
Usage Control on Cloud Systems

Enrico Carniani, Davide D’Arenzo,
Aliaksandr Lazouski, Fabio Martinelli, Paolo Mori

Istituto di Informatica e Telematica,
Consiglio Nazionale delle Ricerche
via Moruzzi, 1 - 56124 Pisa, Italy
email: {name.surname@iit.cnr.it}

Abstract

Cloud Computing is becoming increasingly popular because of its peculiarities, such as the avail-
ability on demand of (a large amount of) resources, even for a long time. For this reason, Cloud
Computing represents a good solution for those companies that want to outsource part of their soft-
ware processes. However, Cloud Computing introduces new security and management challenges with
respect to traditional systems exposed on the Internet. This paper presents an advanced authorization
service based on the Usage Control model to regulate the usage of Cloud resources, focussing on IaaS
services.

Our framework addresses the issue of long lasting usage of resources, because it allows to define
Usage Control policies which are continuously enforced while the access is in progress. In particular,
our framework is able to interrupt the usage of such resources when the corresponding policy is not
satisfied any more. In this paper, we present the architecture of the proposed framework describing
the integration of a Usage Control based authorization service within one of the most popular software
for running Cloud services: OpenNebula. Moreover, we describe the implementation of a prototype
of the whole framework, along with some performance figures.

1 Introduction

The increasing popularity of Cloud systems is due to the on demand availability of big computational
power for the execution of heavy parts of business and research processes [43, 37, 17]. As a matter of
fact, Cloud providers allow their users to exploit a proper set of resources for their computation only
when they actually need them. Cloud users, in turn, pay a fee depending on the resources they requested.
Distinct Cloud service models have been defined by NIST [29], depending on the kind of resources that
are provided. This paper is focused on the Infrastructure as a Service (IaaS) model, where the resources
provided to users are computational infrastructures consisting of Virtual Machines (VMs) connected by
virtual networks. When requesting VMs, users can choose the most proper network configuration, VM
features (e.g., virtual CPU type and number, RAM memory and storage space), VM images (i.e., the
operating system they need for their application). Moreover, users can install and run on the VMs
allocated to them the applications they need. Once requested, the virtual computational infrastructure
is available in a short time and the number of machines and/or their features can be updated by users
(increased or decreased) on demand during the computation according to their needs. The other two Cloud
service models defined by NIST are: Platform as a Service (PaaS), which provides an API for developing
new services and a platform where these services can be deployed and executed, and Software as a Service
(SaaS), where the provided resources are applications running on an existing Cloud infrastructure. The
rest of the paper is focused on the IaaS model, although the approach proposed could be applicable to
other Cloud service models. Usually, the instances of Cloud resources exploited by users are long-standing,
and they are exposed to users through a proper interface. The VMs provided by an IaaS Cloud services
are our reference example of long standing virtualized resources. In general, the Cloud user exploits them
through a remote access using their IP addresses. IaaS Cloud facilities are currently provided by many big

1



companies (Public Clouds), such as Amazon1, Google2, IBM3, and Microsoft4. Alternatively, a number of
Cloud frameworks, such as OpenNebula5, Eucalyptus6 or OpenStack7, are currently available to deploy
Cloud systems in users’ data centres, to use their physical machines to host virtual ones (Private Clouds).

Besides the benefits previously described, the adoption of Cloud Computing to perform critical part
of the business and research processes introduces also some problems, security being one of them. These
security issues are described by the “European Network and Information Security Agency” (ENISA) in
the report: “Cloud Computing. Benefits, Risks and Recommendations for Information Security” [32].
The “Cloud Security Alliance” (CSA) published two reports [1, 6] as well: “The Notorius Nine. Cloud
Computing Top Threats in 2013” and “Security Guidance for Critical Areas of Focus in Cloud Computing”
which, again, are focused on identifying the security problems peculiar of Cloud Computing. Some other
research papers describe the main security issues in Cloud Computing such as [20, 51]. These documents
point out that, besides the well-known threats of systems exposed on the Internet, the Cloud introduces
further security challenges due to its specific peculiarities. These peculiarities include virtualization,
multi-tenancy environment and long lasting accesses.

In this paper we propose an enhanced authorization service for Cloud IaaS services, which is able
to continuously enforce security policies in order to interrupt accesses that are in progress when the
corresponding access rights do not hold any more. This paper is an extension of our previous work,
presented in [25], and our approach is based on the Usage Control (UCON) model, defined by Sandhu
and Park in [35, 50]. In recent years, UCON has drawn a significant interest from the research community
on formalization and enforcement of policies. There were several attempts to implement Usage Control,
while the realization based on existing security standards is still an open issue. The design of an efficient
and flexible framework (i.e., a policy schema, an architecture and an implementation) for Usage Control
based on the OASIS XACML [33] standard is a challenge we address in our work.

1.1 Motivation and Contribution

The Usage Control model can be successfully adopted in the Cloud environment to regulate the usage of
Cloud IaaS services because the accesses to those services could last for a long time, such as hours, days,
or even more. Hence, some of the factors that have been evaluated by the security support to grant the
initial access to the service could change while the access is in progress. As a consequence, it is possible
that the right to access the service does not hold any more. For example, a computer science researcher
R could request to a IaaS service provider the creation of a VM to host the Subversion server of his new
three-years project. This VM will be used by all the project participants to manage the development of
the project code, and it will be dismissed at the end of the project. Once created and deployed, the VM
will be accessed by R using directly the public IP address (i.e., without any intervention of the Cloud
service provider). R will configure the VM to allow the project participants to access the subversion
service using directly the public IP address as well. Hence, after the creation request, no further request
is sent to the Cloud service provider to use the VM. Let us suppose that the IaaS service provider allows
users to run VMs only if their reputation is excellent. Adopting the traditional access control models, the
value of the reputation of the user is controlled at request time only. Once the access has been granted
and the VM has been started, this machine keeps on running until the user terminates it, even when
the value of the user’s reputation is not excellent any more. As a matter of fact, the VM creation and
deployment requests are the only interactions among the Cloud service provider and the user, and no
further controls on the reputation of the user are initiated by the security support during the VM life
time. To address this issue, the Usage Control model enables the policy to state that some predicates
that evaluate some mutable decision factors must be satisfied for the whole access time. This means that
the access must be interrupted (or suspended) when these factors change in a way such that the policy
is not satisfied any more. In the previous example, a predicate of the Usage Control policy could state
that the user reputation must be excellent for all the VM life time. As soon as the reputation of the user
decreases, his VM is suspended. Hence, the Usage Control approach prevents Cloud users from continuing

1http://aws.amazon.com/
2https://cloud.google.com/
3http://www.ibm.com/cloud-computing/us/en/
4https://azure.microsoft.com/en-us/
5http://opennebula.org/
6http://eucalyptus.com/
7http://openstack.org/

2



the use of resources that have been previously assigned to them as soon as the rights of using these have
resources expired. This enhances the Cloud service security, avoiding that accesses are carried on when
they become potentially dangerous. With reference to the previous example, if the reputation of the user
R has decreased, it means that R has tried to perform a number of unauthorized operations, and most
probably he will try to perform further malicious operations.

The main contributions of this paper are the following:

• The design of a complete framework for regulating the usage of Cloud IaaS services based on
the Usage Control model. The paper provides a detailed description of the architecture of the
proposed Usage Control service, focusing on the aspects concerning the implementation of the
Usage Control model peculiarities, such as the continuous policy enforcement and the revocation of
ongoing accesses;

• The integration of the Usage Control service within one of the most used tools for the provision of
Cloud services, i.e., OpenNebula;

• A working implementation of the proposed framework;

• A set of experiments to evaluate the performance of our prototype.

Some attempt to adopt the UCON model in the Cloud have been proposed in the past (see Section 6).
However, this paper represents a step forward because, to the best of our knowledge, none of the previous
works presented the design and implementation of the overall authorization system architecture, and the
integration within an existing Cloud framework.

