
Stateful Data Usage Control for Android Mobile Devices∗

Aliaksandr Lazouski Fabio Martinelli Paolo Mori
Andrea Saracino

Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
email:{name.surname@iit.cnr.it}

Abstract

Modern mobile devices allow their users to download data
from the network, such as documents or photos, to store
local copies and to use them. Many real scenarios would
benefit from this capability of mobile devices to easily
and quickly share data among a set of users but, in case
of critical data, the usage of these copies must be regu-
lated by proper security policies. To this aim, we propose
a framework for regulating the usage of data when they
have been downloaded on mobile devices, i.e., they have
been copied outside the producer’s domain. Our frame-
work regulates the usage of the local copy by enforcing
the Usage Control policy which has been embedded in the
data by the producer. Such policy is written in UXACML,
an extension of the XACML language for expressing Us-
age Control model based policies, whose main feature is
to include predicates which must be satisfied for the whole
execution of the access to the data. Hence, the proposed
framework goes beyond the traditional access control ca-
pabilities, being able to interrupt an ongoing access to the
data as soon as the policy is no longer satisfied. This pa-
per details the proposed approach, defines the architec-
ture and the workflow of the main functionalities of the
proposed framework, describes the implementation of a
working prototype for Android devices, presents the re-
lated performance figures, and discusses the security of
the prototype.

∗This work was supported by the EU FP7 project Confidential
and Compliant Clouds (CoCoCloud), GA #610853 and by the H2020
EU-funded project European Network for Cyber Security (NeCS), GA
#675320.

1 Introduction
The increasing popularity of mobile devices, such as
smartphones, tablets and phablets, combined with the
availability of the Internet connection everywhere, make
modern mobile devices real competitors of desktop com-
puter systems. As a matter of fact, new generation mo-
bile devices are actually comparable to desktop computers
both from the hardware and the software points of view.
In particular, they have fast multi-core processors, a large
storage capacity, and a strong connectivity because they
can connect to the Internet through several interfaces, e.g.,
operator network (3G/4G) or WiFi, or they can communi-
cate directly with other devices through Bluetooth or NFC
interfaces. From the software point of view, modern mo-
bile devices run operating systems which have the same
functionalities as the ones running on Personal Comput-
ers, i.e, on which several applications (apps) can be in-
stalled and executed, thus offering a plethora of function-
alities, from email and other office applications to audio
and video applications or games.

Android is the leading operating system for mobile
devices and it is run by almost 80% of mobile de-
vices1. Other operating systems for mobile devices ex-
ist on the market, such as Apple iOS and Microsoft Win-
dows Phone. Android is a multi level open source plat-
form, which provides an environment for the execution of
mobile applications. Mobile applications are distributed
to the final users through repositories (markets), that are
managed by trusted parties (e.g., Google Play Store),
where developers upload and sell their applications. An-

1http://mobiforge.com/research-analysis/global-mobile-statistics-
2014-part-a-mobile-subscribers-handset-market-share-mobile-
operators

1

droid provides a robust security architecture designed to
ensure the protection of the platform, i.e., the protection
of data, resources and applications, while reducing the
burden on application developers as well as allowing users
to control the access rights assigned to applications, as de-
tailed in Section 4.1.

The previously described features make mobile devices
an excellent platform for users to download data, store and
use them. In some real scenarios, the usage of data outside
of the producer’s domain should be restricted according
to some security policies (e.g., defined by the data pro-
ducer), but the native Android security support does not
allow to enforce such Usage Control policies. In particu-
lar, data are created by data producers who share them on
the Internet, and once these data have been downloaded
on mobile devices, typically no further controls are per-
formed to regulate their usage.

Hence, this paper is focused on regulating the usage
of data copies stored on Android mobile devices by en-
forcing the security policies based on the Usage Control
model which are embedded in the data copies.

1.1 Contribution and Motivation
This paper describes the framework we defined to protect
the data shared on mobile devices, focusing on Android
ones. In our reference scenario, the data producer em-
beds a Usage Control policy in the data he creates before
sharing them with other users. The other users download
their copies of the data on their mobile devices, and the
framework regulates the subsequent usage of these copies
by enforcing the embedded policies. Since these policies
are based on the Usage Control model (see Section 4.3),
they are continuously enforced in order to allow the usage
of the data as long as a set of conditions are satisfied. As
soon as a policy is violated, the actions that are in progress
on the data are properly interrupted.

Hence, the main contribution of this paper is the def-
inition of an approach, the design of the related frame-
work, and the implementation and validation of a proto-
type for regulating the usage of data copies which have
been downloaded on Android mobile devices.

The novelty of the proposed approach and framework
is that the Usage Control policy paired with the data is
enforced in a continuous fashion while the data are used
on the Android device where they have been downloaded.

This allows for a quick reaction to any change of the at-
tributes describing the access context in order to detect a
possible policy violation and suspend the data usage. In
fact, the Usage Control policy takes into account mutable
attributes of users, data and environment, i.e., attributes
that frequently change their values because of the nor-
mal operation of the system. The motivation leading to
the definition of the proposed framework is that the wide
spreading of mobile devices and the availability of the In-
ternet connections would encourage users to perform the
sharing of their data with others through mobile devices.
However, the lack of a proper security support ensuring
the protection of the shared data could instead prevent
users to perform such sharing. The proposed framework
fills this gap by providing the security support required to
protect the shared data by regulating their usage.

This paper extends our previous work [1] by: i) present-
ing a complete and detailed description of the framework
architecture and of the interactions among its compo-
nents; ii) introducing a new use case example to show the
capabilities and the applicability of the proposed frame-
work; iii) presenting a new set of extensive experiments
which measure the performance of the framework both in
case of local and remote attributes, taking also into ac-
count attribute updates; iv) providing a more detailed de-
scription of the use of TrustZone as a module to enable
TPM security.

Many real scenarios would benefit of the proposed
framework. For example, the data producer could be a
team manager who wants to share his business documents
with his employees. Since the documents are critical, the
manager wants to allow his employees to visualize them
on the company’s tablets when they are located within the
building of the company department and they are on duty.
Hence, the manager could use our framework to share
documents with his employees, embedding in these doc-
uments a policy that allows the visualization of the docu-
ment according to the previous condition.

1.2 Paper Structure
The paper is structured as follows. Section 2 describes
two reference examples that will be used throughout the
paper. Section 3 describes some work related to the pro-
tection of data and resources on mobile devices, while
Section 4 describes some background on which the pro-

2

posed approach is based, such as the Usage Control
model, the security support of the Android operating sys-
tem, and the Trusted Platform Module. Section 5 de-
scribes the core of the proposed approach, i.e., the adop-
tion of the Usage Control model to protect the usage of
local copies of data, along with simple security policies
for the reference examples. Section 6 gives a complete
and detailed description of the architecture of our frame-
work and of the interactions among its components, while
Section 7 describes the prototype implementation along
with a set of performance figures and a security analysis.
Finally, Section 8 draws the conclusions.

2 Reference Examples
This section describes a couple of examples of data shar-
ing on mobile devices where such data are personal and/or
have high economic value, so the proposed framework
could be successfully applied to regulate their usage.

Example 1: Let us suppose that a team manager T of
a company C wants to share with his employees some
strategic documents he wrote, such as business reports
or contracts, exploiting the company’s tablets. The team
manager is the data producer, because he created these
documents. Since these business documents are critical
for the company, the manager needs to impose some re-
strictions on their usage. First of all, no modifications
to the documents issued by the manager can be done by
the employees. Moreover, T wants that each employee
is allowed to visualize only the documents related to the
projects he is currently working on, and that each em-
ployee can access only documents related to the same
project at the same time. We suppose that the set of
projects assigned to each employee can change over time.
T also wants to allow his employees to visualize the doc-
uments on the company’s tablets only when they are lo-
cated within the building of the company, they are on duty,
i.e., they have clocked in, and only during working hours.
Finally, T wants to allow the department heads to cre-
ate further copies of the documents related to the projects
they are involved in, up to a maximum of N copies for
each document.

Our framework can be exploited by the team manager
to perform a controlled sharing of his documents with his
employees. In particular, our framework allows the man-

ager to embed a policy in his documents which allows vi-
sualizing and copying of the document according to the
previous constraints. In this way, if an employee tries
to open the business document when he is at home, the
framework will not visualize the document. Moreover,
if an employee successfully opens the business document
when he is at work and he is on duty, as soon as he leaves
the company’s building or he clocks out, the framework
enforces the policy by closing the business document. Fi-
nally, if the employee opens a document related to project
A and after he opens another document related to project
B, the framework enforces the policy by closing the doc-
ument related to project A.

Example 2: Let us suppose that a specialist doctor, a
radiologist, wants to share a document representing the
result of an examination he performed on a given patient
P with some other healthcare professionals. However,
the document representing the examination result, being
health-related data, must be properly protected to guaran-
tee the patient’s privacy. Hence, the radiologist would like
to grant the access to this document only to other special-
ists in orthopedics, who will define the treatment, and to
the nurses of the department of orthopedics as long as P
is hospitalized in that department to administer the treat-
ment. Moreover, the ragiologist would like that only one
nurse at a time can visualize that document.

Finally, in the e-health scenario the patient must give
his explicit consent in order to grant the rights to ac-
cess the document including his examination results to
the previously mentioned subjects, and we assume that
this consent is sufficient to be fully compliant with Euro-
pean laws. However, this consent could be withdrawn by
the patient at any moment in time. In this case, nobody is
allowed to access the document any more.

We recall that healthcare professionals, such as the spe-
cialist in orthopedics and the nurses in our example, can-
not change the results of the examination issued by the
radiologist (which are signed by the radiologist). Instead,
they could append the new contents they produce to the
document.

Again, our framework can be exploited in this scenario
to control the sharing of the examination result produced
by the radiologist on the mobile devices of the healthcare
organization. In particular, our framework allows the radi-
ologist to embed a policy in the examination result which
allows its visualization according to the previously de-

3

scribed constraints. In this way, only specialists in ortho-
pedics can always visualize this examination result on the
devices of the healthcare organization. Instead, the nurses
of the department of orthopedics can display the examina-
tion result on the hospital’s tablets while P is hospitalized,
and they lose this right as soon as P is discharged from the
hospital. Moreover, supposing that a nurse downloaded
the examination result on a device and she left it opened,
the visualization is interrupted as soon as P is discharged
from the hospital. Finally, our framework is also capable
to manage the patient consent, even allowing to interrupt
an ongoing visualization of the document as soon as the
patient withdraws his consent.

It is worth noticing that the previous examples present
situations where the owner of the device is not directly
the user of the device and this justifies the role and pres-
ence of the TPM. Moreover, we also notice that in some
scenarios the data producer is not the only subject enti-
tled to access the data he shares, but other people could
have some rights on these data according, e.g., to laws or
regulations. In these cases, the data producer could abuse
our framework by preventing people having rights on the
data he shares from accessing them by setting up unduly
constraining policies on these data. However, the solu-
tion to avoid this problem is developed in the ambit of the
Coco Cloud project2, of which the proposed framework
is part, where the policy authoring process was designed
taking into account also legal aspect, such as data pro-
tection regulations, and user preferences [2]. Hence, the
policy authoring process ensures that all the stakeholders
have their right respected. This also implies that proper
usage of the TPM should be fostered.

3 Related Work

In the last years, several frameworks have been proposed
to enforce security policies on Android devices. These
frameworks either exploit native security mechanisms, or
include new features for a direct fine-grain control of the
Android’s API. In the following, we will survey some rel-
evant work with a focus on those frameworks enforcing
access and usage control on both Android and other mo-
bile systems.

2http://www.coco-cloud.eu/

The work described in [3] proposes a framework for
the run-time enforcement of policies to regulate the in-
formation flow among applications on Android devices.
Policies are expressed through labels, applied to applica-
tions or to their components, which specify the secrecy
level, integrity level, and declassification and endorse-
ment capabilities of the object it is paired with. The pa-
per describes an implementation on a Nexus S phone run-
ning Android 4.0.4, built on the top of Android’s activ-
ity manager, that intercepts the calls between the com-
ponents. This framework is different from the one pro-
posed in our paper because it is focused on controlling
the information flow among applications. Our work in-
stead, as previously discussed, does not consider informa-
tion flow issues, since controlled data are not exchanged
between apps and every information exchange is handled
through the secure Android native communication mech-
anisms. A system for data Usage Control is proposed in
[4] and [5]. This system is focused on data flow analysis
for cross-boundaries distributed systems, presenting a for-
mal model for data transmission in order to define a dis-
tributed enforcement infrastructure. To this end the anal-
ysis is largely focused on network connections, in partic-
ular an application to TCP is presented. Our framework,
instead is more focused on aspects of data Usage Control
enforced on end-devices, which in the specific are An-
droid smartphones or tablets, interacting with a cloud Us-
age Control framework. Since data are downloaded from
the cloud, which is a logically centralized entity and thus
stored on the device, without the possibility of being ex-
changed between devices, or with third parties, data flow
issues are not considered in the present work, which is
mainly focused on challenges and solutions for enforcing
data Usage Control on Android systems. As an extension
of the native permission system, several frameworks have
been proposed to enforce a finer grained access control
model, which however is mainly directed toward secur-
ing operations and device resources, rather than pieces
of data or documents, which is instead the focus of the
present work. Another system designed to enhance the
security support of Android, CRêPE, is proposed in [6]
and [7]. CRêPE is a fine grained context related policy
enforcement system, where each policy consists of an ac-
cess control policy, composed by standard access rules,
and an obligation policy, which specifies some actions
that must be performed. Each policy is paired with a con-

4

text, a boolean expression over physical and logical sen-
sor of the mobile device, and when a context expression
is evaluated to true the corresponding policy is enforced.
The paper describes and evaluates the effectiveness and
the performance of a prototype derived from the Android
Open Source Project (AOSP).

