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Abstract. A problem is irregular if its solution requires the computa-
tion of some properties for each of a set of elements irregularly distributed
in a domain of interest. These problems satisfy a locality property be-
cause the properties of an element depend upon those of a few other el-
ements, its neighbors, according to a dynamic, problem dependent sten-
cil. The development of parallel algorithms for irregular problems on
distributed memory architectures is not trivial, because the irregularity
and the dinamicity of the distribution of the elements in the domain
require complex strategies to manage the mapping of elements onto the
processing nodes and to implement the processing nodes cooperation.
This paper introduces PIT, a library to simplify the parallelization of
irregular problems. The key assumption underlying the definition of PIT
is that both the sequential and the parallel version of the application are
structured in terms of operations on a tree that describes the distribu-
tion of the elements in the domain. In the parallel version, the tree is
handled in parallel through the functions supplied by PIT in a way that
is transparent to the user and that preserves most of the sequential code.

1 Introduction

Several physical phenomena, such as the motion of the stars in a galaxy or
the illumination of objects in an scene, are modelled by time dependent partial
differential equations systems that are usually solved through adaptive iterative
algorithms. An iterative algorithm computes the final result through a sequence
of approximations, each produced by updating the previous one. The domain
of an irregular problem consists of a set of elements distributed in an irregular
and dynamic way in a space of interest. Each element is characterized by its
properties, as defined in the specific irregular problem. For instance, if the Barnes
Hut method for the nbody problem is applied to the motion of stars, each element
corresponds to a star and its properties are mass, position in the space and speed
vector. The properties of an element are updated by computing its interactions
with a set of other elements close to the considered one (neighbors). The rule
to determine the set of neighbors of an element (neighborhood stencil) depends
upon the specific problem, but, in general, the number of neighbors is different
for distinct elements and it changes during the computation. The number of
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elements changes as well. For instance, it increases to improve the accuracy
of the final solution. Hence, due to the irregularity of the distribution of the
elements and of the neighborhood stencil, the computation of the evolution of
some subsets of the domain requires a larger computational effort than others
and these subsets change as the computation goes on.

The development of parallel applications for the solution of irregular problems
is not trivial, because of the irregular and dynamic distribution of the elements
in the domain, that requires complex strategies to map the elements onto the
processing nodes, p-nodes, and for the communication management. Since no
useful information about the distribution of the elements can be deduced by a
static analysis or by program profiling, sophisticated run time mapping strategies
have to be adopted to produce a parallel code that can achieve satisfactory
performance values. In particular, load balancing is critical to improve these
values.

This paper presents PIT, Parallel Irregular Trees, a library to parallelize
irregular problems derived from the methodology to structure a parallel applica-
tion for irregular problems on distributed memory architectures presented and
evaluated in [1–4]. The aim of PIT is to provide a simple and complete tool for
the development of parallel solutions to irregular problems while preserving most
of the code developed for the sequential application. The key point of the PIT
approach is that both the sequential and the parallel version of the application
may be structured in terms of operations on a tree that describes the distribu-
tion of the elements in the domain. In the parallel version, the tree is distributed
among the local memories of the p-nodes of the architecture and is handled in
parallel in a transparent way through the PIT functions. In the current version,
PIT functions are implemented through C and MPI, however other languages
can be exploited.

Alternative approaches to irregular problems are LPARX [5], Chaos and
Multiblock Parti, [6] and that presented in [8]. However, these approaches are
focused on the data mapping techniques.

In the following, we describe the methodology and the strategies underlying
the definition of PIT. Sect. 2 describes the methodology to solve irregular prob-
lems, and how the sequential code can be transformed in the parallel one using
the PIT functions. Sect. 3, 4, 5 describe the details of the main functions provided
by PIT, the H-Tree creation, the H-Tree completion and the H-Tree update.

Sect. 6 shows that the user knowledge of the specific irregular problem can
be exploited to combine the PIT functions to produce a more efficient parallel
code. Section 7 draws the conclusions.