1.2 Paper Structure

The paper is structured as follows. Section 2 gives a brief overview of the security support provided by
two widespread Cloud frameworks, OpenNebula and OpenStack, and of the Usage Control model. Section
3 proposes our approach to regulate the usage of Cloud resources, presenting the detailed architecture
of the proposed framework, describing the integration with OpenNebula, and also giving some examples
of Usage Control policies in our reference scenario. Section 4 presents a working implementation of
the whole framework, and Section 5 shows some performance figures from our experiments. Section 6
describes several related works. Finally, Section 7 briefly discusses the applicability of our framework to
other scenarios, while Section 8 concludes the paper.

2 Background

This section briefly reports some background notions on the authorization systems supported by two
widespread Cloud management tools, OpenNebula and OpenStack, and on the Usage Control model, on
which the proposed framework relies.

2.1 Access Control in the Cloud

Security is a critical issue in Cloud because, besides the usual issues of a system exposed on the Internet,
additional ones arise due to virtualization and multi tenancy [19, 22, 38, 39]. Access control is crucial, in
order to avoid unauthorized access to systems and to protect organizations assets [46]. The adoption of
several kinds of access control mechanisms have been proposed in the literature to protect Cloud resources
(see Section 6), starting from simple Access Control Lists to complex authorization systems based on
security policy languages. OpenNebula and OpenStack manage their authentication and authorization
phases as follows:

• OpenNebula8 (ONE) is a fully open source Cloud management tool which offers a simple but
feature-rich and flexible solution to build and manage Clouds and virtualized data centres [30, 42].
The authentication phase could exploit different well known techniques, such as user-password,

8http://opennebula.org/

3



LDAP [47], as well as Sunstone9 and Server Authentication as EC210. The OpenNebula native
authorization system supports access control list (ACL) and usage quotas. ACL regulates the
access to Cloud resources based on the user ID and role, while the usage quotas regulate how many
resources the user can consume

• OpenStack11 is a Cloud computing framework, released under Apache 2.0 license, which allows the
deployment and management of public, private and hybrid Cloud environments. Authentication is
provided by the Keystone12 component, which is the OpenStack Identity Service. Keystone supports
several different authentication methods: LDAP [24], HTTPD13, X.509 [15] and other self-built
systems. In particular, Keystone also supports federated access14. For authorization, Keystone
only supports one mechanism based on RBAC like policies. However, it is possible to extend the
basic Keystone authorization support as shown in [40]. On the other hand, Swift15, which is Object
Storage service, supports access control lists. Finally, Congress16 is a recent OpenStack project
aimed at providing a Cloud service which enforces policies on collections of Cloud services. Congress
allows Cloud providers to declare, monitor, enforce, and audit policies in their heterogeneous Cloud
environment. The language exploited for expressing Congress policies is Datalog. Such policies are
declarative, i.e., they define which states of the Cloud are allowed, where the state of the Cloud is
represented by the data gathered from the collection of Cloud services monitored by Congress. The
Congress architecture is modular, and it allows to monitor any Cloud service by simply defining a
proper driver to collect information from it.

2.2 The Usage Control Model

tryaccess startaccess end/revokeaccess time

pre-decision on-decision

Figure 1: Access and Usage Control

The Usage Control model (UCON), defined in [35, 50], encompasses and extends the existing access
control models. In particular, UCON introduces new features in the decision process w.r.t. traditional
Access Control models, such as the mutability of attributes and the continuity of policy enforcement.
These features are meant to guarantee that the right of a subject to use a resource holds not only at
access request time, but also while the access is in progress. In the following, we recall the UCON core
components.

Subjects and Objects The subjects are the entities who exercise their rights on the objects by per-
forming actions on them. In our scenario, the subjects are the Cloud users who exploit the VMs (objects)
provided by Cloud IaaS services to perform their business or research tasks.

Actions The actions represent the operations performed by the users on the objects. In our scenario,
Cloud users perform actions on VMs such as create, deploy and resume.

Attributes Attributes are paired to subjects, objects, actions and environment to describe their fea-
tures. An attribute is immutable when its value can be updated only through an administrative action.
An example of immutable attribute is the subject’s role in RBAC based systems, which is updated by the
system administrator, for instance, as a consequence of a career advancement. Instead, an attribute is
mutable when its value changes over time because of the normal operation of the system. Some mutable

9http://docs.opennebula.org/4.12/administration/sunstone gui/sunstone.html#sunstone
10http://docs.opennebula.org/4.12/advanced administration/public cloud/ec2qcg.html#ec2qcg
11https://www.openstack.org/
12http://docs.openstack.org/developer/keystone/
13http://httpd.apache.org/
14http://docs.openstack.org/security-guide/identity/federated-keystone.html
15http://docs.openstack.org/developer/swift/
16https://congress.readthedocs.org/en/latest/

4



attributes change their values as a consequence of the policy enforcement, because the policy includes
attribute update statements that can be executed before (pre-update), during (on-update), or after (post-
update) the execution of the action. As an example, let us consider the mutable attribute which represents
the number of running VMs deployed by a subject on a Cloud IaaS service. The value of this attribute
changes over time because it is incremented by a pre-update statement in the policy when the subject is
authorized to perform the action of deploying a new VM, and it is decremented by a post-update statement
in the policy when the subject terminates an existing VM. Another example of mutable attribute con-
cerning the actions is the number of instances of the same action that are currently in execution. Mutable
attributes can change their values also because of other actions performed by the subjects which are not
regulated by the usage control policy. For instance, the attribute that describes the physical location of
the subject changes when he moves from one place to another. Some mutable attributes change their
values for both the reasons described before. For example, the balance of the subject’s e-wallet could
decrease because the Usage Control policy includes a pre-update statement which states that the subject
must pay for deploying a new VM, while it could increase when the subject deposits some money in his
e-wallet through a bank transaction. Finally, other attributes change their values independently of the
user behaviour. For instance, date, time and CPU load, are attributes of the environment which belongs
to this last set.

Authorizations Authorizations are predicates that evaluate subject and object attributes and the
requested right to decide whether the subject is allowed to access the object. The evaluation of the
authorization predicates can be performed before executing the access (pre-authorizations), or continu-
ously while the access is in progress (on- authorizations) in order to promptly react to mutable attribute
changes.

Conditions Conditions are environmental or system-oriented decision factors, i.e., dynamic factors
that do not depend on subjects or objects. Hence, the evaluation of conditions involves attributes of the
environment and of the action, and it can be executed before (pre-conditions) or during (on-conditions)
the execution of the action.

Obligations Obligations are decision factors which verify whether a subject has satisfied some manda-
tory requirements before performing an action (pre-obligations), or whether a subject continuously satisfies
these requirements while performing the access (on-obligations). Obligations can be enforced after the
execution of the action as well (post-obligations) but, in this case, they cannot affect the execution of the
action.

Continuity of Policy Enforcement The attribute mutability introduces the necessity to execute the
Usage Control policy evaluation process continuously while an access is in progress. This is because the
values of the attributes that previously authorized the access could change in a way such that the access
right does not hold any longer. In this case, the access is revoked as soon as the policy violation is
detected.

The Usage Control model can be successfully adopted in case of long-standing accesses because the
decision process consists of two phases (Figure 1). The pre-decision phase corresponds to traditional access
control, where the decision process is performed at the request time to produce the access decision. The
on-decision phase, instead, is executed after the access is started and implements the continuity of control,
which is a specific feature of the UCON model. Continuous control implies that policies are re-evaluated
each time mutable attributes change their values. The pre-decision process evaluates pre-authorizations,
pre-conditions, and pre-obligations, and if a policy violation is detected the access is not permitted. The
on-decision process continuously evaluates on-authorizations, on-conditions, and on-obligations. In this
case, when a policy violation is detected the ongoing access is revoked and the resource is released. For
further details about the Usage Control model please refer to [26, 31, 36].