Access control has been enforced on mobile devices
also on systems previous to Android. The authors of
[8] propose a framework to enhance mobile devices secu-
rity focused on the protection of mobile devices resources
from the applications that are executed on these devices.
In particular, the framework prevents the misuse of mo-
bile device’s resources using a runtime monitor that con-
trols the application behaviour during its execution, and
policies are expressed in Conspec [9]. The paper presents
a prototype for Symbian OS, running on Nokia E61 and
N78 devices, and a prototype for OpenMoko linux run-
ning on HTC Universal devices, and evaluates the over-
head and the battery consumption introduced by the secu-
rity support. As for the previous, this framework is differ-
ent from the one proposed in our paper, since it is focused
on the protection of device resources and operation, rather
than data. Access control to privacy sensitive information
has been addressed in [10], which proposes a framework
called TrustDroid to define access level to specific device
resources and operation. TrustDroid also allows to define
some context based policies, but these policies only apply
to applications installed on the device, thus private data
in the wrong context can still be accessed by the user.
Moreover a mechanism of remote attestation is missing
and it requires modification of the operative system. A
usage control framework designed for Android devices is
UCDroid, presented in [18]. This framework exploits the
usage control engine to dynamically revoke and grant au-
thorizations to apps, through the permission system. Dif-
ferently from the present work, UCDroid limits its action
to the features controllable through Android permissions
and does not enforce control on data access and usage.
Another work focusing on the analysis of access to se-
curity critical resources is TaintDroid presented in [11].
This framework is based on hooking all the methods that
handle access to user or device data. The information flow
is then tracked, to understand which applications are ef-
fectively able to see the tracked data. This framework re-
quires the operative system to be modified. A work simi-
lar to ASF is the ASM framework presented in [12]. The

paper in [13] presents a framework for context-based ac-
cess control. This framework exploits probabilistic tech-
niques to understand automatically the user context, de-
manding the enforcement of such policies to the access
control framework presented by the same author in [14].
This system, named flaskdroid extends the native access
control mechanisms, i.e. permissions system, with a more
flexible ones which also allows the definition of security
policies. A system with similar functionalities is pre-
sented in [15]. The framework presented in [16] is aimed
at avoiding disclosure of private information. However,
this work mainly focuses on controlling the actions made
by users, providing a secure user interface aimed at avoid-
ing accidental disclosures. On the other hand our frame-
work is more focused on allowing the controlled sharing
of data on Android devices, denying and or revoking the
access only when the Usage Control policies do not al-
low the access to them. Thus, being able to enforce more
complex policies, the presented framework is in the end
more general.

Another set of frameworks merely focused on Access
Control in Android is the following. Android Security
Framework (ASF) presented in [17] provides security
APIs to developers interested in writing security exten-
sions. Target of this framework are both manufacturers
and governments interested in enforcing specific security
policies on users’ mobile devices. This shapes ones of
the main difference with our UCON framework, which
is instead more general, being usable both by companies
employees and by normal users of cloud environments.

A methodology which is similar to access control, gen-
erally applied on multimedia data is the Digital Right
Management (DRM). The work in [19] presents an
overview on DRM mechanisms available for Android de-
vices, which mainly aims at protecting the code and data
of an application. The presented mechanisms are based
on the idea of downloading the file on the device from
the server, only if the DRM policy is verified. The over-
head introduced by such a methodology is consistent, es-
pecially for large files. On the other hand, our framework
keeps the data already on the device, secured through en-
cryption. The overhead caused by the used symmetric en-
cryption method is sensitively lesser than the one intro-
duced by continuous downloads. Moreover, the policies
which could be defined by our framework are in princi-
ple more general than the ones proposed in [19], which

5

are bounded to the DRM standard. Ongtang et al. pro-
pose in [20] a framework to handle DRM on Android de-
vices named Porscha. The proposed system introduces
the possibility to control access to documents stored on
the device, using DRM policies to assess the applica-
tions and the device type on which data can be accessed.
Some simple policies on period and number of uses are
also supported. However, differently from our system,
Porscha does not support dynamic policies. Furthermore,
our framework allows to define more complex and gen-
eral policies, based on several attributes which can also
be mutable.

The work presented in [21] describes Idea, a system
to enforce security policies on Android systems by in-
lining of reference monitors to control security relevant
actions. The system is effective in enforcing complex
security policies, but the imposed performance overhead
of 35% is hardly acceptable. From the same authors, a
lightweight framework for enforcing of security policies,
but more oriented at increasing the flexibility of the per-
mission system is AppGuard [22] [23]. However, the pre-
sented framework is not focused on data protection and
also requires the modification of app code to allow code
instrumentation. On the contrary, our framework does not
perform any modification to apps and system code, also
the overhead is limited.

A framework for Android that does not require the
modification of the operative system is presented in [24].
This framework, named Aurasium, enforce security poli-
cies to applications by repackaging them, modifying the
functions that could harm the user security. Still, Aura-
sium approach is not focused on specific access and Usage
Control policies, moreover, differently from our frame-
work Aurasium requires modification of the controlled
apps code. The work proposed in [25] describes a security
framework which enhances the Android permission sys-
tem allowing the user to choose the permissions to grant
to an application and handling correctly the exceptions
for revoked permissions, preventing the apps from crash-
ing. With this framework the user can choose effectively
which permissions grant to the app. However, the security
policies which can be defined through this approach are
static and limited to the coarse-grained permission sys-
tem. Our framework, instead, allows the definition of finer
grained policies, which are taking into account attributes
potentially coming from any domain.

A well known framework to enforce security in mo-
bile systems is the Security-by-Contract (SxC) framework
[26]. The rationale behind SxC is the idea that application
are shipped together with a contract specifying security
relevant actions performed by the applications. The con-
tract is matched with the device’s security policies. Thus,
if the contract matches the policy, the application runs
without any additional control, otherwise a monitor is at-
tached to enforce the security policy on the app. Starting
from the idea that the android manifest itself is a contract,
an application of SxC to Android has been proposed in
[27]. This framework extends the Android manifest in-
cluding the complete contract, which describes the prob-
abilistic behavior of the application. This extension of the
SxC allows also the definition of policies with probabilis-
tic clauses, more flexible than those of classic SxC. The
drawbacks of the SxC platform is the assumption that ev-
ery developer is able and willing to generate a contract
for the application. Also the SxC requires the device to be
rooted. The proposed Usage Control framework instead
does not require any modification to device nor installed
apps.

A preliminary work concerning sticky policies for mo-
bile devices is presented in [28] where authors claim that
context-aware access and Usage Control can be a signif-
icant support for users in mobility. The paper presents a
prototype for Android systems, called ProtectMe, which
allows to specify sticky policies including access and Us-
age Control directives to be enforced on the data they are
attached to. There are some significant differences be-
tween the work in [28] and the one presented in this pa-
per. Mainly, it is due to the security policy languages that
the two frameworks enforce, respectively, PPL [29] and
U-XACML [30]. The PPL language is designed to ex-
press obligations, i.e., actions that must be enforced by the
PPL engine. Instead, the the U-XACML engine handles
continuous authorizations and conditions, i.e., constrains
on mutable attributes which should be reevaluated when
attributes change and a resource is still in use. A viola-
tion of these authorizations and/or conditions implies the
access revocation. Then, the U-XACML assumes a dis-
tributed authorization infrastructure which requires col-
laboration of many parties on sharing and updating se-
curity attributes. Thus, it is capable to enforce policies
which govern usage of all data copies rather than local
only. Finally, the work in [28] does not provide perfor-

6

mance analysis. For further references to security frame-
works in mobile systems, the interested reader can refer
to the survey presented in [31].

4 Background
We report in this section background notions on the secu-
rity mechanism on which the proposed framework relies.

4.1 Android Security Overview
The Android framework includes several elements to en-
force security on the physical device, applications and
user data. The Android native security mechanisms
are the Permission System and Application Sandbox-
ing, which enforce, respectively, access control and iso-
lation. Through the permission system, every security
critical resource (e.g., camera, GPS, Bluetooth, network,
etc.), data or operation is protected by mean of a per-
mission. If an application needs to perform a secu-
rity critical operation or access a security critical re-
source, the developer must declare this intention in the
app AndroidManifest.xml (manifest for short) file
asking the permission for each needed resource or opera-
tion. Permissions declared by the application are shown
to users when installing the app, to decide if he wants to
consider the application secure or not. If the application
tries to perform a critical operation without asking the per-
mission for it, the operation is denied by Android. The
manifest file is bound to the application by means of dig-
ital signature. The integrity check is performed at deploy
time, thus the Android system ensures that if an applica-
tion has not declared a specific permission, the protected
resource or operation cannot be accessed. In the latest An-
droid versions, users can dynamically revoke and re-grant
specific permissions to applications, however this practice
requires a level of knowledge and expertise greater than
that of average users. In fact, revoking permissions will
often result in app misbehaviors including crashes, due to
the unhandled exception caused by the missing permis-
sion.

On the other hand, isolation is enforced through the
synergy of two elements: the isolated runtime environ-
ment implemented through Virtual Machines (VM) and
the underlying Linux kernel. In Android every application

runs in a VM named Dalvik Virtual Machine (DVM) up
to release 4.4 and Android Runtime Environment (ART)
in the following releases. DVM and ART are an opti-
mized version of the Java Virtual Machine, in particular
ART also includes the support for Ahead of Time compi-
lation for improved performance. In DVM and ART each
application has its own memory space, can act like it is
the only application running on the system and is isolated
from other apps. Moreover each VM instance is regis-
tered as a separate user of the Linux kernel. This means
that each installed app is considered a user at the kernel
level, able to run its own processes and with its own home
folder. The home folder of each application stores ap-
plication files on the device internal memory, thus it is
protected from unauthorized access by the Linux kernel
itself. In fact, files stored in the home folder can be ac-
cessed only by the application itself. However, since the
device internal memory is limited, the amount of data that
can be stored in the home folder is limited and generally
using the internal memory is a deprecated practice.

4.2 Trusted Platform Module
Integrity of the mobile device architecture can be assured
through usage of Trusted Computing. Verifying device in-
tegrity is mandatory to ensure that other applications can-
not interfere with the DPS and UXACML Authorization
Apps. The Trusted Computing Platform (TCP) is a hard-
ware framework that enforces hardware level security on
a specific system. Devices protected through trusted com-
puting embed a hardware module called Trusted Platform
Module (TPM). The TPM includes keys and routines nec-
essaries to verify the integrity of various levels of the de-
vice, from the firmware level to the application one.

The Trusted Computing Group is currently proposing a
standard for the application of the TPM to mobile devices,
such as smartphones and tablets. The system model pre-
sented in [32] and depicted in Figure 1 can be matched
with the Android architecture. In fact, the Operating Sys-
tem block can be seen as the underlying Linux kernel of
Android devices, the Native Applications block is embod-
ied by the native application set provided by Google or
the device manufacturer on stock devices e.g. Dialer,
Hangout, GMail etc.. Furthermore, the Interpreter
block is the DVM which executes all the applications on
the device (Interpreted Applications). The protected en-

7

Figure 1: Secure Mobile Device Architecture Proposed
by the TCG

vironment is the part protected by the TPM where secure
information is stored.

The TPM securely stores inside its registers (PCR) the
values to perform the integrity checks of the device com-
ponents. Integrity check is performed by the TPM with
a bottom-up approach, in a process which is defined as
Chain of Trust, where the integrity of each level is con-
sidered the Root of Trust for the higher level. This pro-
cess involves a set of measurements on its configuration,
which includes a set of hash computations of the code of
its kernel and of the running applications. The root-of-
trust is rooted to the physical platform’s TPM. Hence, to
measure the initial integrity of the device, starting with
the TPM, the following steps are required. Firstly, the
TPM applies a set of measurements on the boot-loader, so
that from now on, all the steps can be measured from boot
to kernel loading and its modules. Then, the integrity of
the kernel, of the operative system and of the application
installed on the device is verified. When the integrity of
a level cannot be verified, the device is considered non-
secure from that level to higher ones. Since the mobile
TPM has still to be standardized, currently there are no

off-the-shelf Android devices supporting TCB. However,
some steps have been done recently toward the inclusion
of TCB in Android through the use of TrustZone.
TrustZone [33] is a component which is by default

available on the greatest majority of ARM processors.
Thus, the main component to enable TCP functionalities
is already present on almost any Android-powered smart-
phone and tablet. Still, device manufacturers do not in-
clude, up to now, the possibility to interact on the user
side with the TrustZone component.