2 PIT Parallelization Strategy

PIT is a library to develop parallel applications to solve irregular problems. Its
main aim is to simplify the development of such algorithms on distributed mem-
ory architecture so that it can be exploited by users that are not acquainted
with parallel programming or with the problems posed by distributed memory



systems. The functions of the library have been defined starting from a gen-
eral methodology for the development of parallel applications to solve irregular
problems that is described in [1–4]. In the following, at first we describe how
to develop the sequential code according to our methodology so that it can be
easily transformed through the functions supplied by PIT. Then, we presents
the parallelization methodology and how the parallel code can be derived from
the sequential one by properly exploiting the functions of PIT.

2.1 Sequential Code

In our approach, the distribution of the elements in the domain is represented
through a tree, the H-Tree. The domain is recursively partitioned into equal
spaces until a problem dependent condition on each resulting space is satisfied.
The resulting space hierarchy is described through the H-Tree. Each node of
the H-Tree, h-node, represents a space of the hierarchy; the root of the H-Tree
represents the whole domain, the sons of the root the spaces derived by the first
partition of the domain, and so on. The leaves of the H-Tree represents spaces
that have not been partitioned. For the sake of simplicity, in the following, we
suppose that each h-node is paired with one element even if, in some problems,
some spaces may not be paired with elements. For instance, in the Barnes Hut
method for the nbody problem, only the leaves of the H-Tree are paired with
any element; the other h-nodes represent sets of elements used to compute ap-
proximated interactions. The interactions between the elements are computed
by iteratively applying a sequence of operators to the H-Tree, operator 1, ..,
operator n, until the solution has been computed. Each operator is implemented
through a visit of the H-Tree. For each h-node visited, the set of neighbors of
the corresponding element is determined through the neighborhood stencil of
the operator, and the properties of the element are updated by applying the
function corresponding to the operator. A very general scheme of the sequential
code developed according to this approach is the following:

irregular problem(elements)
root = tree creation(elements)
while (not solution computed)

operator 1(root)
....
operator n(root)

endwhile

operator j(node)
neighbor list =stencil j(node)
node properties = rule j(node,neighbor list)
for i from 0 to NSONS

if exists(son(i)) then

operator j(son(i))
endfor



In the previous code, stencil j is the function that, given a h-node returns
the list of its neighbors, and rule j is the specific problem function that, given a
h-node and the list of its neighbors, returns the updated values of the properties
of the element paired with the h-node.

2.2 Parallelization Methodology

The considered parallelization methodology defines strategies to map the ele-
ments onto the p-nodes, to collect the properties of the elements mapped onto
other p-nodes and to update the elements mapping during the computation to
balance the computational load amog the p-nodes.

Obviously, to implement such strategies, the user has to be familiar with
parallel programming techniques. In particular, the user has to understand the
concepts of data mapping, local data, remote data and so on.

The PIT approach, instead, is based upon the H-Tree that describes the ele-
ments distribution in the domain. The strategies of the methodology are imple-
mented by PIT as operation on the H-Tree. The parallel programming paradigm
implemented by PIT is SPMD, where each p-node executes the same code on a
distinct subset of the H-Tree.

¿From the user point of view, each PIT function implements an operation
on the H-Tree, and the H-Tree is handled in parallel in a transparent way by
these functions. For instance, the mapping of the elements onto the p-nodes is
implemented by the H-Tree creation function, the update of the mapping to
balance the computational load among the p-nodes is implemented by the H-
Tree update function and so on. The PIT functions implement all the strategies
of our methodology so that a parallel solution can be implemented by properly
invoking the functions of the package only, and no additional parallel code has
to be developed by the user. Any process synchronization or communication is
completely solved within the PIT function. Hence, in the simplest solution, the
user has only to choose the number of p-nodes to be exploited. PIT defines al-
ternative APIes for different kinds of users. The simple API includes just a few
functions that implement the strategies of the methodology in the most general
way. The invocations to this API may be inserted into the sequential code ac-
cording to a standard skeleton. The advanced API is addressed to users that
are more familiar with parallel programming techniques. To define the advanced
API, the strategies of the methodology have been decomposed into several steps,
each implemented by a distinct function. In this way, the functions can be com-
posed in the most suitable way for the considered problem. Obviously, the use
of the advanced API results in better performances of the parallel application.
Moreover, in the same parallel code both functions from the standard API and
from the advanced one can be applied.