2.3 U-XACML: an Extension of XACML for Usage Control

In order to express usage control policies, we defined an extension of the XACML language, called
U-XACML. XACML is a standard developed by the OASIS consortium for expressing and managing

5



access control policies in a distributed environment. Briefly, the XACML standard defines a policy meta-
model, syntax, semantics, and the related enforcement architecture. The top-level element of a policy is
<PolicySet>, which includes a set of <Policy> elements, each of which, in turn, includes a <Target>,
which denotes the target of the policy, and a set of <Rule> elements which represent the authorization
rules. A rule is defined by three main components: the <Target>, the <Condition>, and the effect of
the rule which can be either Permit or Deny. The <Target> denotes the target of the rule, i.e., to which
authorization requests the rule can be applied. The <Condition> elements are predicates evaluating the
attributes. Optionally, a rule can include also the <ObligationExpression> element. A rule is applicable
to an access request if the target of the access request matches the target of the rule and if all the condi-
tions included in the rule are satisfied. If a rule is applicable to an access request, the effect declared for
the rule determines whether the access request is permitted or denied, and the related obligation must be
executed. For a detailed description of the XACML standard please refer to [33].

XACML allows to express traditional access control policies and it does not have specific constructs to
express the continuity of policy enforcement. Hence, the U-XACML language extends XACML with some
constructs for usage control as follows. To represent the peculiarity of the Usage Control model, i.e., the
continuity of policy enforcement, the U-XACML language allows to specify in the <Condition> element
a clause, called DecisionTime, which defines when the evaluation of this condition must be executed. The
admitted values are pre and on denoting, respectively, pre-decisions and on-decisions. In this way, the
conditions whose decision time is set to pre are usual XACML conditions. Instead, the conditions whose
decision time is set to on must be continuously evaluated while the access is in progress. We recall that
XACML conditions are exploited to represent both UCON authorizations and conditions. In the same way,
U-XACML extends the <ObligationExpression> element with the DecisionTime clause to define when
the obligation must be executed. In this case too, the admitted values for the DecisionTime clause are:
pre (pre-obligations, i.e., usual XACML obligations) and on (on-obligations), and post (post-obligations).

To deal with mutable attributes, U-XACML introduces a new element, <AttrUpdates>, which rep-
resents the attribute updates in the policy. This element includes a number of <AttrUpdate> elements
to specify each update action. Each <AttrUpdate> element also specifies when the update must be per-
formed through the clause UpdateTime which can have one of the following values: pre (pre-update), on
(on-update), and post (post-update). An alternative approach, proposed in [23], considers the attribute
updates as a special type of obligations which are performed by the system. For instance, the authors
of [49] use XACML to specify usage control policies, and they exploit XACML obligations to express
attribute updates in the policy. However, at the level of the U-XACML policy, we prefer to keep the
attribute updates separated from the obligations which actually represent constraints which must be ful-
filled before or during the action in order to authorize the execution of the action itself. For further details
on the U-XACML language, we refer to [10].

3 Usage Control on Cloud

This paper proposes the adoption of an advanced authorization service based on the Usage Control
model (called Usage Control service) to regulate the usage of resources in Cloud IaaS services. The Usage
Control service enforces the Usage Control policy defined by the Cloud provider exploiting the U-XACML
language (see Section 2.3). The main feature of the proposed system is that the Usage Control policy,
taking into account factors that change over time, is continuously enforced while these resources are in
use. As a consequence, the access of a given user to the IaaS service is interrupted as soon as the related
policy is not satisfied any more. Obviously, the resource usage revocation should be implemented in such
a way that the results produced up to that time are not destroyed, but they can be retrieved subsequently
by the user.

The users of the Cloud IaaS service exploit the providers’ resources by creating and starting new
Virtual Machines, resuming Virtual Machines which have been suspended, creating Virtual Networks,
connecting Virtual Machines to Virtual Networks, and so on. The action listed before will be referred in
the following as security relevant actions, because they are relevant from the point of view of the security
of the Cloud IaaS service. In fact, they allow users to exploit the hardware resources of the Cloud provider
(CPU time, RAM memory, permanent storage, network bandwidth, etc.), and to access and use software
resources of the Cloud service (VM templates, data, etc.). Moreover, an important feature of some of
these actions is that they are long lasting, which means that they allow Cloud users to exploit the IaaS
service for some time, from a few minutes to hours, days, or even years. As an example, a researcher

6



could create and start a set of VMs that host the management and the development environments at the
beginning of a research project, and run these VMs until the project has been completed (e.g., after 3
years). In fact, since the time required to users to set up VMs with their working environments (i.e., create
and start a VM, install the tools and load the data required for executing their tasks) is not negligible,
users typically exploit IaaS Clouds for long lasting computations. Hence, the execution of these actions
represents a security threat for the Cloud service provider, because the factors that initially allowed the
execution could change while the action is still in progress. Besides wasting Cloud resources, a malicious
or unauthorized user could perform a Denial of Service (DoS) attack by creating and running a very large
number of VMs (thus filling, for example, the available RAM memory). Moreover, a malicious user could
exploit his VMs to perform attacks to other VMs on the same Cloud or to external machines.

Summarizing, the Usage Control service can be successfully integrated in the Cloud environment to
enhance the security of IaaS services, because the accesses to those services represent a relevant source of
threats for the Cloud provider since they could last for a long time, such as hours, days, or even more.
Finally, the proposed system would contribute to address some of the threats described in [1]. In fact,
the continuous enforcement of the Usage Control policy and the interruption of running VMs when users
violates the policy could avoid the prosecution of attacks in case of account hijacking and/or abuse of
Cloud Services.

3.1 Examples of Usage Control Policies

This section presents three simple examples of Usage Control policies for the scenario of interest, focussing
on operations on VMs. These policies could be part of a more complex set of policies adopted by a Cloud
IaaS service to regulate the usage of VMs. Since the U-XACML language is too verbose, for the sake of
readability, in this paper we use a human-readable language to show Usage Control policies. However, the
translation from this human-readable language to U-XACML, which is the language actually enforced by
the Usage Control service, is straightforward. Moreover, since the framework proposed in this paper is
part of the Coco Cloud project17, the policy authoring tool developed within this project can be exploited
to easily create Usage Control policies. A description of this policy authoring tool can be found in [8].

In our scenario, we suppose to have three roles for subjects: guest, customer, and administrator.
Moreover, we suppose that a subject cannot hold more than one role at the same time. A guest is a
subject who registered to the Cloud service, and who can exploit the Cloud resources for free for an
evaluation period, with some constraints. A customer, instead, is a user who pays a monthly fee for
exploiting the Cloud IaaS service, and no limitations are imposed on the resources he can use. An
administrator is an employee of the Cloud provider who manages the Cloud IaaS service.

The policies are shown in Listings 1, 2, and 3, where s represents the subject requesting the operation
to the Cloud service, o denotes the resource that s wants to access, e.g., a VM, and a is the action that
s wants to execute on o. The attributes exploited by these policies are described in Table 1.