However, the potential of having trusted computing
base-enabled mobile devices, has already been envi-
sioned in recent works, both from industry and academia,
proposing implementation based on TrustZone on non-
off-the-shelf devices. In particular Samsung proposes the
Samsung Knox [34] service to its customers. This service
exploits the ARM’s TrustZone technology [33] to cre-
ate a trusted computing base on mobile devices, which in-
teracts with an external framework to implement different
security policies. Devices with Samsung Knox compati-
bility are not distributed to private users, but only to com-
panies interested in implementing BYOD policies. An-
other work exploiting TrustZone is [35], which imple-
ments a secure storage platform on Android, exploiting
the trusted memory space provided by the TrustZone envi-
ronment. The system has not been implemented on smart-
phones or tablet, but on a programmable board running
the Android operative system.

However, the TCP building blocks that have to be in-
cluded on the Android platform have been described in
[36], and are the following: a Root-of-Trust for Measure-
ment (RTM), a Root-of-Trust for Storage and Reporting
(RTS/RTR) and a Static Chain of Trust (SCoT). These
elements have been developed as extension of the Linux
Kernel, realizing a virtual TPM which implements all the
interfaces to perform integrity checks and update stored
values. However, being a software component this virtual
TPM is not able to ensure any security property.

It is worth noting that the TrustZone is a component
embedded onto mobile devices processors. We will as-
sume it to be delivered with an Android version with APIs
to interact with the TrustZone . The proposed framework
will be available only for those devices equipped with
TPM. However, the installation of the proposed frame-
work will not require any modification of the existing ver-
sion of Android, since it will exploit the existing standard

8

interface to exploit the TPM.

4.3 Usage Control Model
The Usage Control (UCON) model, introduced in [37],
has been designed to regulate the usage of modern and
distributed systems, and it encompasses and extends tra-
ditional access control models introducing mutable at-
tributes and new decision factors besides authorizations,
i.e., obligations and conditions. This section summarizes
the main concepts of the UCON model, but for a detailed
(and formal) description please refer to [38] [39].

Mutable attributes encode features of the subjects, of
the resources, and of the environment, which change their
values over time, and this could affect the execution rights
of other accesses that are in progress [40]. These at-
tributes could change their values because of attribute
update statements included in the Usage Control poli-
cies, which can be executed before (pre-Updates), during
(ongoing-Updates), or after (post-Updates) the execution
of the access, because of actions performed by the user, or
for other reasons. For instance, the value of the attribute
which represents the number of copies of the same data
in the systems is increased by a pre-Update policy state-
ment every time the creation of a new copy is authorized.
Instead, the position of a user changes every time the user
moves from one location to another. Traditional attributes
(i.e., immutable attributes), instead, do not change fre-
quently, and they are modified only through administra-
tive actions. For instance, the role attribute is updated
when the subject gets a career advancement. Since muta-
ble attributes can be updated during the usage of an object,
in the following we show that each decision factor can be
evaluated before (as in traditional models) and/or during
the usage of the object (continuous control). Reevaluating
the access right when the access is in progress and inter-
rupting this access when the related right is no more valid
reduces the risk of misuse of resources.

Authorization predicates are evaluated to determine
whether a subject requesting access to an object holds
the corresponding right. This decision making phase
takes into account subject/object attributes, and the action
that the subject requested to perform on the object. The
UCON model defines two categories of authorizations:
pre-Authorizations (preA), where the decision phase is
performed when the subject requests to access the ob-

ject, and ongoing-Authorizations (onA), where the deci-
sion phase is performed while the access is in progress, in
a continuous way.

Obligations are predicates that checks whether certain
requirements have been fulfilled in order to access ob-
jects. Pre-oBligation (preB) predicates verify whether
some requirements have been fulfilled before the access,
while ongoing-oBligations (onB) continuously check that
the requirements are fulfilled while the access is in
progress.

Conditions are requirements that do not depend on sub-
jects or objects. They evaluate environmental or system
status (e.g., current time) to decide whether to allow ac-
cess or not. Pre-Conditions (preC) are evaluated at access
request time, while ongoing-Conditions (onC) are contin-
uously evaluated while the access is in progress.

The UCON model has been successfully adopted in
many different scenarios, such as Web, Grid, Cloud or
Next Generation Networks (NGG) to protect the usage of
several kind of resources.

In [41], Sandhu et al propose the adoption of their
model in collaborative computing systems, such as the
GRID environment. In their architecture, they propose a
centralized Attribute repository (AR) for attribute man-
agement, that works in push mode (i.e. the attributes
value is submitted to the authorization service by the
user himself) for immutable attributes, and in pull mode
(i.e. the attributes value are collected by the authoriza-
tion service just before their use) for mutable attributes.
They use the eXtensible Access Control Markup Lan-
guage (XACML) [42] to specify several aspects of the
Usage Control model. Basically, they have more than one
XACML policy for the different policies necessary in the
Usage Control model.

Alexander Pretschner et al, in [43], propose an Usage
Control enforcement mechanism for applications, show-
ing an implementation for a common web browser and
using this prototype to control data in a social network.
The proposed mechanism allows the data owner to pre-
vent data from being printed, saved, copied&pasted, etc.,
after this data has been downloaded by other users. In-
stead, in [44] Pretschner shows an application of the Us-
age Control model to preserve people privacy in video
surveillance systems.

The authors of [45] propose a Process Algebra based
authorization system based on Usage Control for pro-

9

tecting GRID computational services. The policy is ex-
pressed exploiting a process description language, which
is shown to be suitable to model the core usage policy
models of the original UCON model. Moreover, they
describe a prototype implementation for GRID computa-
tional services, and they show how the proposed language
can be used to define a security policy that regulates the
network usage to protect the local computational service
from the applications executed on behalf of remote GRID
users. The Usage Control authorization system prototype
has been validated through a proper testing process de-
scribed in [46].

The work in [47], instead, addresses the problem of
continuous Usage Control when multiple copies of a data
object are stored in distributed systems, such as the Cloud.
This work defines an architecture, a set of workflows, a
set of policies and an implementation for the distributed
enforcement. The policies, besides including access and
usage rules, also specify the parties that will be involved
in the decision process. In fact, the policy might be eval-
uated on one site, enforced on another, and the attributes
needed for the policy evaluation might be stored in (many)
other locations.

5 Usage Control for Data Protection
The framework proposed in this paper enables Data Pro-
ducers (DPs) to protect the data they share by regulating
their usage when these data are stored outside the DPs’
domains, i.e., on users’ devices. It has been designed for
allowing the controlled data sharing through mobile de-
vices running Android operating system, but the approach
could be applied to other kinds of devices. The frame-
work is based on an application, namely the Data Protec-
tion System application (DPS app), running on the mobile
device which allows Data Users (DUs) to download from
the sharing server a copy of the data (Data Copy, DC) on
their mobile devices, and which is the only way to access
these copies on the devices. In particular, each DC em-
beds its Usage Control policy, and the DPS app allows to
access a DC through a set of predefined actions only, al-
ways enforcing the embedded policy to regulate the DC
usage. In each scenario, the DPS app implements these
actions for the specific kind of data that are shared. For
instance, in the reference scenario described in example 1,

the shared data are text documents, and the application is
a text document reader.

The data protection policies are based on the Usage
Control model, described in Section 4.3, which is defined
on top of the following core components: subjects, ob-
jects, actions, attributes, authorizations, conditions, and
obligations. This section briefly describes how the core
components are instantiated in our scenario focussing on
the reference examples described in Section 2.

The subjects are the Data Users who exploit the DPS
app to perform some actions on the local DCs (which are
the objects) that have been downloaded on their mobile
devices. In example 1, the employees are the subjects and
the business document is the object that is shared. In ex-
ample 2, instead, the orthopedists and the nurses are the
subjects and the examination result is the object. Each
DU has a unique id, which is represented by a subject
attribute. Each DC has a unique id as well, and it is
also paired with the id of the original document. These
two ids are represented by attributes of the object, respec-
tively, named copyId and id. When a new DC is produced,
the related copyId is derived from the one of the source
by adding a proper suffix. The id of the original doc-
ument paired with the new DC, instead, is the same as
the one paired with the source. For instance, with refer-
ence to example 1, let us suppose that a department head,
whose unique id is “paolo.mori”, holds on his device a
copy of a business document whose id and copyId are,
respectively, “12gr67h” and “12gr67h.345g6y5”. When
the department head produces a new document copy from
the one he has, the new copy will have the same id as
the source, i.e., “12gr67h”, while its copyId will be ob-
tained by adding a proper suffix to the copyId of the
source, e.g., “12gr67h.345g6y5.ret78gr”. Obviously, dis-
tinct copies obtained from the same document will have
different copyIds.

The DPS app implements the set of security relevant
actions which represent the only way for accessing and
operating on DCs. This paper exploits the following small
set of security relevant actions, which cover the reference
examples described in Section 2.

• read(s, odc): the DU (s) reads the DC object odc;

• append(s, odc, nd): the DU (s) appends new data nd
to the DC object odc;

10

• replicate&send(sfrom, sto, odc): the DU (sfrom)
sends a copy of its DC object (odc) to the (device
of the) other user sto;

• delete(s, odc): the DU (s) deletes the DC object odc
from the mobile device.

The read action is exploited by the DPS app to visu-
alize DCs on the mobile device, while the append action
is meant to append further data at the end of DCs. The
replicate&send action creates a copy of the DC to be sent
to another DU, while the delete action allows to cancel
the DC from the device. Please note that our framework
does not allow pieces of data of a DC to be copied into
other documents or to be transferred to other applications
of the mobile device, in order to avoid policy enforce-
ment issues. In fact, the usage of each piece of data must
be always regulated by its original policy, even when it is
copied on another document or transferred to another ap-
plication. An interesting solution to address these issues
is presented by Kelbert and Pretschner in [4] and [5].

The attributes paired with DCs can refer to: i) a specific
DC, e.g., the creation date; ii) a subset of DCs, e.g., the
number of data copies created after a given date; iii) all
DCs derived from the same data object, e.g., the global
number of data copies. The immutable (traditional) at-
tributes of the DC, e.g., id, copyId, creation date, or pro-
ducer, are typically embedded in the data object itself, be-
cause their values will not change during the objects life-
time. Mutable attributes of data, instead, are not embed-
ded in the data object because a large overhead for updat-
ing them and for keeping consistency among all copies
of the same attribute would be required. Consequently,
mutable attributes of data are stored on proper Attribute
Managers (AMs) that are invoked to retrieve the current
values of these attributes when required to perform the
decision process and to perform the attribute updates.

The attributes of the subjects and of the environment,
both mutable and immutable ones, are managed by proper
AMs as well, and these servers are exploited by our
framework to retrieve the current values of these attributes
every time it performs the decision process.

Our framework is general, and it supports attributes
provided by AMs which run on the mobile device, as well
as attributes provided by remote AMs, i.e., AMs which
run on remote servers. For instance, with reference to ex-
ample 1, the role of the user is a static attribute that could

be represented by a credential issued by his company, and
it could be stored and managed by a local AM, while his
status (on or off duty), that is a mutable attribute, could
be stored in a remote AM connected with the timecards
system of the company. Another example is the user loca-
tion, which is a mutable attribute that could be provided
by an AM running on the mobile device.

Our approach assumes that, for each specific scenario
in which it is adopted, a proper set of attributes is defined.
These attributes represent the specific features of subjects,
objects, and environment which are relevant for that sce-
nario in order to be able to define and enforce the desired
Usage Control policies. Consequently, a proper set of
AMs should be in place to manage such attributes, and the
way in which each of these attribute is updated depends on
the specific feature encoded by the attribute itself. In fact,
some attributes are updated because of attribute update
statements in the usage policy (pre-Updates, ongoing-
Updates, and post-Updates), while other attributes are up-
dated as a consequence of other events or actions per-
formed by the subjects (e.g., the updates of the subject
position attribute are due to the movements of the sub-
ject). For instance, with reference to example 1, we as-
sume that the AM providing the global number of DCs
derived from the same data object is invoked: i) to retrieve
the current attribute value every time is required to evalu-
ate the policy; ii) to increase the attribute value every time
a new copy is created; iii) to decrease the attribute value
every time an existing copy is destroyed. Since in this ex-
ample we assume that the delete action is the only way
to delete a DC and, consequently, to decrease the global
number of data copies attribute, this attribute takes also
into account the copies stored on unreachable mobile de-
vices (e.g., broken or disconnected devices). As a matter
of fact, these devices could be repaired and reconnected
to the internet after a while.