2.3 Standard Parallel Code

This section describes how the functions of PIT may be applied to transform the
sequential version of an application into a parallel one. The user has to structure



the sequential application to solve the specific irregular problems as a sequence
of operations on the H-Tree as shown in the previous section. Then, the parallel
version of the application can be defined by one of the two following strategies: i)
by choosing the simplest API and inserting the sequential code into a standard
skeleton ii) by inserting invocations to the advanced API into the sequential
code in the most suitable way for the specific irregular problem.

The following code is obtained by applying the standard skeleton to the
sequential code showed in section 2:

irregular problem(elements)
root = Tree creation(elements)
while (not solution computed)

Htree completion(root,stencil 1)
operator 1(root)
Htree update(root)
....
Htree completion(root,stencil n)
operator n(root)
Htree update(root)

endwhile

As described in the following, the execution of the same PIT function is
synchronized, so that it terminates simultaneously in distinct p-nodes. The first
PIT function to be invoked in the parallel code is the H-Tree creation one,
to build the H-Tree shared among all the functions. This function returns an
handle to the root of the H-Tree that is used by all the functions to refer the
H-Tree. As described in the following, this function returns a distinct H-tree to
each p-node, according to the SPMD paradigm. Since the H-Tree is distributed
across the p-nodes, while the code developed in the sequential version for each
operator assumes that all the data it needs are allocated into the local memory
of the invoking process, the H-Tree completion function has to be invoked before
each operator. This function, through the neighborhood stencil, collects all the
updated values of properties of the h-nodes mapped onto remote p-nodes that
are required by the operator. The H-Tree update function, instead, updates the
H-Tree mapping when the elements distribution in the domain changes or the
computational load assigned to the p-nodes is no longer balanced. All these
functions are described in details in the following sections.

3 H-Tree Creation

As previously stated, the PIT library is based upon a multi level representation
of the domain described through the H-Tree. In general, the H-Tree is too large
to be stored into the local memory of a single p-node. Hence, it is partitioned and
distributed among the p-nodes. Each p-node stores a distinct subset of the H-
Tree, the private H-Tree. There are no intersections between the private H-Trees
of two distinct p-nodes, and the union of all the private H-Trees is the H-Tree. the



private H-trees should be defined so that most of the neighbours of an element
belong to the same private H-tree of the element itself. In order to enable each
p-node to deduce the allocation of the elements mapped onto another p-node, a
further subset of the H-Tree has been defined, the replicated H-Tree. As implied
by its name, this tree is replicated in each p-node, and includes all the h-nodes
on the path from the root of the H-Tree to the root of each private H-Tree.
Each leaf of the replicated H-Tree records the identifier of the p-node where
the private H-Tree rooted in that leaf has been mapped. The replicated H-Tree
is partially overlapped with some private H-Trees and it defines the smallest
amount of information allowing any p-node to determine the mapping of any
h-node.

The private H-Tree and the replicated H-Tree are built by the H-Tree creation
function. Since not only the H-Tree, but even all the elements of the domain
could not be stored in the local memory of one p-node, the H-Tree creation
function adopts a distributed strategy. To create the H-Tree, each p-node reads
a subset of the elements of the problem domain and it recursively partitions the
domain for a fixed number of times, to produce a set of equal spaces. Then, each
p-node determines, for each space S, the number of elements it has read that
belong to S, and exchange this number with all the other p-nodes, to determine
the total number of elements included in each space. The spaces are ordered
through a space filling curve, such as the Peano Hilbert one [7]. The resulting
sequence of spaces is partitioned into np contiguous sub sequences, where np
is the number of p-nodes. This guarantees that an element and most of its
neighbours are assigned to the same private H-tree. To balance the load, we also
require that the computational loads due to the elements in distinct subsequences
differ for, at most, a predefined user defined constant. In this phase, we assume
that two any elements have the same computational load. This phase cannot
determine a balanced assignment of the spaces if at least one space includes too
many elements. In this case, each space is partitioned one more time, and the
procedure is iterated. When a balanced element partition has been computed, a
communication phase begins where the p-nodes exchanges the elements to satisfy
the new mapping, i.e. each p-node P sends to another p-node Q all the elements
it has read but that belong to a space mapped onto Q. After this exchange has
been completed, each p-node creates its private H-Trees and sends the roots of
these trees to the other p-nodes. Since each p-node receives the roots of the
private H-Trees of each other p-node, it can create the replicated H-Tree too.
All the previous phases are separated by a barrier synchronization among the
p-nodes.