Listing 1 First example of Usage Control policy

1: policyA :
2: target :
3: (o.type = ”VM”)
4: pre− authorization :
5: (a.id = ”deploy”) AND
6: (”guest” ∈ s.role) AND
7: (s.id = o.owner) AND
8: (o.requiredMemory ≤ 4GB) AND
9: (s.numVMs = 0) AND

10: (s.reputation = ”excellent”)
11: pre− update :
12: (s.numVMs+ +)
13: on− authorization :
14: (s.reputation = ”excellent”)
15: post− update :
16: (s.numVMs−−)

17http://www.coco-cloud.eu/

7



Attribute name Description Mutable

s.id Unique ID of the subject s No

s.role Role of the subject s No

s.reputation Reputation of the subject s Yes. It decreases, for instance, as a conse-
quence of a policy violation

s.numVMs Number of VMs deployed by the subject s
on the Cloud IaaS service

Yes. It changes every time the subject s
creates a new VM or terminates an existing
one

s.unpaidFees Number of overdue fees, i.e., the number
of monthly fees that the subject s should
have paid but he has not paid yet

Yes. It changes when the subject s omits
to pay a monthly fee, or when s pays one
(or more) overdue fees

s.clearance Security level granted to an administrator
s of the Cloud IaaS service

Yes. It changes, for instance, when the ad-
ministrator is disciplined for some reason

o.type Type of the object o, e.g., VM No

o.owner ID of the subject owner of the object o No

o.requiredMemory Amount of memory required for executing
the object o of type VM

No

a.id Unique ID of the action a No

Table 1: Attributes exploited in the examples of Usage Control policies

The goal of policyA, shown in Listing 1, is to regulate the deployment of VMs by guest users. It
imposes limitations on the memory size and on the number of concurrent VMs that a guest user can
execute, and it ensures that only guest users with excellent reputation are allowed to deploy and run
VMs. Hence, policyA checks that the reputation of a guest user is excellent both at request time, in order
to authorize the deployment of the VM, and continuously during the execution of this VM, in order to
suspend it as soon as the reputation is not excellent any more. In particular, this policy is applicable
to operations performed on Virtual Machines, because the target section of the policy states that the
resource type must be equal to VM (line 3). The pre-authorization section checks that the action ID is
equal to deploy (line 5), and that the user holds the role guest (line 6). Moreover, the pre-authorization
section controls that the user who requests to deploy the VM is the owner of that VM by matching the
attribute which represents the ID of the subject with the attribute o.owner of the object (line 7), and
that the amount of RAM memory to be assigned to the VM to be deployed (o.requiredMemory) is equal
or less than 4GB (line 8). Since the user ID, the user role, the VM owner and the VM memory size are
immutable attributes, they are checked only once in the pre-authorization phase, and they will not change
their values during the new VM lifetime. In fact, we assume that a VM must be stopped before changing
its memory size. The pre-authorization section also includes a predicate concerning a mutable attribute
of the user, s.numVMs, which represents the number of running VMs deployed by the user (line 9). The
value of this attribute is incremented in the pre-update section (line 12), i.e., when the VM deployment
has been authorized, and it is decremented in the post-update section (line 16), i.e., when the VM has been
terminated. Although it is a mutable attribute, its value is checked only in the pre-authorization section
because, when a guest user is already running one VM, this policy prevents him from creating another
VM. Moreover, in order to allow only guest users whose reputation is excellent to deploy and carry on
the execution of VMs, policyA checks that value of the attribute s.reputation is equal to “excellent” both
in the pre-authorization and in the on-authorization sections (lines 10 and 14, respectively).

Listing 2 Second example of Usage Control policy

1: policyB :
2: target :
3: (o.type = ”VM”)
4: pre− authorization :
5: (a.id = ”deploy”) AND
6: (”customer” ∈ s.role) AND
7: (s.id = o.owner) AND
8: (s.unpaidFees = 0)
9: on− authorization :

10: (s.unpaidFees ≤ 1)

8



The second policy, policyB, is shown in Listing 2, and it concerns the deployment of VMs by regular
customers. The purpose of policyB is to permit the execution of VMs only to customers who are in good
standing with the payment of the monthly fee. The target section of this policy states that the resource
type must be equal to VM (line 3), i.e., the policy is applicable to operations performed on Virtual
Machines. The pre-authorization predicate checks that the action ID is equal to deploy (line 5), that the
user who requests to start the VM holds the customer role (line 6), and that this user is the owner of that
VM (line 7), similarly as the previous policy. The policy allows a customer to deploy a new VM only if he
has paid all the overdue fees, and his running VM is suspended if he skips the payment of the monthly fee
for more than 1 time. To this aim, the pre-authorization section includes a predicate which checks that
the value of the attribute s.unpaidFees is zero, i.e., the user s must not have any overdue fee still to pay
in order to be authorized to deploy a new VM (line 8). Moreover, the on-authorization section includes
a predicate (line 10) which checks that the number of unpaid fees is less than or equal to 1. This means
that the policy suspends the VMs running on behalf of the customer s when s omits to pay the monthly
fee of the Cloud IaaS service for two times.

Listing 3 Third example of Usage Control policy

1: policyC :
2: target :
3: (o.type = ”VM”)
4: pre− authorization :
5: (”administrator” ∈ s.role) AND
6: (s.clearance = MAX)
7: on− authorization :
8: (s.clearance = MAX)

The last policy of our example, policyC, is shown in Listing 3. This policy allows the administrators
of the Cloud IaaS service to perform any operation on any VM of the system. However, this permission
is valid only if and as long as the clearance level of the administrator is maximum. In fact, the clearance
of an administrator could be decreased when the administrator is disciplined for some reason. In this
case, the administrator is not allowed to perform new operations on the VMs, and the operations he
started that are still in progress are interrupted. Similarly to the previous policies, the target section
checks that the resource type is equal to VM. The pre-authorization section includes two predicates. The
first predicate (line 5) checks that the subject holds the administrator role. The second predicate (line
6) checks that the clearance level of the administrator is maximum in order to grant to the subject the
right of initiating an action on a VM. Since no constraints are specified on the action ID, policyC is
applicable to all operations on VMs. Moreover, the clearance level of the administrator is continuously
controlled in the on-authorization section by the predicate in line 8, in order to ensure that the user holds
the maximum clearance level also while the operation is performed.

3.2 Integration of the Enforcement Infrastructure within Cloud Providers

The architecture of the proposed framework for supporting the enforcement of Usage Control policies in
Cloud IaaS services is shown in Figure 2, and it is derived from the XACML reference architecture [33].
The main components of the architecture are the Cloud provider (on the left) and the Usage Control
service (on the right).

The architecture consists of three horizontal layers:

• The Application Layer (AL) holds the Cloud IaaS service and other services that manage some of
the attributes needed for policy evaluation. In Figure 2, the components of this layer are represented
by the blue boxes;

• The Usage Control Layer (UCL) holds the core components of the Usage Control system, which
are represented by the green boxes in Figure 2. On the Cloud provider side, it includes the Policy
Enforcement Point, while on the Usage Control service side it hosts all the components devoted to
the (continuous) evaluation of Usage Control policies;

• The Communication Layer (CL) is the lower end of the infrastructure that performs the communi-
cation between the components on the Cloud provider and the Usage Control service. In Figure 2,

9



Cloud provider Usage Control service

AL

UCL

CL

Network

Attribute
Manageri

Attribute
Managerj

Context
Handler

Access Table

PDP

PAP

PIPj

−−−−−−−
PIPi

SM

DAL

AM
Protocoli

PEP
Protocol

PEP
Protocol

AM
Protocolj
−−−−−−−

AM
Protocoli

Cloud IaaS
service

acPEP

startPEP

revPEP

endPEP

PEP

Figure 2: Architecture for the enforcement of Usage Control policies

10



the components of the Communication Layer are represented by the orange boxes.

The enforcement of Usage Control policies requires to embed a Policy Enforcement Point (PEP) within
the Cloud IaaS service in order to intercept and regulate the execution of each security relevant action of
the scenario. In particular, a PEP consists of four components: the acPEP, the startPEP, the endPEP and
the revPEP. The acPEP is in charge of performing the pre-decision phase. The startPEP, the endPEP
and the revPEP, instead, are in charge of managing the on-decision phase. In practice, each of these
components is a distinct software module that must be properly embedded in the code of the Cloud IaaS
service.

The protocol which regulates the interactions between the PEP components and the Usage Control
service is composed of the following messages, derived from the Usage Control actions described in [50]:

• tryaccess(s, o, a): sent by the acPEP to the Usage Control service when the subject s requests to
execute the access (s, o, a), i.e., s requests to perform the security relevant action a on the virtual
machine o;

• permitaccess(s, o, a): sent by the Usage Control service to the acPEP as response to the tryaccess(s, o, a)
message to allow the access (s, o, a);

• denyaccess(s, o, a): sent by the Usage Control service to the acPEP as response to the tryaccess(s, o, a)
message to deny the access (s, o, a);

• startaccess(s, o, a): sent by the startPEP to the Usage Control service when the access (s, o, a)
started;

• endaccess(s, o, a): sent by the endPEP to the Usage Control service when the access (s, o, a) termi-
nates;

• revokeaccess(s, o, a): sent by the Usage Control service to the revPEP to suspend an ongoing access
(s, o, a).