In the data protection scenario, authorizations are pred-
icates involving attributes of DUs and DCs. The reference
example example 1 requires the definition of Usage Con-
trol policy including several authorization predicates. For
instance, one of these predicates states that a subject s is
allowed to visualize a given document o only if he is an
employee of the company, and another predicate requires
that o is related to a project on which s is currently work-
ing on. As previously stated, the role of a person in the
company, such as “employee”, is represented by an at-

11

tribute paired to the subject, while the project a document
refers to, is an attribute of the object. Since the previous
attributes are immutable, the previous predicates are pre-
Authorizations. The policy could require that some autho-
rization predicates are satisfied continuously during the
access time (ongoing-Authorizations), because some at-
tributes of the subject or of the object could change while
the access is in progress in a way such that the policy is
violated. As an example, the attribute which represents
the state of the employee requires continuous control be-
cause, for instance, the employee could change his state
from “on duty” to “off duty” clocking out while his ac-
cess to the document is still in progress, thus violating the
policy.

Conditions are environmental factors which do not di-
rectly depend upon subjects or objects. For instance,
in example 1, the condition predicates involve the cur-
rent date and time. In particular, the current date and
time is evaluated both when the access is requested (pre-
Condition) in order to grant the access only during the
working hours, and continuously while the access is in
progress (ongoing-Condition), in order to revoke the ac-
cess as soon as the current date and time is off working
hours.

Obligations verify the fulfilment of some mandatory re-
quirements before performing an action (pre-oBligation),
or while performing it (ongoing-oBligation). For in-
stance, the policy could state that an email must be sent
to the DP every time some new data are appended to a
DC.

5.1 UXACML Policy Language
Our framework exploits the UXACML language to
express enforceable policies, because UXACML is
an extension of the XACML language we explicitly
designed to support the peculiarity of the Usage Control
model, i.e., the continuity of policy enforcement. In fact,
the XACML language [42], is a well-known and con-
solidated standard developed by the OASIS consortium
for expressing access control policies in a distributed
environment, and we extended it with the constructs
required for Usage Control as follows.
UXACML represents the continuity of policy
enforcement by adding a new clause, called
DecisionTime, in the <Condition> and in

the <ObligationExpression> elements of the
XACML language. The DecisionTime clause defines
when the evaluation of conditions or obligations must be
executed. The admitted values are pre and on denoting,
respectively, pre and ongoing decisions. In this way, the
conditions whose decision time is set to pre are usual
XACML conditions, while the conditions whose decision
time is set to on must be continuously evaluated while the
access is in progress. We recall that XACML conditions
are exploited in UXACML to represent both UCON
authorizations and conditions. In the same way, the
obligations whose Decision Time clause is set to pre
are usual XACML obligations, while ongoing-obligations
will be expressed by setting the DecisionTime clause
to on.
To change the values of mutable attributes, UX-
ACML introduces a new element, <AttrUpdates>,
which allows to define the attribute update statements
in the policy. This element includes a number of
<AttrUpdate> elements to specify each update
action. Each <AttrUpdate> element also specifies
when the update must be performed through the clause
UpdateTime which can have one of the following
values: pre (pre-Update), on (ongoing-Update) and
post (post-Update). In case of ongoing-Updates, the
update statements also specify the events which trigger
the update. A detailed description of the UXACML
policy language can be found in [30].

5.2 Policy Example
This section gives a couple of examples of Usage Control
policies taking into account the reference scenarios de-
scribed in Section 2. The proposed examples are meant
to show the capabilities of our approach, and they are
very simple with respect to the Usage Control policies en-
forced in real scenarios. Moreover, the authoring of data
Usage Control policies in real scenarios could be a com-
plex task involving several actors. For instance, in the
scenario of example 2, besides the radiologist, also the
patient should be allowed to express his policy to regulate
the usage of the document representing the results of his
examination. Since the framework proposed in this paper
is part of the Coco Cloud project, we assume to exploit the
policy authoring tool developed within this project to cre-
ate proper Usage Control policies for real scenarios, since

12

it allows multiple actors to participate to the definition of
such policies [2].

Although in the proposed framework enforceable poli-
cies are expressed using the UXACML language, for the
sake of simplicity this section exploits a human-readable
language because the UXACML one is too verbose. Ta-
ble 1 shows a representation of the Usage Control policy
of example 1, where a team manager wants to regulate the
sharing of some critical business documents with his em-
ployees. In this policy, s represents the subject requesting
the access, and o is the document that s wants to access.
Moreover, s.X represents the attribute X of the subject
s (e.g., s.role represents the attribute role of the user s),
while o.Y represents the attribute Y of the document o.

The policy of Table 1 is actually a policy set consisting
of two policies (namely policy-1 and policy-2), which is
applicable only to the document it is attached to (whose
original document id, represented by the attribute o.id, is
”12gr67h”). The target of policy-1 is the security relevant
action ”read(s,o)”. The first pre-Authorization predicate
of policy-1, (”employee” ∈ s.role), requires that the com-
pany grants the role ”employee” to the user requesting the
access. We assume that department heads also hold the
role ”employee”. This is a pre-Authorization because the
attribute involved in the predicate (s.role) is immutable in
our example, i.e., the role is assigned to the user through
an administrative action. The attribute s.projects repre-
sents the list of projects assigned to the user s by the team
manager T, and Policy-1 checks that the value of the at-
tribute o.project is included among the values of s.projects
both in the pre-Authorization section and in the ongoing-
Authorization section, exploiting the predicate (o.project
∈ s.projects). This ensures that the employee can open
the document o only if o belongs to one of the projects as-
signed to him, and this document will be closed as soon as
this project is removed from the list s.projects by the team
manager T. Moreover, example 1 requires that the em-
ployee is on duty and is located within the building of the
company while he accesses the document. Hence, policy-
1 includes pre-Authorization predicates which check the
mutable attributes of the user s.onDuty and s.location at
request time in order to grant the access to the docu-
ment, and ongoing-Authorization predicates which con-
tinuously check the value of the same attributes while the
access is in progress in order to revoke such access as
soon as a change in these attributes causes a policy vio-

policy-set:
target:

(o.id = ”12gr67h”)

policy-1:
target:

(action = ”read(s, o)”)
pre-Authorization:

(”employee” ∈ s.role) AND
(o.project ∈ s.projects) AND
(s.onDuty = TRUE) AND
(s.location ∈ COMPANY LOCATIONS)

pre-Condition:
(e.dateTime ∈WORKING HOURS)

pre-Update:
(s.lastOpenedProject := o.project)

ongoing-Authorization:
(o.project ∈ s.projects) AND
(s.lastOpenedProject = o.project) AND
(s.onDuty = TRUE) AND
(s.location ∈ COMPANY LOCATIONS)

ongoing-Condition:
(e.dateTime ∈WORKING HOURS)

policy-2:
target:

(action = ”replicate&send(s, s’, o)”)
pre-Authorization:

(”departmentHead” ∈ s.role) AND
(o.project = s.project) AND
(o.nOfCopies < N)

pre-Update:
(o.nOfCopies++)

Table 1: Security policy for Example 1

lation. Policy-1 also includes an authorization predicate
which ensures that the user is working on documents of
the same project only at the same time. In fact, the id
of the project the document o belong to is assigned to
the attribute s.lastOpenedProject in the pre-Update sec-
tion, i.e., when the access to o is granted, and the pred-

13

icate (s.lastOpenedProject = o.project) in the ongoing-
Authorization section checks that no documents related to
other projects are opened while o is being read. Supposing
that in our framework the attribute s.lastOpenedProject
is managed by a remote AM, the policy takes into ac-
count the documents opened on all the devices of the user.
Moreover, the pre-Condition and the ongoing-Condition
sections include a predicate which controls that the ac-
cess is performed during the working hours by check-
ing the value of the environmental attribute e.dateTime.
Ongoing-Authorizations and ongoing-Conditions must be
verified for the whole time the employee visualizes the
document. The position is a mutable attribute that auto-
matically changes due to the movements of the user. The
attribute s.onDuty changes its value when the user clocks
in (the new value is TRUE) and out (the new value is
FALSE). Finally, the mutable user attribute lastOpened-
Project is changed by the pre-Update clause of policy-1
when the user visualizes a new document. The frame-
work automatically detects when one (or more) of these
attributes changes its value, it performs a new evaluation
of the ongoing authorizations and conditions, and it inter-
rupts the reading of the business document if the policy
no longer grants the access right to the user.

The policy set includes another Usage Control policy,
policy-2, which authorizes department heads working on
a project to produce further copies of the project docu-
ments from their copies, but it only allows a maximum
of N copies of the same document. The attribute repre-
senting the number of existing data copies is mutable and
global. In fact, the value of this attribute is updated by
the pre-Update predicate of policy-2, and this requires to
adopt a remote Attribute Manager.

The DU can download the same document on two (or
more) devices of his. In this case, distinct copies of the
original document are created, and each device operates
on its local copy. Race conditions could arise because
the simultaneous access to these copies on distinct devices
results in the concurrent enforcement of the same Usage
Control policy which, in turn, causes concurrent reads and
updates of the same remote attributes. However, these
issues are managed by the Lock Manager which is paired
to each AM, as described in Section 6.

Table 2, instead, encodes the Usage Control policy re-
lated to example 2 of Section 2. The target of this pol-
icy set is the document where the policy itself is embed-

policy-set:
target:

(o.id = ”sd4n68k”)

policy-1:
target:

(action = ”read(s, p, o)”)
pre-Authorization:

(”nurse” ∈ s.role) AND
(s.department = ”orthopedics department”) AND
(p.hospitalized = ”orthopedics department”) AND
(o.patientConsent = TRUE)

pre-Update:
(o.openedBy := s.id)

ongoing-Authorization:
(p.hospitalized = ”orthopedics department”) AND
(o.patientConsent = TRUE) AND
(o.openedBy = s.id)

policy-2:
target:

(action = ”read(s, p, o)”)
pre-Authorization:

(”orthopedist” ∈ s.role) AND
(o.patientConsent = TRUE)

ongoing-Authorization:
(o.patientConsent = TRUE)

Table 2: Security policy for Example 2

ded, (whose original document id is ”sd4n68k”), and the
policy set consists of two policies, policy-1 and policy-
2. The target of policy-1 is the read action. The pre-
Authorization section includes two predicates which re-
quire that the subject who performs the action holds the
role ”nurse” and works in the department of orthopedics
by checking the value of the subject attributes s.role and
s.department which, obviously, represents the role of the
subject and the department of the hospital the subject be-
longs to. Since these attributes are static, their values are
controlled in the pre-Authorization section only. In the
scenario depicted in example 2 the document producer

14

wants to allow the nurses of the department of orthopedics
to read the document only when the patient is hospitalized
in that department. This is implemented by exploiting an
attribute of the patient, called hospitalized, whose value
represents the name of department of the hospital where
the patient is hospitalized (or null otherwise). This at-
tribute is mutable, because its value changes when the pa-
tient is hospitalized and when he is discharged from hos-
pital. Hence, the value of the hospitalized attribute of the
patient is compared with the id of the department of ortho-
pedic (which is ”orthopedics department” in our example)
both in the pre-Authorization section, in order to open the
document only if the related patient is currently hospital-
ized in that department, and in the ongoing-Authorization
section, in order to revoke the read permission as soon
as the patient leaves that department. A further predicate
concerns the consent of the patient on the document. In
particular, any access to the document is allowed as long
as the patient gives his consent. The patient’s consent re-
lated to a document is represented by a mutable attribute
of the document itself, called ”patientConsent”. The value
of this attribute changes every time the patient accesses to
the web interface provided by the e-health organization to
manage his e-health documents and changes the related
consent preferences. In this paper, we suppose that the pa-
tient consent is a boolean attribute, i.e., the patient either
gives or not the consent to access the document to all the
subject of the scenario. Alternatively, the patient consent
could be a list of people to which the patient wants (or
does not want) to give the read permission on that doc-
ument. Hence, policy-1 includes the predicate checking
whether the patient consent is given or not both in the
pre-Authorization and in the ongoing-Authorization sec-
tions. In this way, if the patient consent is revoked when a
nurse is reading the document, the read operation is inter-
rupted. The last predicate of the ongoing-Authorization
section checks the id of the last subject who opened the
document, because only one nurse at the same time can
read the document. Hence if the last nurse who opened
the document is not the subject of this request, the ac-
cess must be interrupted. The attribute representing the id
of the last subject who opened the document is mutable,
because the policy include a pre-Update that changes its
value when a new subject performs a read action on the
same document.

Finally, the target of Policy-2 is the read action per-

Figure 2: Usage Control Architecture

formed by subjects whose role is ”orthopedist”. Like in
the previous case, the policy controls that the patient’s
consent is given and remains valid while the access is ex-
ecuted.

6 System Architecture

Figure 2 shows the architecture of the proposed frame-
work, which consists of two main components, the Data
Protection System and the UXACML Authorization Sys-
tem, which are deployed on the mobile device,

The Data Protection System (DPS) is the component
which allows the user to access the DCs stored on his mo-
bile device. In order to ensure that the Usage Control pol-
icy is always enforced when the local DCs are accessed,
the DPS embeds the Policy Enforcement Point (PEP) in a
way such that all the accesses are controlled by the UX-
ACML Authorization System, and the DPS is the only
component that is able to access the DCs. In fact, the DCs
stored on the mobile devices are encrypted, and only the
DPS keeps decryption keys to access the data and perform
decryption should the access be granted to the requester.
The approach adopted for distributing the keys to mobile

15

devices is out of the scope of this paper. In fact, the pro-
posed framework relies on the key distribution approach
defined within the Coco Cloud project, of which it is a
part of.

