem considered; then 3) eval-
uating performance through simulation, as well as pre-
senting a more practical variation of the scheduling algo-
rithm; and finally 4) implementing the practical version
of the scheduling algorithm in an experimental testbed,
and evaluating its performance in a practical setting.

Several questions are left open by this paper, which
can be considered only as a starting point towards a bet-
ter understanding of the possible benefits of allowing use
of “imperfect” links on the resulting network throughput.
In particular, the problem of routing and scheduling for
throughput optimization under the graded SINR model
should be considered. Furthermore, a better understand-
ing of the impact of node density on routing/scheduling
performance is needed. From the experimental view-
point, an assessment of whether the throughput measured

at the gateway nodes is not only increased, but also pro-
portional to actual node demands is needed. Such an as-
sessment would make our proposed scheduling approach
a promising candidate as a building block for provid-
ing strong QoS guarantees in a wireless multi-hop net-
work. Finally, implementing the proposed scheduling
techniques with a high data rate technology (e.g., WiFi)
is another challenge to be undertaken.
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