The workflow of the interactions between the PEP components and the Usage Control service is
shown in the sequence diagram in Figure 3 (where areq represents the access request (s, o, a)). When the
Cloud IaaS service tries to execute a security relevant action a, the acPEP intercepts it and suspends its
execution. The acPEP retrieves the information related to this access (such as the ID of the subject s who
is performing the action, the ID of the resource o on which the action is performed, etc.). Then, the acPEP
builds the tryaccess message exploiting the data previously collected, and sends it to the Usage Control
service (interaction 1:tryaccess(areq) in Figure 3). The Usage Control service performs the pre-decision
process and returns the result to the acPEP which enforces it. If the Usage Control service decides
to allow the action, it sends the permitaccess message to the acPEP (interaction 2:permitaccess(areq)),
which resumes the execution of a. Instead, if the Usage Control service sends the denyaccess message, the
acPEP skips the execution of the action. Let us suppose that the execution of a is permitted. In this case,
when the execution of a has started, the startPEP sends the startaccess message to the Usage Control
service to initiate the on-decision phase (interaction 3:startaccess(areq)). Hence, while a is in progress,
the Usage Control service continuously checks that the Usage Control policy is satisfied. In case this
policy is violated, the Usage Control service sends the revokeaccess message to the revPEP (interaction
4a:revokeaccess(areq)), asking for the termination of a. The revPEP is properly configured for gracefully
interrupting each security relevant action without compromising the involved data or computations. For
instance, if the security relevant action is the execution of a VM, the revPEP simply suspends this VM
when it receives the revokeaccess message. In this way, the Cloud provider could temporary restart this
VM to allow the owner to recover his data. Instead, if a is terminated by a user, the endPEP sends the
endaccess message to the Usage Control service (interaction 4b:endaccess(areq)) to stop the on-decision
phase for that action. Please notice that our protocol includes a further action, startaccess, w.r.t. the
Usage Control actions described in [50]. This action is meant to explicitly start the on-decision process.

3.2.1 Integration within OpenNebula

In this paper we focus on Cloud IaaS services based on OpenNebula, because it is well suited for integration
with other software components and extends to almost all the hardware available on the market [42, 30].

11



Policy Enforcement Point Context Handler

1:tryaccess(areq)

2:permitaccess(areq)

acPEPacPEP

3:startaccess(areq)

startPEPstartPEP

4a:revokeaccess(areq)

revPEPrevPEP

4b:endaccess(areq)

endPEPendPEP

AltAlt

Figure 3: Interactions between Policy Enforcement Point and Context Handler

onevm command Authz Operation VM State UCON Action

deploy MANAGE/Request → PENDING tryaccess

resume MANAGE/Request STOPPED → PENDING tryaccess

- - PENDING → RUNNING startaccess

shutdown, delete MANAGE/Request RUNNING → SHUT-
DOWN

endaccess

stop, suspend MANAGE/Request RUNNING → STOPPED endaccess

Table 2: Mapping of OpenNebula commands to Usage Control actions

12



C
o
re

L
a
y
e
r

A
c
ti

o
n

L
a
y
e
r

D
ri

v
e
r

L
a
y
e
r

Request Manager In-
terface [XML-RPC]

Database Hook Manager startPEP

Sunstone

Command
Line Interface

API

Others

revPEP

Images

Virtualization

Network

Others

A
u

th
or

iz
at

io
n

acPEP

endPEP

Usage Control Service

PEP

OpenNebula IaaS Service

request

revokeaccess

tryaccess

startaccess

p
er

m
it

a
cc

es
s/

d
en

ya
cc

es
s

endaccess

Figure 4: Integration of a Policy Enforcement Point in the OpenNebula architecture

Figure 4 shows how the Usage Control framework, represented by the green boxes, has been integrated
with the OpenNebula architecture18. In particular, the acPEP and the endPEP have been embedded in
the Authorization Driver (AD), the startPEP has been integrated in the Hook Manager (HM) and the
revPEP has been deployed in the Action Layer.

The Authorization Driver is a component of OpenNebula that is meant to be configured to adopt
external authorization systems (such as the Usage Control service). The Hook Manager is component
which can be configured to execute a program (called hook) when a change in the state of a VM or a
Host happens. Choosing the execution of a VM as example of security relevant action, Table 2 shows
the mapping between the OpenNebula commands invoked by the Cloud user to manage a VM and the
Usage Control actions that are sent by the PEP components to the Usage Control service. The first
column specifies the command sent by the user to the OpenNebula gateway in order to manage a VM.
The OpenNebula Core intercepts this command and sends the proper access request, represented in the
second column of the table, to the Authorization Driver (AD) for the security check. The third column
defines the state of the VM before and after the execution of the command. The last column specifies the
corresponding Usage Control action.

When a user invokes the onevm deploy command through the OpenNebula interface (e.g., using the
Command Line Interface, CLI), the OpenNebula Core intercepts it and sends the MANAGE request to

18http://docs.opennebula.org/4.12/ images/overview integrators.png

13



the AD, the state of the requested VM is set to PENDING. In turn, the acPEP embedded in the AD
sends the tryaccess message to the Usage Control service. If the acPEP receives back the denyaccess
message from the Usage Control service, the onevm deploy operation is not executed. Instead, if the
permitaccess message is received, the AD grants the access. In this case, the OpenNebula Virtualization
Driver executes the deploy command, and the state of the VM changes from PENDING to RUNNING.
Consequently, the startPEP embedded in the HM is executed and it sends the startaccess message to
the Usage Control service. When the user wants to stop his running VM, he sends to OpenNebula one
of the following commands: onevm shutdown, delete, stop, suspend. When the corresponding MANAGE
request is sent to the AD, the acPEP sends the endaccess message to the Usage Control service. Instead,
if the security policy is violated during the VM execution, the revPEP embedded in the Action Layer
of OpenNebula receives the revokeaccess message from the Usage Control service to suspend the VM
execution. In this case, the revPEP performs the invocation of the onevm suspend command acting as
admin user and this changes the state of the VM from RUNNING to STOPPED. In this way, the data
produced on the VM by the user’s applications are preserved, and the Cloud provider could enable its
user to recover them simply by temporary restarting the suspended VM. Notice that the AD has been
configured to allow the suspend command executed by the admin user.

3.3 Usage Control Service

This section presents the architecture of the Usage Control service, which is the advanced authorization
service we designed to support the enforcement of Usage Control policies. This architecture is shown on
the right side of Figure 2. As previously stated, it is derived from the XACML reference architecture,
which has been extended to include the components required for the evaluation of U-XACML Usage
Control policies and the management and revocation of the ongoing usage sessions. The architecture
components are the following.

3.3.1 Attribute Managers (AMs)

Attribute Managers are the components which manage the attributes of subjects, resources, environment
and actions, allowing to retrieve and to update their values. They could run in the Usage Control service,
on the Cloud provider side, or they could even be external, i.e., they could run in other administrative
domains. Some existing services can be exploited as Attribute Managers. For instance, OpenNebula
can be considered as an Attribute Manager since it can provide information about both Cloud users and
resources.