The policy enforcement point (PEP) is the component
which intercepts invocations of security-relevant access
requests, suspends them before starting, queries the UX-
ACML Authorization System for access decisions, en-
forces obtained decisions by resuming the suspended re-
quests in case of positive answer or by skipping the execu-
tion of the requests in case of negative answer. The PEP
also interrupts ongoing accesses as soon as it is notified
by the UXACML Authorization System due to a policy
violation.

The UXACML Authorization System extends the
XACML reference architecture [42], and it is composed
by the following components:

• Context Handler (CH) is the front-end of the UX-
ACML Authorization System, and it manages the
communication protocol with the PEP. It coordinates
the other components of the UXACML Authoriza-
tion System and manages the communications with
them for the execution of the decision processes;

• Policy Decision Point (PDP) is a component which
evaluates security policies and produces the access
decision. In our framework the PDP evaluates stan-
dard XACML policies because the Usage Control
specific features are managed by the Session Man-
ager and by the Access Table;

• Session Manager (SM) is the component which is
responsible for keeping track of the ongoing usage
sessions to allow the continuous enforcement of the
policy;

• Access Table (AT) is the component which actually
stores the meta-data regarding ongoing sessions. It
manages a table where each entry represents an on-
going session, and records the session ID, the access
request, the policy, the session status (i.e., pending,
active), the list of attributes required for the policy
evaluation, and other information;

• Attribute Managers (AMs) are components which
manage attributes, allowing to retrieve and to update
their current values. They could be local, i.e., they

run on the mobile device, or external (remote), i.e.,
they could run on external servers that could be even
located in other administrative domains;

• Policy Information Points (PIPs) are the components
which provide the interfaces to query the AMs for re-
trieving and updating attributes. In general, the UX-
ACML Authorization System needs to interact with
several AMs for the evaluation of the policy. In fact,
each scenario requires a distinct set of AMs to man-
age the set of attributes required for the evaluation
of the policy. Hence, our system defines a config-
urable chain of PIPs, where each PIP is implemented
to deal with a specific AM. In particular, each PIP
implements the specific protocol required to interact
with the related AM and exploits the provided mech-
anisms for securing the communications and/or veri-
fying attribute assertions. For instance, if the mutual
authentication between the AM and the UXACML
Authorization System is supported, the PIP holds
the required credentials and performs the authenti-
cation process. For instance, Figure 2 shows two
PIPs: PIPL, which manages local attributes stored on
the mobile device, and PIPX , which collects and up-
dates a set of remote attributes shared among several
authorization systems. Moreover, each PIP is also in
charge of triggering the policy reevaluation when the
value of an attribute has changed. To this aim, the
PIP could rely on the subscription mechanism pro-
vided by the AM or, if the AM does not support it,
the PIP must emulate the subscription mechanism,
for instance, by periodically retrieving the current
attribute value in order to detect whether it is dif-
ferent from the one previously collected. Finally, the
PIPs are also in charge to support other features con-
cerning the attribute retrieval phase. For instance, the
PIPs should implement proper strategies to allow the
policy evaluation even when AMs are not reachable.;

• Lock manager (LM) is a component which guar-
antees consistency in concurrent retrieval and up-
dating of mutable attributes. It supports a locking
mechanism which determines whether the attribute
query/update should be served or should be delayed
by placing it in a queue and executing it later.

With respect to the XACML reference architecture, our

16

framework introduces two additional components: the
SM and the AT. We prefer to keep them as separate com-
ponents, and not to embed them within the PDP, because
their task is to determine which ongoing sessions must be
reevaluated and which policies must be used, and they are
not involved in the evaluation of such policies.

The architecture has been designed to deal with con-
current retrieval and update of mutable attributes, because
distinct decision processes can read and update the same
mutable attributes concurrently. For instance, a common
set of remote attributes are exploited by the UXACML
Authorization Systems installed on two distinct mobile
devices to evaluate the policies of two copies of the same
document. Hence, the CH exploits a strategy for retriev-
ing mutable attributes which prevents concurrency issues
such as race conditions. This strategy implies that the
attributes are collected in the predefined order (e.g., at-
tributes are ordered by name alphabetically), and the ac-
quisition of a lock on the attribute is required before read-
ing it. This lock is released after the attribute update. In
theory of concurrency control, this strategy is usually re-
ferred as a dead-lock free two-phase locking algorithm.
However, we don’t focus on this aspect in this paper. For
further details please refer to [47].

6.1 Workflow
This section describes the interactions among the compo-
nents of the architecture previously described when a DC
is accessed on the mobile device.
Figure 3 shows the workflow of the pre-Decision phase.
When the DU tries to perform a security-relevant action
on a DC through the DPS, the PEP intercepts the access
request R and: (1) Extracts from the DC the Usage Con-
trol policy and the static attributes embedded into the doc-
ument, attrse, and (2) sends the tryaccess request, which
includes R, attre and the Usage Control policy, to the
CH; (3) The CH determines the attributes needed for the
evaluation of the Usage Control policy and, according to
the previously described strategy, initiates the attribute re-
trieval phase. (4) At first, the CH retrieves local attributes.
Since the PIPL, LML, and AML are installed on the local
device, in Figure 3 they are aggregated into a single com-
ponent, and the concurrency control for local attributes is
simplified, as we assume that they can be considered as a
single attribute. Hence, the CH sends the attribute query

to this component. When the exclusive lock is obtained,
this component returns the values of the attributes to the
CH. The lock will be released at the end of the decision
process; (5) Then, the CH retrieves the remote attributes.
For each remote attribute attrx, the CH sends the attribute
query to the corresponding PIPx. The attribute query is
converted in the format supported by the AMx, and sent
to the LMx. If attrx is not locked, the LMx set a lock on it
and forwards the attribute query to the AMx. The attribute
value returned by the AMx is forwarded to the CH. The
lock is not released. Instead, if attrx is already locked by
another process, the LMx delays the execution of the at-
tribute query waiting that this lock is released; (6) When
the CH has collected all the required attributes, it sends
R, the collected attributes, and the Usage Control policy
to the PDP for the access evaluation (pre-request). The
PDP returns the access decision and the attribute updates;
(7) The CH sends the update and unlock messages for all
the attributes involved in the decision process to the re-
lated PIPs, in order to update their values on the AMs and
to unlock them. The order of performing updates and un-
locking attributes is not important in the two-phase lock-
ing protocol. Since remote attributes are still locked be-
cause of step 5, each LMx asks the related AMx to per-
form the update and then releases the lock. The CH per-
forms the same procedure for local attributes. (8) When
all attributes are updated, if the access decision is “per-
mit”, the CH sends the create entry message to the SM
for creating a new entry in the AT that represents the new
usage session; (9) Finally, the CH replies with the access
decision to the PEP.

Figure 4 shows the workflow of the ongoing-Decision
phase: (1) When the access to the data object has began
(e.g., the DPS app is displaying the DC on the screen of
the mobile device), the PEP sends to the CH the startac-
cess message with the id of the session created during the
pre-Decision phase (sID); (2) The CH contacts the SM to
change the status field of the database entry related to the
session to “active”, and the SM replies with the policy and
the list of attributes needed for the access reevaluation; (3)
The CH performs the first evaluation of the ongoing pol-
icy for the session. The workflow is very similar to one
of the pre-Decision phase. Indeed, the diagram “Ongo-
ingDecisionFirst” is similar to the steps 4-7 of the diagram
“PreDecision” (Figure 3). The only difference is that the
CH also performs the attribute subscription in steps 4-5.

17

PEP CH PIP SM&ATPDP

2: tryaccess(R, policy, attrs)

6: pre-request

attr

response

ok

LM AM

1: policy,attrs

[foreach
attr]

lock attr
attr

update attrs

unlock attrs

ok

ok

8: create entry

9: permitaccess(sID) ok, sID

update attrs

values of attrs

ok

x

x
x

x

x

x

x

x

xx

L

L

L

Lupdate attrs

PIP
LM
AM

4: attrs

L
L

L

x

value of attr

value of attr

value of attr
x

x

3: attrs list

7: par

5: loop

sd PreDecision

e

e

Figure 3: Sequence Diagram of the Pre-Decision phase

PEP CH PIP SM&ATPDP LM AMxx

L

PIP
LM
AM

L
L

L

x

1: startaccess(sID) 2: update entry

ok,attrs/policy

4.2: ref
sd EndAccess

4: alt

4.1: revokeaccess(sID) It is sent by the CH for this session
in step 7 in sd Reevaluate as a
result of access violation

sd OngoingDecision

sd OngoingDecisionFirst
3: ref

Figure 4: Sequence Diagram of the Ongoing-Decision phase

If the result of the first evaluation of the policy is “deny”,
the CH cancels the attribute subscriptions and sends the
revokeaccess message to the PEP. In Figure 4, we assume
that the result of the first evaluation of the policy is “per-
mit”; (4) From this moment on, the continuous control
phase starts for this session, i.e., the policy is reevaluated
every time an attribute changes its value (Figure 5) until

either i) the policy is violated and the session is revoked
(the PEP receives the revokeaccess message for this ses-
sion), or ii) the user explicitly terminates the session, e.g.,
closing the DPS app (Figure 6).

Figure 5 shows the workflow of the reevaluation of the
policies for all active sessions. (1) When the value of one
subscribed attribute changes, the CH receives a notifica-

18

PEP CH PIPPDP

6: on-request

response

LM AM

[idles until triggered for reevaluation]

attrs/sessions

9: remove entry

ok

PIP
LM
AM

L

 values of attrs

x xx
L
L

L

L

3: attrs

2: attrs/seesions to refresh/reevaluate

5: loop

7: opt

[foreach session]

[if decision = deny]

loop

SM&AT

sd Reevaluate

1: new attr value

attr

[foreach
attr]

lock attr
attr

x

x

x
x

x

xvalue of attr

value of attr

value of attr

x

4: loop

ok
L

unsubscribe attrs

ok

unsubscribe attrs

x

8: par

revokeaccess(sID)

ok

unlock attrs

ok

ok

update attrs

ok

xx

Lupdate attrs

x10: par update attrs

Figure 5: Sequence Diagram of the Policies Reevaluation

tion from that PIP and this triggers the reevaluation of the
policies for all the active sessions involving such attribute;
(2) The CH requests to the SM the list of the active ses-
sions which must be reevaluated and the corresponding
lists of attributes required for the evaluation. (3-4) The
CH retrieves the current values of all the local and remote
attributes in the lists and locks them in the same way as
in the pre-Decision phase. From now on, the CH will use
its local cache for managing the values of the collected at-
tributes; (5) For each active session AS, the CH performs
the policy reevaluation. The order chosen to reevaluate
the sessions could affect decision processes, but we don’t
focus on this issue in this paper; (6) The CH sends the
original access request R, the collected attributes and the
Usage Control policy of AS to the PDP; (7-9) The CH
manages the response received from the PDP, and if the
access decision is ”deny” it: i) sends the revokeaccess
message to the PEP; ii) cancels the attribute subscription
related to the session AS; and iii) asks the SM to remove

the entry related to AS in the AT; (10) Finally, when all
the sessions have been reevaluated, the CH sends the up-
date messages for all the attributes to the related PIPs, in
order to transfer the updated values from its local cache to
the related AMs and to release the attribute locks.

Figure 6 shows the workflow in the case of a normal
end of access: (1) When the PEP detects the normal end
of an ongoing access (e.g., the user terminates the DPS
app), it sends the endaccess message to the CH; (2) The
CH sends the remove entry message to the SM, which re-
moves the entry related to this session from the AT and
replies to the CH with the metadata of the session, i.e., its
policy and the attribute list; (3) For each attribute of this
list, the CH send the unsubscribe message to the related
PIP to stop getting new attribute values for this session.
The remaining steps of the workflow (4-7) are similar to
steps 4-7 of the pre-Decision phase, and are meat to per-
form the post-Updates of attributes.

The previous sequence diagrams clearly show that the

19

PEP CH PIP SM&ATPDP

6: post-request

attr

updates

ok

LM AM

[foreach
attr]

lock attr
attr

update attrs

unlock attrs

ok

ok

8: ok

update attrs

values of attrs

ok

x

x
x

x

x

x

x

x

xx

L

L

L

Lupdate attrs

PIP
LM
AM

4: attrs

L
L

L

x

value of attr

value of attr

value of attr
x

x7: par

5: loop

sd EndAccess

ok

L

1: endaccess(sID)

unsubscribe attrs

ok

unsubscribe attrs

x

3: par

2: remove entry
ok, session metadata

Figure 6: Sequence Diagram of the End of Access

PIPs are in charge of managing all the interactions with
the remote AMs. Hence, the PIPs must implement proper
strategies to allow the policy evaluation even when an AM
is not reachable (e.g., it is down, the network connection
is not available, or the DU cuts off the network connection
of the mobile device on purpose), as shown in Section 7.3.