¿From the user point of view, the H-Tree creation function is the first one to
be invoked. For the sake of simplicity, we suppose that one private H-Tree only
is assigned to each p-node. In this case, the H-Tree creation function returns the
handle to the root of the private H-Tree. The user does not know how the H-Tree
has been partitioned, however, the handle to the root make it possible to visit
the H-Tree in the same way as a local H-Tree. Obviously, each p-node cannot
access the whole H-Tree, but only the h-nodes it has been assigned. However, by



properly invoking the H-Tree completion functions, each p-node can collect into
its local memory the h-nodes it needs to compute the interaction of its elements,
as described in the following.

4 H-tree Completion

Since the H-Tree has been partitioned among the p-nodes by the H-Tree creation
function, some of the neighbors of an element e have not been mapped onto the
same p-node where e has been mapped. To compute the properties of e through
the same operators of the sequential implementation, all the neighbors of the
elements mapped onto a p-node have to be collected in the local memory before
visiting the private H-Tree. Hence, before applying the operator, each p-node
should receive, from the other p-nodes, some of the subtrees that have been
mapped onto these p-nodes. In this way, each p-node, can collect the properties
of interest. The subtrees to be sent to other p-nodes can be determined at run
time only, through a problem dependent neighborhood relation, because they
depend upon the current properties of the elements mapped onto the receiver
p-node.

The strategy defined in our methodology for such a remote data collection
includes two steps. In the first one, each p-node P determines, through the
neighborhood stencil, the set of its elements such that at least one of their
neighbors may have been mapped onto another p-node. Each element of this
set is sent to the owner of the neighbor element, i.e. to the p-node Q where the
neighbor has been mapped. Since this exchange has place only to enable Q to
compute the set of its elements whose properties are required by another p-node,
P does not send to Q all the properties of these elements, but only those required
to apply the neighborhood stencil. In the second step, through the information
received in the previous step, each p-node can determine which of its elements
are the neighbors of an element e received in the previous step and send their
properties to the owner of e. The receiver p-node inserts these nodes into its
private H-tre. These hnodes will be replaced the next time that remote data are
collected. The strategy has been defined as the composition of two distinct steps
because the first one has to be executed each time the set of neighbors of at least
an element changes, while the second step is executed each time the updated
values of the properties of the elements are needed to apply an operator.

¿From the PIT user point of view, after the collection, the h-nodes paired with
the neighbors of an element can be reached through a visit of the H-Tree, as in the
sequential code, even if these h-nodes have been mapped onto other p-nodes. As
stated by the methodology, these h-nodes are determined by the PIT functions
by applying the neighborhood stencil in a dynamic way. Two possible APIes are
defined by PIT to interface the user with the functions to collect remote data.
The user that is not familiar with parallel programming can invoke a single func-
tion that executes both the steps previously described. In this case, the function
has to be invoked just before the operator that needs the updated values of the
elements. Instead, a more sophisticated user, that can determine which operators



updates the properties required to apply the neighborhood stencil, can exploit
two distinct PIT functions, H-tree det neighbors and H-tree exchange neighbors,
rather than one . These functions implement, respectively, one of the steps pre-
viously described. In this case, the H-tree det neighbors function is invoked after
the H-Tree creation function and after each operator that updates the properties
that determine the neighborhood stencil. The H-tree exchange neighbors func-
tion, instead, is invoked just before the operator that needs the updated values
of the elements. Obviously, the invocation of just one function simplifies the de-
velopment of the parallel version at the expense of efficiency. The adoption of
the two steps function, instead, makes it possible to achieve a better efficiency
of the resulting parallel code, because it avoids useless data exchange among the
p-nodes.