3.3.2 Policy Information Points (PIPs)

Policy Information Points are interfaces for interacting with Attribute Managers in order to perform the
following operations on attributes: retrieve, subscribe/unsubscribe, and update. In general, the attributes
required for the evaluation of a Usage Control policy could be managed by several Attribute Managers,
which require different protocols for interacting with them, and which provide different functionalities.
Hence, PIPs mimic a plugin architecture to let the Usage Control service be as flexible as possible in
interacting with distinct and different Attribute Managers. In particular, the proposed architecture
includes a set (chain) of PIPs. Each PIP provides the same interface to the Context Handler (retrieve,
subscribe/unsubscribe, and update), while it implements the specific protocol to interact with a given
Attribute Manager and the specific algorithm to perform the requested operation. For instance, if the
Attribute Manager of attribute attr does not support subscription, the PIP paired with attr should
implement the subscription mechanism in order to provide the subscribe interface. This PIP could invoke
periodically the Attribute Manager to retrieve the updated value in order to compare it with the previously
collected value. If the new value is different from the previous one, the PIP notifies the component
which performed the subscription (i.e., the Context Handler). The time interval between two consecutive
queries to the Attribute Manager is a configuration parameter and it is set according to the attribute to
be monitored. More complex techniques could be implemented. For instance, the previous PIP could
exploit risk based techniques to decide how much time it should wait before retrieving the next attribute
value from the Attribute Manager. The retrieve interface could be implemented by simply forwarding
the request to the Attribute Manager, or by exploiting more complex techniques in order to reduce the
time required for the attribute retrieval phase. For instance, a PIP could return the value retrieved in a

14



previous interaction instead of retrieving a fresh value from the Attribute Manager when it is aware that
the attribute value is not changed (e.g., when the PIP itself requested to the Attribute Manager to lock
the attribute).

3.3.3 Policy Decision Point (PDP)

The Policy Decision Point is a XACML evaluation engine that takes a policy and an access request as
input, evaluates the policy for that request, and returns the decision. Inputs and outputs of the PDP are
represented in the format defined by the XACML standard.

3.3.4 Session Manager (SM), Database Abstraction Layer (DAL), and Access Table (AT)

The Session Manager represents an extension with respect to the XACML reference architecture. It is in
charge of keeping trace of the usage sessions, in order to implement the continuous enforcement of Usage
Control policies while the accesses are in progress. The SM exploits the Access Table to store data about
ongoing sessions. The AT can be seen as a DataBase where each entry refers to an ongoing session and
contains the session ID, the access request, the session status (i.e., pending, active, revoked, ended), and
other data. The SM allows to create a new entry in the AT to represent a new usage session through the
create operation, to change the session status through the updateStatus operation, and to remove an entry
related to a terminated access through the remove operation. Each entry is paired with a unique ID.
Moreover, the SM provides a further operation, query, which allows to get the list of the active sessions
involving a given subject, object, and/or action. Since the Usage Control service has been designed to be
highly configurable, a relational Data Abstraction Layer [3] has been inserted in the architecture. This
allows the choice of the DataBase implementation for the AT which best meets the needs of the specific
scenario when deploying a new installation of the Usage Control service.

3.3.5 Context Handler (CH)

The CH is the front-end of the Usage Control service, and it coordinates the interactions with the com-
ponents of this service in order to perform:

• the pre-decision phase, which produces the access decision;

• the on-decision phase, which continuously enforces the ongoing policy while the access is in progress;

• the post-decision phase, which executes the post updates of attributes.

The CH manages the protocol for communicating with the PEP components embedded in the Cloud IaaS
service exploiting the Usage Control actions defined in [50] according to the workflow described in Section
3.2.

In the pre-decision phase, the CH receives from the acPEP the tryaccess message which includes
the access request (areq), and it interacts with the other components of the service to evaluate the pre-
policy (i.e., the policy including pre-authorization, pre-conditions, pre-updates and pre-obligations only)
in order to produce the decision and send back the response. The pre-decision phase workflow is shown
in the sequence diagram of Figure 5. In particular, the CH retrieves the pre-policy from the Policy
Administration Point (PAP) which acts as policy repository (interaction 2:get(pre-policy) in Figure 5).
Then, the CH interacts with the PIPs to retrieve all the attributes required for the decision process, i.e.,
the attributes related to the user who requested the access, to the Cloud resource, to the environment and
to the action (interaction 3:retrieve(areq)). The CH exploits the retrieve interface provided by the PIPs
sending the access request as parameter, and it receives back the same access request enriched with the
retrieved attributes. The Usage Control service embeds a chain (i.e., an ordered set) of PIPs, and the CH
invokes them in the predefined order. Once all the PIPs have been invoked, the CH sends the pre-policy
along with the enriched access request to the PDP, which evaluates the policy for that request and returns
the access decision (interaction 4:evaluate(policy,areq)). Let us suppose that the access is permitted. The
access decision also includes a list of attribute updates, that the CH executes by exploiting the update
interface of the PIPs (interaction 5:update(uplist)). These updates correspond to the pre-update Usage
Control actions. Finally, the CH invokes the SM through the create operation to create a new entry
for this access (interaction 6a:create(areq)); the session status of the new entry is “pending”. The SM

15



enriches the access request adding the session ID, and the CH returns the permitaccess message to the
acPEP (interaction 7a:permitaccess(areq)).

The on-decision phase starts when the CH is notified by the startPEP (through a startaccess message)
that the previously allowed access has began. The on-decision phase consists of a first evaluation of
the on-policy (i.e., the policy including on-authorization, on-conditions, on-updates and on-obligations),
followed by a number of re-evaluations of this policy every time the value of an attribute changes. The
workflow of the first evaluation of the on-policy is very similar to the workflow of the pre-policy evaluation.
First, the CH retrieves the on-policy from the PAP. Next, it retrieves the updated values of the attributes
required for the decision process exploiting the subscribe interface of the PIPs. Then, it asks the PDP to
evaluate the on-policy on the access request enriched with the collected attributes. Let us suppose that
the PDP allows the access. Hence, the CH invokes the update interface of the PIPs to send them the list
of attribute updates included in the response of the PDP. Each PIP executes the updates related to the
attributes it manages according to the update statements it receives. Finally, the CH changes the session
status to “active” interacting with the SM through the updateStatus command.

Due to the attribute subscriptions, the CH will be also notified by the PIPs when the value of one
of the attributes involved in the ongoing decision process, say attr, has changed. In this case too, the
CH coordinates the other components of the Usage Control service in order to perform the on-policy
re-evaluation. The workflow is shown in Figure 6. When the CH is notified by the PIP, because attr
changed its value (interaction 1:notifyUpdate(attr) in Figure 6), it invokes the SM through the query
operation to get the list of active accesses whose execution right could change because of the new value
of attr (interaction 2:query(attr)). Then, the CH retrieves the on-policy from the PAP (interaction
3:get(on-policy)), and re-evaluates it for each session of the list. To this aim, the CH retrieves the current
values of the required attributes from the PIPs (interaction 4:retrieve(areq)), and it invokes the PDP
for the policy evaluation (interaction 5:evaluate(policy,areq)). If the on-policy is satisfied, the access
continues, otherwise it must be revoked. The response returned by the PDP includes a list of updates
of attributes. In case the policy is satisfied, the updates returned by the PDP correspond to the on-
updates Usage Control actions, while they correspond to the post-updates Usage Control actions in case of
access revocation. The CH delegates these attribute updates to the PIPs exploiting the update interface
(interaction 6:update(uplist)). To revoke the access, the CH sends the revokeaccess message to the revPEP
(interaction 7:revokeaccess(areq)). In addition, the CH cancels the attribute subscriptions related to this
access by invoking the unsubscribe operation of the PIPs (interaction 8:unsubscribe(areq)), and it changes
the status of the entry in the AT related to this access to “revoked” by invoking the updateStatus operation
of the SM (interaction 9:updateStatus(areq,revoked)).

If an access terminates because the user stopped it, the CH is notified by the endPEP through the
endaccess message. In this case the CH changes the status of the related entry in the AT to “ended”, and
it executes the post updates of attributes, which correspond to the post-updates Usage Control actions.

3.4 Concurrent Management of Attributes

When multiple Usage Control services run concurrently and exploit a set of common attributes, some
concurrency issues in attribute management could arise if two or more decision processes concurrently
retrieve and update the same attribute. Such concurrency issues could arise, for instance, in a federated
Cloud. A Cloud Federation [7, 11] is an infrastructure which allows a set of Cloud providers to offer their
services through a unified platform. A major advantage of a Cloud Federation is that it provides elasticity
beyond the scale of the single Cloud provider. For instance, it allows its users to exploit services from
distinct Cloud providers at the same time.