7 Prototype

7.1 Implementation

The implementation of the proposed framework consists
of two Android applications: the UXACML Authoriza-
tion app and the DPS app, as shown in Figure 7.

The UXACML Authorization app is the core of our
prototype, and it implements the UXACML Authoriza-
tion System. This application consists of a set of Android
services each implementing a specific component of the
architecture.

The front-end of the UXACML Authorization System,

the CH, is a bound Android service which implements
client-server synchronous interactions. Initially, the PEP
binds to the CH and then sends access requests using inter
process communication (IPC) of Android. Communica-
tions between the PEP and the CH are blocking, i.e., the
code where the PEP is inserted can not continue unless an
authorization decision is given. The Android IPC mecha-
nism allows the CH to verify the identity of the PEP, i.e.,
the DPS app connecting to the UXACML Authorization
app. Moreover, the UXACML Authorization app is con-
figured to accept only IPC invocations from the applica-
tions signed with the same key and this forbids other ap-
plications but the DPS app to invoke the CH.

The CH may accept several access requests and each
new request is evaluated in a separate thread. The An-
droid OS handles a group of working threads to facilitate
efficient evaluation of new requests. Therefore, the UX-
ACML Authorization App is able to handle multiple calls
(access requests) at the same time.

The PDP is implemented through a modified version of
OW2 Balana XACML Engine in order to make it running

20

DPS App

ThreadThread Activity Service

PEP revoke

OnRevoke():
 Kill ACtivity

OnCreate():
 PEP.tryaccess
 …
 PEP.startaccess
 …
OnDestroy():
 PEP.endaccess
 …

 IPC (inter process communication)

App with UXACML Support (Process)

CH

SMPDP

Thread Service

CH

SMPDP

CH

SMPDP

Thread Service

PIP

AM

Alarm
Manager Bluetooth SQLite

UXACML Authorization App

LM

PIPAMLM

PostgreSQL DB

WebApp

X

L

L

L

XX

Wi-Fi ...

Figure 7: Usage Control Implementation in Android

on Android.
The Session Manager is an Android service which ex-

ploits the AT to store the metadata regarding the new us-
age session, i.e., the session ID, the access request, the
policy, the session status, the list of attributes required for
the policy evaluation, and other information. The AT is
implemented by an Android SQLite DB installed on the
device. The data about sessions are private data of the
UXACML Authorization App and can not be accessed by
other Android apps. Access to the AT is implemented to
be thread-safe.

In our prototype the local PIP, PIPL, provides interfaces
to some environmental attributes (e.g, the status of the wifi
and bluetooth connections) and to the location of the de-
vice (and, consequently, of the user). The local PIP also
manages the attributes related to local data copies (e.g.,
a number of accesses to the DC stored on the mobile de-
vice), which are stored by the AML in the SQLite DB in-
stalled on the device. The LML guarantees the consistent
access to these attributes when multiple attribute queries
and updates are performed concurrently.

Remote attributes, e.g., the overall number of DC cre-
ated from the same original document in the system, are
managed by another PIP, PIPX , which communicates via

protected channel (TLS) with the remote LMX /AMX .
We used the implementation of the remote LMX /AMX

described in [47]. Remote attributes are stored in Post-
greSQL DB and are exposed via a web-service interface.
The PostgreSQL DB is very powerful on supporting a va-
riety of locking mechanisms and we exploit a dead-lock
free two-phase locking algorithms for collecting remote
attributes.

PIPs are also in charge of notifying the CH when the
value of a subscribed attribute changes. For local at-
tributes, the PIPL emulates the subscription mechanism
by periodically retrieving and checking the current val-
ues of such attributes in order to detect whether some
changes occurred. To this aim, the PIP sets the Android
Alarm Manager in order to be invoked every T seconds,
where T is a configuration parameter. When at least the
value of one attribute has changed, the PIPL awakes the
CH and triggers the access reevaluation. In our imple-
mentation, the remote AM does not support subscription.
Hence, for remote attributes, the PIPX emulates the sub-
scription mechanism as well by periodically polling the
AMX checking if there are some updates. If so, the PIPX

invokes the CH in order to trigger the access reevaluation.
In some cases, a PIP could not be able to retrieve the

current values of the attributes, because the related remote
AM is unreachable (e.g., the AM is down or the network
is not available). In real scenarios, each PIP should imple-
ment proper strategies to manage these cases, as described
in Section 7.3.

The DPS app allows the access to the local copies of the
shared data, by implementing a set of operations on such
data. However, how these operations are implemented is
not relevant for our aims, while we concentrate on the im-
plementation of the PEP which is embedded in the DPS
app.

When a user launches the DPS app and requests access
to a DC, the PEP forms the XACML access request which
includes the id of the DC, of the original document, of the
user, and of the requested action, along with some other
attributes embedded in the DC. We exploited the Google
Account id to represent the user in our implementation,
though, it could be changed to the identity within a scope
of the DPS app provided that the DPS account is set on
the mobile device.

The structure of the Activity of the DPS app which in-
cludes the PEP functionalities is depicted on top of Fig-

21

ure 7. The PEP binds to the UXACML Authorization
App on “tryaccess” and unbinds on the “endaccess” or
“revokeaccess” (i.e., when the Activity is destroyed). If
the resource and actions on it are represented by another
abstraction and the lifetime of the resource is longer than
that of the activity/service which provides access to it,
the binding between the PEP and the UXACML Autho-
rization App is executed upon each security message ex-
change. The UXACML Authorization App also binds to
the PEP if the revocation of usage session is detected. The
PEP receives the revocation message (Android intent) and
starts a new thread that handles the real access revocation.
The DPS app is configured to accept only IPC invocations
from the UXACML Authorization app, therefore commu-
nications between the PEP and the CH are secured and
rely on the IPC mechanisms of Android.

The DPS app stores encrypted bundles of the DC in the
external memory of the mobile device (SDCard) while the
keys to decrypt these bundles are stored in the internal
memory of the DPS app. When a user wants to display
a DC, the DPS app decrypts the bundle, gets the usage
control policy and sends it via the PEP to the UXACML
Authorization app. If the access decision is granted, the
DPS app displays the DC. We used AES algorithm for
encrypting/decrypting the bundles.

7.2 Performance Analysis
To validate the proposed approach, we installed the UX-
ACML Authorization App and the DPS app on a Motorola
Moto G which runs Android 4.4 KitKat and is equipped
with 1 GB RAM and Quad-Core 1.2 GHz Cortex-A7
CPU, and we tested the performance of our prototype
in case of a large number of concurrently running us-
age sessions. Our tests were performed on our depart-
ment network, i.e., the mobile device was connected to
our department network through the WiFi interface, and
the remote AM run on a server connected to the same net-
work. Please note that the results obtained from our tests
are obviously dependent on the features of our testbed.
Moreover, since no TPM implementation is available, we
cannot measure whether it affects the performance of our
framework. However, the TPM would only affect per-
formance at system start-up, when integrity check is per-
formed.

First, we measured the overhead introduced by the pre-

Decision phase, which affects the time required to access
the data. Without loss of generality, we considered a sce-
nario in which the system receives and authorizes a sin-
gle request at a time. We performed our tests varying
the number of attributes required by the UXACML Au-
thorization app to perform the decision process from 1 to
100. Please notice that 100 is a quite large number of at-
tributes.

Figure 8: Overhead of Pre-Decision Phase without Up-
dates

Figure 8 shows the UXACML Authorization app over-
head in two distinct configurations; in the first configura-
tion (represented by the continuous line) all the attributes
are local, i.e., the related AMs run on the mobile de-
vice, while in the second configuration (represented by
the dashed line) all the attributes are remote, i.e., the re-
lated AM run on a remote server, and network communi-
cations are required to retrieve attributes values. In this
set of tests, we exploited a policy which does not perform
attribute updates, i.e., the UXACML Authorization app
only retrieves attribute values.

The time required to retrieve remote attributes is larger
than the time required to collect local ones, although the
difference is quite small. For instance, the time to evalu-
ate a policy with 100 attributes is around 724 ms in case of
remote attributes, while it is about 566 ms in case of lo-
cal attributes. This difference is mainly due to the time
required for the communications with the remote AM.
We recall that these communications are secured through
TLS, and this introduces further delay. However, we no-
ticed that our remote AM implementation is more effi-
cient than the implementation of the local ones, because

22

local AMs run on the mobile phone with limited com-
putational resources, while the remote AM run on more
powerful PC (4 GB RAM and Intel Core Duo CPU E8500
3.16GHz). Hence, in our experiments the communication
delay is somehow compensated by faster responses of the
remote AM.

Moreover, we noticed that there is a growth of the time
required to perform the access decision with the number
of attributes, as we would expect. In fact, the time re-
quired to evaluate the policy with 10 remote attributes is
205 ms, while in case of 50 attributes the time is 379 ms,
and in case of 100 attributes it is 724 ms.

The next set of experiments evaluates the overhead in-
troduced by the UXACML Authorization app in the pre-
Decision phase enforcing policies that also include at-
tribute updates. We performed two sets of experiments,
in the first we exploited only local attributes, while in the
second set we used only remote attributes.

Figure 9: Overhead of Pre-Decision with Local Attributes
and Updates

Figure 9 shows the results in case of local attributes.
Further, we identified two cases: in one case (represented
by the continuous line in the graph) the policy updates
10% of the attributes involved in the access evaluation
(hence the policy that includes 10 attributes updates only
one of them, while the policy including 100 attributes
updates 10 attributes), while in the other case (repre-
sented by the dashed line) the policy updates 90% of its
attributes. We notice that the time to perform the pre-
Decision phase in case of policy that updates 10% of its
attributes is, on average, about 87% of the time required
when the policy updates 90% of its attributes. In fact, in

case of 10 attributes, the time required to evaluate a policy
that updates 1 attribute is 114 ms, while the time for a pol-
icy that updates 9 attributes is 140 ms, while in case of 100
attributes the time is 631 ms when 10 attributes are up-
dated and 702 ms when 90 attributes are updated. Hence,
we conclude that the update of local attributes does not
heavily affect the pre-Decision time. As observed in the
previous graph, the authorization overhead grows with the
number of attributes.

Figure 10: Overhead of Pre-Decision with Remote At-
tributes and Updates

Figure 10 reports the results of the experiments evaluat-
ing the UXACML Authorization app overhead enforcing
policies exploiting remote attributes with updates. Like
in the previous experiments we performed our tests tak-
ing into account two cases: in one case (represented by
the continuous line in the graph) the policy updated 10%
of the attributes, while in the other case (represented by
the dashed line) the policy updated 90% of its attributes.
The evaluation time of the policy that updates 10% of its
attributes is, on average, about 89% of the time required
when the policy updates 90% of its attributes. In fact,
in case of 100 attributes, the evaluation time of the pol-
icy that updates 10 attributes is 875 ms, while the time
for evaluating the policy that updates 90 attributes is 972
ms. These results show that the behaviour of the system
in case of policies including remote attribute with updates
is similar to the one in the scenario where all attributes
are local. If we compare the time required to evaluate
the policies with local attributes with the time needed for
policies with remote attributes we find that on average the
former is about 70% of the latter.

23

Figure 11: Factors Impacted on Pre-Decision Overhead

We also evaluated how each phase of the decision pro-
cess impacted on the overall pre-Decision phase over-
head. In general, the overhead compounds of the times
that are required for sending access request/response be-
tween the PEP and the CH, retrieving local and remote
attributes, evaluating the security policy, performing up-
dates of local and remote attributes as a result of the ac-
cess evaluation, populating the session table for ongoing
sessions which should be controlled continuously. Fig-
ure 11 shows the results of a scenario where the policy
evaluated 45 local attributes and 45 remote attributes, and
updated 15 local attributes and 15 remote ones. The over-
all overhead is 865 ms, and 25% of it concerns the re-
trieving/updating local and remote attributes while 30%
goes for the access evaluation. Another factor that sig-
nificantly affects the pre-Decision phase overhead is the
management of the data structures keeping information
about ongoing sessions (”populating the session table”).
In our experiment it took around 20% of the total over-
head. Please, notice that this is just an example, in fact,
choosing a different number of local and remote attributes
would lead to different results.

The next set of experiments, whose results are shown in
Figure 12, is aimed at measuring the computational load
in the ongoing-Decision phase due to the continuous pol-
icy reevaluation. Varying the number of ongoing sessions
(i.e., accesses which are in progress) from 20 to 200, we
measured the time required to reevaluate the usage con-
trol policy and to revoke the ongoing session in case the
response of the policy reevaluation is “deny”. All sessions
used 20 local attributes which were queried once but all
sessions were reevaluated independently and sequentially.