5 H-tree Update

During the computation, both the number and the distribution of the elements in
the domain changes because the operators can create, delete and update elements
in the domain. Hence, the mapping of the elements onto the p-nodes has to be
updated, because some elements may violate the mapping strategy defined in
sect. 3. For instance, in the Barnes Hut method, a star, due to the interactions
with all the other stars, may change its position in the space, from the subdomain
assigned to a p-node to that mapped onto another p-node. Moreover, these
modifications in the domain may affect the computational load paired with each
element, and the mapping has to be updated to correct load unbalances as well.
The correct mapping of an element can be determined through the replicated
H-Tree. To balance the computational load, instead, the methodology defines
a strategy to update the mapping through the same space-filling curve used to
define the initial mapping of the elements.

¿From the PIT user point of view, two possible interfaces can be used to
implement the H-Tree update. The standard function, H-Tree update, updates
the mappings taking into account both the elements that violate the mapping
strategy and the load unbalance. The user has to invoke this function each time
the distribution of the elements in the domain changes, otherwise an incorrect H-
Tree state could result. As a consequence, in the standard skeleton, this function
is invoked after the execution of each operator. The advanced interface includes
two distinct functions, H-Tree correction and H-Tree balance, that, respectively,
update the mapping of the elements violating the mapping strategy and correct
the load unbalance. While the H-Tree correction function has to be invoked each
time the elements distribution changes, to avoid incorrect H-Tree state, the H-
Tree balance function should be invoked less frequently because, to determine
whether the current load distribution is unbalanced, each p-node exchange its
current workload with all the other p-nodes. Taking into account the correspond-
ing overhead, no real performance improvement may be achieved by executing
this strategy if minor modifications to the domain have occurred only. The user
can also choose whether the computational load due to each element has to be



considered fixed and equal for all the elements or it has to be measured as the
computation goes on. In the latter case, it can further specified that the load due
to an element is determined by the number of times a given operator is applied
to the element.

6 PIT’s Parallel Code

The parallel code presented in sect. 2.3 has been obtained through the standard
skeleton. To describe how the more advanced API can be exploited, we suppose
to know that only operator n modifies the H-tree.The other operators only up-
date some problem dependent properties of the elements, that do not affect the
neighborhood relations. Starting from this information, we show how PIT func-
tions can be composed in a more suitable way for the specific irregular problem,
in order to improve the performances of the resulting parallel code.

irregular problem(elements)
root = Tree creation(elements)
Htree det neighbors(root, stencil 1+....stencil n)
while (not solution computed)

Htree exchange neighbors(root,stencil 1)
operator 1(root)
....
Htree exghange neighbors(root,stencil n)
operator n(root)
Htree update(root)
Htree det neighbors(root, stencil 1+....stencil n)

endwhile

In this case, the remote data collection is implemented through the advanced
PIT interface defined in section 4. The H-tree det neighbors function is invoked
after the H-Tree creation function, to determine the initial neighborhood rela-
tions, and each time the neighborhood relation among the elements have to be
updated, i.e. after the execution of the operator n, the only operator that modi-
fies the H-Tree. Since all the invocations to H-tree exchange neighbors function
share the data collected by the same invocation of the H-tree det neighbors one,
the neighborhood stencil passed to the H-tree det neighbors function is the union
of the neighborhood stencils of all the operators. The H-tree exchange neighbors
function, instead, is invoked before each operator, to collect the updated prop-
erty values that will used by the following operator. For the update of the H-Tree,
instead, the standard interface has been adopted. The H-Tree update function is
invoked after the operator n, because the other operators does not modifies the
domain. Notice that the H-tree det neighbors function has to be invoked after
the H-Tree update function, because both the H-Tree structure and its mapping
have to be updated, to determine the new neighborhood relations,.

Finally, we notice that in both cases, our approach preserves most of the
existing sequential code, the modifications to the sequential code are minimal



and that they do not require a detailed knowledge of parallel programming
techniques.

7 Conclusions

This paper has briefly presented the guidelines for PIT, a complete library to de-
velope parallel algorithms to solve irregular problems. As previously shown, the
parallelization through PIT is very simple, and preserves most of the sequential
code. Moreover, the library provides both a simple API to allow users that are
not familiar with parallel programming to easily obtain a parallel version of their
sequential applications, and an advanced APIs to be exploited by an expert user
to develope a customized parallel code for the specific irregular problem.
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