In a federated Cloud, each provider runs its own Usage Control service which is configured to exploit
both attributes managed by the provider itself, as well as shared attributes provided by the Cloud Feder-
ation. In fact, the Cloud Federation sets up its own Attribute Manager to deliver to Cloud providers a set
of attributes which represent some features of subjects and objects at Federation level. The total number
of VMs running on behalf of a user s on the providers of the Federation, s.numVMs, is an example of
mutable attribute of the subject which is provided by the AM of the Federation. The AM which manages
the attributes of the Federation are considered external for the Cloud providers. In addition, other exist-
ing services running in the Cloud Federation can be exploited by the Usage Control services of the Cloud
providers as external AMs. For instance, the Cloud Information System of the Federation could provide
attributes concerning each Cloud provider, while the Monitoring Systems and the Accounting DataBase

16



acPEP Context Handler PIP PAP PDP SM

1:tryaccess(areq)

2:get(pre-policy)

policy

3:retrieve(areq)

areq

looploop [for each PIP in the chain]

4:evaluate(policy, areq)

response

5:update(uplist)

ok

parpar [for each PIP in the chain]

6a:create(areq)

areq

7a:permitaccess(areq)

6b:denyaccess(areq)

altalt [response = access permitted]

Figure 5: Workflow of the pre-decision phase

17



revPEP CH PIP PAP PDP SM

1:notifyUpdate(attr)

2:query(attr)

sessionlist

3:get(on-policy)

policy

4:retrieve(areq)

areq

looploop [for each PIP in the chain]

5:evaluate(policy, areq)

response

6:update(uplist)

ok

parpar [for each PIP in the chain]

7:revokeaccess(areq)

8:unsubscribe(areq)

ok

parpar [for each PIP in the chain]

9:updateStatus(areq,revoked)

ok

optopt [response = access denied]

looploop [for each session in sessionlist]

Figure 6: Workflow of the on-policy re-evaluation

18



of the Federation could provide attributes concerning the resource consumption of each subject.
Let us suppose that each Cloud provider of the Federation enforces a policy which allows a user s to

deploy a new VM only if the number of VMs currently in execution in the Federation on behalf of s is
less than N . If s tries to deploy two VMs on two distinct Cloud providers of the Federation at the same
time, two decision processes are executed concurrently by the Usage Control services of the two providers.
These decision processes retrieve the attribute s.numVMs from the AM of the Federation. If the current
value of the attribute is less than N , they allow the deployment of the new VM, and they ask the AM of
the Federation to store the increased value of s.numVMs. A race condition arises when the result of two or
more decision processes depend on the interleaving of the retrieve and update operations they performed.
Lost update and inconsistent retrieval are examples of the race condition problem. With reference to the
previous example, a lost update arises when the two decision processes read the value of the s.numVMs
simultaneously, i.e., they read the same value because each of the two processes misses the attribute update
performed by the other. If the initial value of the attribute s.numVMs is N-1, both decision processes
will allow the deployment of a new VM, while only one VM should be deployed according to the policy.
Moreover, both the decision processes update the value of s.numVMs setting it to N. Hence, the resulting
value of s.numVMs will be N, while it should be N+1 because two VMs have been deployed. The two-
phase locking protocol (2PL) [4, 34] is a standard solution to address race conditions in attribute retrieval
and updates. It pairs each attribute with a lock mechanism, which should be supported by the related
AM. When a decision process requires to read and update one or more attributes, all these attributes
are locked before performing the operations. If an attribute is already locked, the decision process is
suspended until the lock is released. It means that another concurrent decision process involving the
same attribute is in progress. As soon as the decision process has been performed, the involved attributes
are unlocked. To avoid deadlocks, attributes must be locked in a predefined order by all the Usage Control
services. Hence, we assume that the AMs are able to properly perform the lock and unlock operations,
and that it is possible to define the attribute ordering because the set of attributes supported by the
Usage Control services is known a priori. Obviously, the adoption of a locking mechanism introduces a
delay in the attribute retrieval phase. In fact, when a decision process requires to access an attribute that
is already locked, it is delayed until the attribute is available.

4 Prototype Implementation

This section describes the implementation details of the components of the Usage Control service and
of the PEP enabling the integration within OpenNebula. All the components of the Usage Control
service have been developed in Java, while the acPEP, the startPEP, the endPEP, and the revPEP have
been developed exploiting the Ruby language. With respect to our previous work described in [25], we
dramatically improved most of the code of our framework in order to improve its performance.

4.1 PIP Implementation

As explained in Section 3.3, PIPs can be seen as plugins which allow the Usage Control service to interact
with a set of distinct and different AMs through the same interface. This interface is implemented by
each PIP providing the remote methods for the retrieve, subscribe/unsubscribe, and update operations
exploiting XML-RPC over HTTP. In our prototype, HTTPS is not required because the CH and the
PIPs are deployed on the same machine. For the purpose of validating our framework, we implemented
three PIPs:

• Session counter: this PIP returns the number of active sessions of a given user, exploiting the Session
Manager as (local) Attribute Manager;

• Local DB PIP: this PIP manages attributes paired with users or VMs which are stored on the
DataBase of the Usage Control service.

• Remote DB PIP: this kind of PIP allows to exploit remote DataBases as Attribute Managers. In
particular, it implements SSL-based connections to MySQL servers in order to retrieve attributes
paired with users or VMs.

19



4.2 PDP Implementation

The PDP engine has been implemented as Eclipse project using WSO2 Balana API19. Balana is an open
source XACML implementation based on Sun-xacml. This engine supports several features, such as
XACML 3.0, Maven20 support for compile with unit tests, and decision profile support. Moreover, this
engine has excellent performance.

4.3 DAL and SM Implementation

The DAL has been implemented exploiting the Oracle Java Persistence Architecture (JPA) v2.1 [5], which
is an Object Relational Mapping (ORM) abstraction with its own query language (called JPQL). We have
chosen the EclipseLink [9] implementation of the JPA-ORM instead of the usual Hibernate, since the
former is more compliant with the JPA recommendations. The relational DataBase Management System
(DBMS) which has been adopted in our framework is Apache Derby21. However, a JPA compliant
system allows to easily substitute the DBMS by simply modifying a configuration file. Apache Derby
is implemented in Java, and the performance of the whole system takes advantage of this choice. In
fact, other popular relational database management systems22, such as MySQL server or SQLite with
their own JDBC, perform worse than Derby. The SM implementation is based on the javax.persistence
and the org.eclipse.persistence.annotations Java libraries. Finally, the DAL and SM implementation is
fault-tolerant. In fact, the data related to the ongoing sessions resist to system crashes, and they are
resumed when the Usage Control service is restarted.

4.4 CH Implementation

The CH is the front-end of the Usage Control service and it interacts with the PEP components embedded
in OpenNebula. To this aim, the CH exploits the remote procedure call mechanism provided by the
Apache XML-RPC library23 version 3 to expose the tryaccess, startaccess, and endaccess operations
which build up the communication protocol of the Usage Control service. Since in our testbed the Usage
Control service and OpenNebula are deployed on distinct machines, the XML-RPC protocol is over
HTTP Secure (HTTPS) to protect the communication. However, our implementation completely hides
these communication details by means of a Java abstract interface (represented by the box PEP Protocol
in Figure 2). In this way the acPEP, the startPEP, and the endPEP embedded in OpenNebula simply
invoke the methods of this interface (called tryaccess, startaccess, and endaccess as well) to communicate
with the CH. Symmetrically, the revPEP implements the revokeaccess procedure and exposes it through
the XML-RPC protocol over HTTPS to allow the CH to send the access revocation message.

4.5 Implementation of acPEP, startPEP, endPEP, and revPEP.

The code required to implement the PEP functionalities described in section 3.2 has been embedded in
several components of OpenNebula. In particular, the Authorization Driver (AD) is responsible for send-
ing the tryaccess and endaccess messages and enforcing the corresponding permit/denyaccess messages.
The Hook Manager (HM), instead, is in charge of sending the startaccess message (see Figure 4).