There was no update of attributes as a result of the ac-

Figure 12: Overhead of Ongoing-Decision Phase

cess reevaluation. Figure 12 (represented by the continu-
ous line) shows the results obtained. We see that the time
needed for reevaluation of sessions grows linearly in the
number of running sessions. In particular, for 20 ongoing
sessions (e.g., 20 documents opened at the same time on
the mobile device) the time is about 0,6 seconds, while
for 200 ongoing sessions it is about 4 seconds. In fact, the
results show that the mobile device is powerful enough
to handle a big amount of ongoing sessions. Further,
we measured the revocation time of all sessions whose
policies use the same security attribute which changes its
value from good to bad and violates the policies. The re-
vocation time of all sessions defines the period of time
passed from the point when the CH is triggered for ac-
cess reevaluation until PEPs receive revocation messages
for all sessions that have to be revoked. Figure 12 (repre-
sented by the dashed line) shows the results obtained. We
see that the revocation time of all sessions grows linearly
in the number of running session and for revoking 20 ses-
sions we need about 1,6 seconds, while for revoking 200
sessions we need about 15 seconds. The revocation time
of all sessions is several times higher than the time needed
just for reevaluation of the access for these sessions. This
is due to heavy resource consumption for the IPC between
PEPs and the UXACML Authorization App.

Finally, we measured how many computation resources
are consumed by the UXACML Authorization App which
runs along with other applications on the mobile device
and consumes CPU, battery, and memory. In case of 100

24

ongoing usage sessions and when the access reevaluation
is triggered every 30 seconds, the UXACML Authoriza-
tion App takes about 1.4% of the CPU time and needs
approximately 30 MB of RAM.

7.3 Security Analysis

This subsection presents a security analysis of the pro-
posed system. The security of our implementation relies
on the Android security support, enhanced with the use
of a Trusted Platform Module (TPM). We recall that, in
this paper, we assume that the device owner is a different
entity from the device user. The owner gives his device
to the user with the DPS app installed to control the ac-
cess and usage to specific data. As an example, the device
owner could be the employer of a company which gives
business smartphones to his employees, to allow them to
remotely access specific documents.

The proposed system prevents the device user and other
applications from directly accessing the DCs downloaded
on the device. As a matter of fact, the DCs stored on the
device can be accessed only through our Data Protection
System, which provides a restricted set of actions and en-
sures the enforcement of the related Usage Control poli-
cies. In our threat model we consider two possible attack-
ers which, having control on the device may try to access
the data bypassing the policy enforcement mechanisms,
thus violating data confidentiality. First, we consider the
device user, attempting to read stored data on the device
without receiving authorization from the DPS app, thus
against the policy. Secondly, we consider the possibility
of an external attacker which remotely controls the device
(or at least a limited number of functionalities) through a
malicious app which is installed on the device. Generally,
the user is not aware of this intrusion since the malicious
app often comes as a trojanized one, i.e., with the mali-
cious code running in the background of an app showing
a genuine behavior.

We consider the following three models to perform an
attack (also shown in Figure 13):

1) Users/External attackers trying to access data stored
in the SDCard (external storage). Users can browse
the SDCard contents through a file manager applica-
tion.

Figure 13: Envisioned attack models.

2) Users/External attackers trying to access encryption
keys used to encrypt data stored on the SDCard.

3) Users/External attackers trying to acquire root privi-
leges to access restricted memory space.

The implementation described in this paper assumes to
have a mobile device with an embedded TPM. The files
including the DCs to be protected are stored in the mobile
device external memory, i.e., in the SDCard, and they are
encrypted through the AES algorithm. This protects from
attackers of type 1) who will find encrypted files (and not
usable) when accessing the SDCard of the device. We as-
sume that the related secret key has been stored in the de-
vice internal memory, in the home space of the DPS app.
Differently from the external memory, this space can only
be accessed by the DPS app, so that encrypted files can be
decrypted only by the Data Protection System. This se-
curity mechanism protects the key from attackers of type
2). Thanks to the inclusion of trusted computing, it is
possible to ensure that only the DPS app can access the
secret key. In fact, as soon as the system integrity verifi-
cation performed by the TPM fails, the DPS app and all
the related files, residing in both the internal and exter-
nal memory, are removed from the device. Moreover, the
secret key will no longer be accessible as soon as the de-
vice has been rooted or unknown dangerous applications
have been installed on it. Hence, the service provider is

25

notified of the fact that the device is not in a secure sta-
tus anymore. Furthermore, we assume that the secret key
will not be released anymore unless the user can prove the
device status is secure again, e.g. through a factory reset.
This ensures the protection also from an attacker of type
3).

It is worth noting that we are not considering Man In
The Middle (MITM) Attacks in our analysis, since we as-
sume that all channels are secured. In particular interfer-
ence of another app in the normal behavior of DPS app
or UXACML Authorization App are not possible thanks
to the isolation enforced by Android, exploiting intents,
binders and IPC communication to create secure channels
which ensures end-to-end encryption and integrity. Fur-
thermore, in our reference implementation the network
communications between the PIP and the AM are secured
through the use of TLS, which ensures mutual authentica-
tion, confidentiality and data integrity, to be able to tackle,
among others, the MITM attack. We recall, however, that
the security of the connection between the PIP and a re-
mote AM depends on the mechanisms that the AM is of-
fering. In case a remote AM does not implement a TLS
mechanism, and it is not possible to verify the author and
the integrity of the attribute assertion through other mech-
anisms, the retrieved attribute is considered not trusted,
hence it could be decided not to be used for the policy
evaluation. Such a decision is dependent on the specific
scenario.

A further threat to the confidentiality of the DCs is rep-
resented by malicious device users who have the right to
access the DC and could try to copy pieces of data from
a DC to another document or another application of the
mobile device to avoid the enforcement of the (right) Us-
age Control policy on those data. Our framework prevents
this attack because DCs can be accessed through the DPS
app only, which forbids to copy or cut pieces of data from
DCs.

For what concerns DC integrity, the file is always en-
crypted together with a digest of the original file. After
decryption, DPS app verifies if the digest corresponds to
the hash of the decrypted file (standard integrity check
[48]) and, if not, the file is deleted and downloaded fresh,
given that the user has still the right to access it. Thanks
to the hash function properties, given that both the file and
the digest are encrypted, it is not possible to alter the DC
integrity without being detected through DPS app.

Moreover, once a DC has been downloaded on the mo-
bile device, the availability of the related data to the DU
should be guaranteed by the DPS according to the Usage
Control policy embedded in DC itself. As already dis-
cussed, sometimes one or more AMs could be unreach-
able (e.g., they could be down or the network could be
unavailable) and hence the related attributes can not be
retrieved. On one hand, the missing attributes could cause
a wrong policy evaluation. Consequently, the data could
be made available to the DU although he actually does
not hold the right to access them, or the data could not be
made available although the DU holds the related right.
On the other hand, the missing attribute updates could pre-
vent the detection of a policy violation, thus allowing the
prosecution of an existing access to the data even if the
DU actually does not hold the related right any more. In
some scenarios, this issue can be mitigated by implement-
ing proper attribute retrieval strategies within the PIPs.
For instance, in a scenario where multiple instances of the
same AM are available, when one of them is unreachable,
the PIP should try to interact with the others. Obviously,
an important requirement in this case is that the consis-
tency among the AM instances is properly mantained. A
more general solution to the AM availability problem is
one where each PIP provides an environmental attribute,
called e.AMXNotAvailable, representing how long the
connection with the related AM, AMX , is not available.
This attribute enables the DP to explicitly define, in the
Usage Control policy, proper rules for regulating the us-
age of the DC when an AM is not available, depending
on the requirements of the specific use case. This solu-
tion also addresses the case where the DU cuts off the
network connection of the mobile device on purpose, in
order to prevent the DPS from communicating with the
AMs. In fact, the DU could disconnect the mobile device
from the network after the DPS granted him the right to
access a DC, in order to prevent the DPS from receiving
attribute updates which could invalidate this right. The
DP can mitigate this attack by defining a Usage Control
policy which allows the usage of the DC when the AMs
are unreachable for a few minutes only. For instance, in
example 1, the team manager could tolerate that an AM
is unreachable for no more than a couple of minutes. In
fact, example 1 requires that the DU is located within the
building of the company, where the network is supposed
to be always available, and the remote AM is supposed

26

to be always available as well, because it is located within
the company network and managed by the company itself.

The security policy is paired with each data copy, and
it is encrypted and stored with the data itself. In this way,
the security policy cannot be modified by the mobile de-
vice user or by other applications to obtain unauthorized
accesses.

The internal status of the UXACML Authorization app,
e.g., the set of sessions that are currently opened, is stored
in the private space of his app. In this way, neither the
device user nor the other applications can modify it.

Finally, if the mobile device user terminates the Data
Protection System app, and/or the UXACML Authoriza-
tion app, this only prevents him from accessing the data,
since the Data Protection System app is the only way to
perform the access to the data.

7.3.1 Decryption key protection

In Android, every application has a private space in the
device internal memory, which is protected by the un-
derlying Linux kernel. More specifically, as part of the
isolation protection mechanism [49], Android creates a
new Linux user for each app which is installed on the de-
vice. This user will receive an home folder, which could
be used by the application itself to safely store data. In
fact, the app of the space is the only one to have reading,
writing and execution permission on his home directory.
Thus, this private space constitutes a good candidate to
store the decryption key for data Usage Control files.

The only way the user of the mobile device or another
application can access such a private space is that such
an application has superuser permissions. However, the
Android’s Linux kernel is a stripped version of the classi-
cal “vanilla” Linux, which, removing the switch user (su)
command, does not allow any application to get superuser
privileges. Also other commands used to modify autho-
rizations such as chgrp and chmod have been removed
in Android. Notwithstanding, some users can still try to
get the super user privileges on their devices through spe-
cific applications, i.e. rootkit, which reintroduce the miss-
ing command through a buffer-overflow attack. This pro-
cedure, named rooting or jailbreaking modifies the Linux
kernel violating its integrity.

As discussed, such an integrity check can be performed
verifying the hash signature of the Linux kernel through

TCB. In particular, as aforementioned in Section 4.2, the
ARM’s TrustZone offers a TCB functionalities which
is natively embedded in almost any Android device. In
particular, the presented framework exploits the Secure
Boot functionality to avoid any firmware and OS modifi-
cations which may compromise the security of protected
data. Through Secure Boot, the hash (digest) of each
level of the current device status. More specifically, the
data service provider uses its Private Key (PrK) to gener-
ate a signature of the code that they want to deploy, and
pushes this to the device alongside the software binary.
The device contains the Public Key (PuK) of the service
provider, which can be used to verify that the system has
not been modified and that it was provided by the service
provider. Before storing the hash digest in the TPM the
service provider should verify that the telephone is in a
safe status, checking that has not been rooted beforehand.
Such a check can be easily performed verifying either that
the sys partition has not been modified (it should be read-
only partition) or that it is not possible to invoke by com-
mand line the su command. Also, if the user wants that
a new device status is saved in the TrustZone chip, must
physically bring the device to the service provider.

The secure boot verification avoids the possibility of
data encryption key exposure due to jailbreaking (root-
ing) of the Android device. In fact, if the system is found
to be not in a secure state, both protected data and en-
cryption key are removed from the device, whilst the ser-
vice provider is notified that the device is not in a se-
cure state. This policy is aimed at preserving protected
data from unauthorized accesses of potentially malicious
users, which encompasses the two aforementioned differ-
ent attackers: i) the device user attempting to maliciously
access protected data stored on her device, when she is
not authorized to do it. ii) An external attacker infects
through a malicious application (malware) a user device
in order to access the protected data, jailbreaking the de-
vice through a rootkit and then stealing the encryption
key. Whilst for i) the user is intentionally violating the
terms of service of the data provider, in ii), communicat-
ing to the service provider that the device is not in a safe
state anymore, could be the first step on noticing and solv-
ing a security threat which may potentially affect other
device resources. In both cases, communicating the cur-
rent not-safe status of the device should be considered as
a necessary step to protect data, which belongs to the ser-

27

vice provider and not to the user. However, regardless
from the attacker, attempting to access encrypted data has
to be considered as a general violation of the terms of ser-
vices, intentional in the first case and unintentional in the
second one, still with user’s responsibility who failed in
protecting the device.

Since currently no off the shelf Android devices in-
cluding TPM are available, we exploit a system similar
to the one presented in [50], where the two main func-
tions of TPM are implemented as a Linux module called
micro-TPM. This module can be seen like an interface
to a real TPM and could be used at its full extense as
soon as commercial TPM-enabled Android devices are
released. We recall that some works have already been
done in this direction, joining Android with TPM on non-
commercial devices [34] [35]. Furthermore, it is worth
noting that current commercial Android device already
include the TrustZone technology, which is embedded in
ARM CPUs. However, TrustZone is currently not enabled
on commercial devices, since device manufacturer do not
provide the interfaces to interact with this component.

8 Conclusions
This paper presented a framework for regulating the usage
of data which are shared on mobile devices. In our refer-
ence scenario, the data producer embeds a Usage Control
policy in the data he shares, and the data users download
a copy of these data on their mobile devices. Our frame-
work enforces the related Usage Control policy every time
each data user performs an access to the local copy of the
shared data on his mobile device, in order to prevent unau-
thorized usage of the data itself. The main feature is that
the Usage Control paradigm, besides regulating the right
of initiate an access, also check that the right of using the
data continuously holds while the access is in progress.
To this aim, our framework is able to interrupt an access
in progress as soon as the related policy is no longer sat-
isfied.

The paper presented the detailed architecture of the
proposed framework, its implementation on Android mo-
bile devices, and a set of experiments aimed at evaluat-
ing the time required for the authorization process. The
experiments show that the delay introduced by the autho-
rization framework in the time required to access the data

is quite small, and that the time required to perform the
ongoing evaluation of the policy and the revocation of the
accesses is again small for today’s mobile devices in real
scenarios.

Our prototype exploits both the Android native security
mechanism and a TPM to ensure system integrity. How-
ever, the use of a TPM is an assumption, since currently
no Android devices with a physical TPM are available,
though a standard for TPM on mobile device is currently
under the analysis of the TCG.

Finally, we envisage some extensions of our framework
for future work, such as the support for managing the copy
of pieces of data among DCs, which requires the capabil-
ity of enforcing the right Usage Control policy on each
piece of data when these data pieces are copied from one
DC to another, the support for managing the accountabil-
ity of the policy makers, as well as an implementation on
an Android device equipped with a TCB.

References
[1] Lazouski, A., Martinelli, F., Mori, P., Saracino, A.:

Stateful usage control for android mobile devices.
In: Proceedings of the 10th International Workshop
on Security and Trust Management (STM 2014).
Volume 8743 of Lecture Notes in Computer Sci-
ence., Springer Berlin Heidelberg (2014) 97–112

[2] Caimi, C., Gambardella, C., Manea, M., Petrocchi,
M., Stella, D.: Technical and legal perspectives in
data sharing agreements definition. In: Proceedings
of Annual Privacy Forum, APF 2015. Volume 9484
of Lecture Notes in Computer Science., Springer
Berlin Heidelberg (2015) 178–192

[3] Jia, L., Aljuraidan, J., Fragkaki, E., Bauer, L.,
Stroucken, M., Fukushima, K., Kiyomoto, S.,
Miyake, Y.: Run-time enforcement of information-
flow properties on android. In Crampton, J., Jajodia,
S., Mayes, K., eds.: ESORICS 2013. Volume 8134
of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2013) 775–792

[4] Kelbert, F., Pretschner, A.: Data usage control en-
forcement in distributed systems. In: Third ACM
Conference on Data and Application Security and

28

Privacy, CODASPY’13, San Antonio, TX, USA,
February 18-20, 2013, ACM (2013) 71–82

[5] Kelbert, F., Pretschner, A.: A fully decentralized
data usage control enforcement infrastructure. In:
13th International Conference on Applied Cryptog-
raphy and Network Security (ACNS 2015). (2015)
409–430

[6] Conti, M., Crispo, B., Fernandes, E., Zhauniarovich,
Y.: Crêpe: A system for enforcing fine-grained
context-related policies on android. IEEE Trans-
actions on Information Forensics and Security 7(5)
(2012) 1426–1438

[7] Conti, M., Nguyen, V., Crispo, B.: Crêpe: Context-
related policy enforcement for android. In: 13 Infor-
mation Security Conference (ISC10). (2010) 331–
345

[8] Costa, G., Martinelli, F., Mori, P., Schaefer, C., Wal-
ter, T.: Runtime monitoring for next generation java
me platform. In Computers & Security 29(1) (2010)
74–87

[9] Aktug, I., Naliuka, K.: ConSpec: A formal language
for policy specification. In: Proceedings of the First
International Workshop on Run Time Enforcement
for Mobile and Distributed Systems (REM 07), ES-
ORICS (2007) 107–109

[10] Bugiel, S., Davi, L., Dmitrienko, A., Heuser,
S., Sadeghi, A.R., Shastry, B.: Practical and
Lightweight Domain Isolation on Android. In ACM,
ed.: 1st ACM workshop on Security and privacy in
smartphones and mobile devices (SPSM11). (2011)
51–61

[11] Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung,
J., McDaniel, P., Sheth, A.N.: Taintdroid: An in-
formation flow tracking system for real-time privacy
monitoring on smartphones. Communications of the
ACM 57(3) (2014) 99–106

[12] Heuser, S., Nadkarni, A., Enck, W., Sadeghi, A.R.:
Asm: A programmable interface for extending an-
droid security. In: 23rd USENIX Security Sym-
posium (USENIX Security 14), San Diego, CA,
USENIX Association (August 2014) 1005–1019

[13] Miettinen, M., Heuser, S., Kronz, W., Sadeghi, A.R.,
Asokan, N.: Conxsense - context profiling and clas-
sification for context-aware access control. In: Pro-
ceedings of the 9th ACM Symposium on Informa-
tion, Computer and Communications Security (ASI-
ACCS 2014), ACM (2014)

[14] Bugiel, S., Heuser, S., Sadeghi, A.R.: Flexible and
fine-grained mandatory access control on android
for diverse security and privacy policies. In: Pre-
sented as part of the 22nd USENIX Security Sym-
posium (USENIX Security 13), Washington, D.C.,
USENIX (2013) 131–146

[15] Nauman, M., Khan, S., Zhang, X.: Apex: Extend-
ing Android Permission Model and Enforcement
with User-defined Runtime Constraints. In ACM,
ed.: 5th ACM Symposium on Information Com-
puter and Communication Security (ASIACCS’10).
(2010) 328–332

[16] Nadkarni, A., Enck, W.: Preventing accidental data
disclosure in modern operating systems. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security. CCS ’13,
New York, NY, USA, ACM (2013) 1029–1042

[17] Backes, M., Bugiel, S., Gerling, S., von Styp-
Rekowsky, P.: Android security framework: Ex-
tensible multi-layered access control on android. In:
Proceedings of the 30th Annual Computer Security
Applications Conference. ACSAC ’14, New York,
NY, USA, ACM (2014) 46–55

[18] Martinelli, F., Mori, P., Saracino, A.: Enhancing
android permission through usage control: A byod
use-case. In: 31st ACM Symposium on Applied
Computing (SAC 2016). (2016) 2049–2056

[19] Chuang, C.Y., Wang, Y.C., Lin, Y.B.: Digital
right management and software protection on an-
droid phones. In: Vehicular Technology Conference
(VTC 2010-Spring), 2010 IEEE 71st. (May 2010)
1–5

[20] Ongtang, M., Butler, K., McDaniel, P.: Porscha:
Policy oriented secure content handling in android.

29

In: Proceedings of the 26th Annual Computer Se-
curity Applications Conference. ACSAC ’10, New
York, NY, USA, ACM (2010) 221–230

[21] von Styp-Rekowsky, P., Gerling, S., Backes, M.,
Hammer, C.: Idea: Callee-site rewriting of sealed
system libraries. In: Engineering Secure Software
and Systems - 5th International Symposium, ESSoS
2013, Paris, France, February 27 - March 1, 2013.
Proceedings. (2013) 33–41

[22] Backes, M., Gerling, S., Hammer, C., Maffei, M.,
von Styp-Rekowsky, P.: Appguard - fine-grained
policy enforcement for untrusted android applica-
tions. In: Data Privacy Management and Au-
tonomous Spontaneous Security - 8th International
Workshop, DPM 2013, and 6th International Work-
shop, SETOP 2013, Egham, UK, September 12-13,
2013, Revised Selected Papers. (2013) 213–231

[23] Backes, M., Gerling, S., Hammer, C., Maffei, M.,
von Styp-Rekowsky, P.: Appguard - enforcing user
requirements on android apps. In: Tools and Algo-
rithms for the Construction and Analysis of Systems
- 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings. (2013) 543–548

[24] Xu, R., Saı̈di, H., Anderson, R.: Aurasium: Prac-
tical policy enforcement for android applications.
In: Presented as part of the 21st USENIX Security
Symposium (USENIX Security 12), Bellevue, WA,
USENIX (2012) 539–552

[25] Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming
information-stealing smartphone applications (on
android). In: 4th International Conference on Trust
and Trustworthy Computing (TRUST 2011). (June
2011) 93–107

[26] Dragoni, N., Massacci, F., Naliuka, K., Siahaan, I.:
Security-by-contract: Toward a semantics for digital
signatures on mobile code. In: Public Key Infras-
tructure. Springer (2007) 297–312

[27] Dini, G., Martinelli, F., Matteucci, I., Saracino, A.,
Sgandurra, D.: Introducing probabilities in contract-
based approaches for mobile application security.

In: Data Privacy Management and Autonomous
Spontaneous Security - 8th International Workshop,
DPM 2013, and 6th International Workshop, SE-
TOP 2013, Egham, UK, September 12-13, 2013,
Revised Selected Papers. (2013) 284–299

[28] Di Cerbo, F., Trabelsi, S., Steingruber, T., Dodero,
G., Bezzi, M.: Sticky policies for mobile devices.
In: The 18th ACM Symposium on Acces Con-
trol Model and Technologies (SACMAT’13). (2013)
257–260

[29] Trabelsi, S., Sendor, J., Reinicke, S.: Ppl: Primelife
privacy policy engine. In: 2011 IEEE International
Symposium on Policies for Distributed Systems and
Networks, IEEE Computer Society (2011) 184–185

[30] Colombo, M., Lazouski, A., Martinelli, F., Mori, P.:
A proposal on enhancing XACML with continuous
usage control features. In: proceedings of Core-
GRID ERCIM Working Group Workshop on Grids,
P2P and Services Computing, Springer US (2010)
133–146

[31] La Polla, M., Martinelli, F., Sgandurra, D.: A sur-
vey on security for mobile devices. Communications
Surveys Tutorials, IEEE 15(1) (First 2013) 446–471

[32] Trusted Computing Group: TPM 2.0 mobile refer-
ence architecture (draft) (April 2014)

[33] ARM-Ltd.: Building a secure system using
trustzone technology (april 2009) Avaiable at:
http://goo.gl/9p7SWG.

[34] Samsung-Electronics-Co-Ltd.: An overview of
samsung knox (Jun 2013)

[35] Li, X., Hu, H., Bai, G., Jia, Y., Liang, Z., Saxena,
P.: Droidvault: A trusted data vault for android de-
vices. In: Engineering of Complex Computer Sys-
tems (ICECCS), 2014 19th International Conference
on. (Aug 2014) 29–38

[36] Bente, I., Dreo, G., Hellmann, B., Heuser, S.,
Vieweg, J., von Helden, J., Westhuis, J.: Towards
permission-based attestation for the android plat-
form. In: Trust and Trustworthy Computing. Vol-
ume 6740 of Lecture Notes in Computer Science.,
Springer Berlin Heidelberg (2011) 108–115

30

[37] Park, J., Sandhu, R.: The UCONABC usage con-
trol model. ACM Transactions on Information and
System Security 7(1) (2004) 128–174

[38] Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.:
Formal model and policy specification of usage con-
trol. ACM Transactions on Information and System
Security 8(4) (2005) 351–387

[39] Pretschner, A., Hilty, M., Basin, D.A.: Distributed
usage control. Communications of the ACM 49(9)
(2006) 39–44

[40] Park, J., Zhang, X., Sandhu, R.S.: Attribute mutabil-
ity in usage control. In: Research Directions in Data
and Applications Security XVIII, IFIP TC11/WG
11.3 Eighteenth Annual Conference on Data and
Applications Security. (2004) 15–29

[41] Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.:
Toward a usage-based security framework for col-
laborative computing systems. ACM Transactions
on Information and System Security 11(1) (2008)
3:1–3:36

[42] OASIS: eXtensible Access Control Markup Lan-
guage (XACML) version 3.0 (January 2013)

[43] Kumari, P., Pretschner, A., Peschla, J., Kuhn, J.:
Distributed data usage control for web applications:
a social network implementation. In: Proceedings
of the First ACM Conference on Data and Applica-
tion Security and Privacy, CODASPY 2011. (2011)
85–96

[44] Birnstill, P., Pretschner, A.: Enforcing privacy
through usage-controlled video surveillance. In:
10th IEEE International Conference on Advanced
Video and Signal Based Surveillance, AVSS 2013,
Krakow, Poland, August 27-30, 2013, IEEE (2013)
318–323

[45] Martinelli, F., Mori, P.: On usage control for
grid systems. Future Generation Computer Systems
26(7) (2010) 1032–1042

[46] Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti,
E., Martinelli, F., Mori, P.: Testing of polpa au-
thorization systems. Software Quality Journal 22(2)
(2014) 241–271

[47] Lazouski, A., Mancini, G., Martinelli, F., Mori, P.:
Architecture, worflows, and prototype for stateful
data usage control in cloud. In: 2014 IEEE Secu-
rity and Privacy Workshop, IEEE Computer Society
(2014) 23–30

[48] Armstrong, D.: An introduction to file integrity
checking on unix systems (2003)

[49] Enck, W., Ongtang, M., McDaniel, P.: Understand-
ing android security. Security Privacy, IEEE 7(1)
(Jan 2009) 50–57

[50] Nauman, M., Khan, S., Zhang, X., Seifert, J.P.: Be-
yond kernel-level integrity measurement: Enabling
remote attestation for the android platform. In Ac-
quisti, A., Smith, S., Sadeghi, A.R., eds.: Trust and
Trustworthy Computing. Volume 6101 of Lecture
Notes in Computer Science. Springer Berlin Hei-
delberg (2010) 1–15

31