When the user issues the onevm deploy command, the OpenNebula Core calls the AD for the access
decision before the command execution. We configured OpenNebula to exploit our implementation of
AD, which is written in Ruby and embeds the code of the acPEP and of the endPEP. The AD receives
the user id (user-id), the VM id (vm-id), and the command to be executed (type-req). Next, the AD gets
from the OpenNebula DataBase the state of the requested VM. If the state is PENDING, then the AD
recognizes that the user tries to start the VM (see Table 2) and sends the tryaccess message to the Usage
Control service. As previously described, this communication is implemented through the XML-RPC
protocol over HTTPS. In particular, the acPEP invokes the tryaccess remote method exposed by the CH,
passing the XACML Request as parameter of the method. The Usage Control service replies with the

19http://xacmlinfo.org/category/balana/
20http://maven.apache.org/
21http://db.apache.org/derby/
22http://www.jpab.org/All/Query/All.html
23https://ws.apache.org/xmlrpc/

20



access decision. The AD processes the response and replies with SUCCESS to the OpenNebula Core if
the permitaccess is received. Otherwise, the AD triggers the authorization exception.

When the VM has been started, its state changes to RUNNING and this event triggers the HM. Again,
we configured OpenNebula to exploit our version of HM (which is a ruby script as well), which embeds
the code of the startPEP. Hence, the HM sends the startaccess message to the Usage Control service by
invoking the corresponding remote method exposed by the CH through the XML-RPC protocol. When
the user decides to stop his VM, he sends this command to the OpenNebula Core, which forwards it
to our AD. Our AD executes the code of the endPEP which sends the endaccess message to the Usage
Control service exploiting the same protocol used for the tryaccess one.

For what concerns the access revocation, the revPEP is implemented as a server waiting for revocation
messages from the Usage Control service. In this case too, the XML-RPC protocol over HTTPS has been
adopted, and the Usage Control service invokes a function (def in Ruby) called revokeaccess that is
exposed by the revPEP. This function issues the onevm suspend command to the OpenNebula Core
acting as admin user. This request is forwarded to the AD which authorizes it because it was originated
by the admin user, and the VM is suspended by the OpenNebula core.

5 Performance Evaluation

To validate the proposed framework, we performed a set of experiments exploiting the previously described
prototype to measure the performance of the Usage Control service. In particular, we estimated the time
required by the Usage Control service to perform the initial access decision, and to decide whether some
of the running VMs must be suspended according to the Usage Control policy as a consequence of an
attribute update. In our testbed, the Usage Control service was deployed on a machine equipped with a
CPU Intel(R) Xeon W3565 @3.20GHz and 8GB of RAM memory, while the OpenNebula framework was
deployed on another machine equipped with a CPU Intel(R) i5-760 @2.80GHz and 8GB of RAM memory.
These machines were connected by a Gigabit Ethernet local network.

The first set of experiments measured the delay introduced by our framework in the deployment of
new VMs due to the execution of the pre-decision process, varying the number of attributes evaluated
by the enforced policy. In other words, we measured the time required by the Usage Control service to
process the tryaccess message. The attributes exploited in these experiments were provided by a local
AM, i.e., a DataBase running on the same machine as the Usage Control service. Figure 7(a) shows the
results of our experiments performed by varying the number of attributes from 1 to 20, while Figure
7(b) reports the results varying the number of attributes from 20 to 1,000. The pseudo-code exploited to
perform these measurements is shown in Listing 4, and it was executed on the machine running the Usage
Control service. Each value was measured 1,000 times, and we computed the average. The variance was
negligible.

Listing 4 Pseudo-code for attribute based measurements

Require:
S : {tryaccess}
CONDITION : ∀ requests, ∃ output | {S} := true

for all requests do
Timer Start← Current T ime (µs)
tryaccess→ UCS
Timer Stop← Current T ime (µs)

end for

From Figure 7(a) we observe that, when the number of attributes evaluated by the policy is equal or
less than 5, the time required to perform the pre-decision phase is less than 20 milliseconds, while for 10
attributes the pre-decision phase takes about 22 milliseconds. Instead, from Figure 7(b) we see that, even
considering a very large number of attributes, the time required to perform the pre-decision phase seems
to be linear with respect to the number of attributes evaluated in the decision process.

We extended the results shown in Figure 7 by performing further experiments where the Usage Control
service was loaded with a set of policies. In particular, Figure 8 reports the time required to perform
the pre-decision process varying the total number of attributes when the Usage Control service enforces 1

21



0 5 10 15 20
0

0.01

0.02

0.03

0.04

number of attributes

ti
m
e

(s
)

(a)

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

number of attributes

ti
m
e

(s
)

(b)

Figure 7: Time required to perform the pre-decision phase with local Attribute Manager

policy, 2 policies, 5 policies, and 10 policies. For each experiment, the attributes were distributes evenly
among the policies, and the X axis reports the total number of attributes in the set of policies. For
example, for 20 attributes, we measured the time required by the Usage Control service to evaluate one
policy which contains 20 attributes, 2 policies with 10 attributes each, 5 policies with 4 attributes each,
and 10 policies with 2 attributes each. Each experiment was performed 1,000 times, and we computed
the average execution time. The variance was negligible.

0 200 400 600 800 1,000
0

0.2

0.4

0.6

0.8

1

total number of attributes

ti
m
e

(s
)

1 policy
2 policies
5 policies
10 policies

Figure 8: Time required to perform the pre-decision phase with local Attribute Manager
and multiple policies

Figure 8 shows that, regardless of the total number of attributes, the execution time decreases when
the number of policies increases. This is due to the optimization strategies implemented by the XACML
engine we adopted in our framework, i.e., WSO2 Balana. In fact, in some cases, the WSO2 Balana
XACML engine is able to return the result of the decision process by evaluating only a proper subset
of the policies it receives as input, thus reducing the execution time. For instance, Figure 8 shows that,
in case of 100 attributes, the time required to evaluate one policy (containing all the attributes) was
about 95 milliseconds, the time for evaluating 2 policies (containing 50 attributes each) was about 57
milliseconds, while the time required to evaluate 10 policies (containing 10 attributes each) was about 28
milliseconds. The evaluation time decreases when the number of the policies loaded on the Usage Control
service increases because we observed that the WSO2 Balana XACML engine was able to determine the
result of the access request by evaluating only one of the input policies. In particular, since the combining
algorithm adopted in our tests was “permit overrides” and the result of the evaluation of the first of the

22



policies loaded on the system was “permit”, the WSO2 Balana XACML engine skipped the evaluation
of the remaining policies. Hence, when the Usage Control service was loaded with 2 and 10 policies, the
number of attributes actually evaluated to determine the access decision was, respectively, 50 and 10 out
of 100. However, these results are highly dependent on the specific policies exploited for the performance
tests. In fact, different policies could lead to different results. Summarizing, we observed that in our
experiments the time required to perform the pre-decision process mainly depended on the number of
policies and, consequently, of attributes that were actually taken into account in the decision process.
Therefore, the results reported in Figure 7 represent the worst case from the performance point of view,
because all the attributes in the policy were actually taken into account in the decision process.

Moreover, since we exploited a local AM, the delay due to the attribute retrieval phase is very low in
the previous experiments. However, in some scenarios, remote AMs are exploited as well. In this case
the time required to retrieve the updated attribute values is also affected by the delay introduced by the
network, as described later.

The second set of experiments measured the time required by the Usage Control service to perform the
decision processes related to the Usage Control actions: tryaccess, startaccess and revokeaccess. The tests
were performed on the same testbed as before, varying the number of sessions. In particular, for a given
user, a number N of sessions were created and started one by one (i.e., executing N times the tryaccess
action and N times the startaccess action). The Usage Control policy enforced in our experiments includes
a pre-authorization rule and an on-authorization rule that check that the value of the owner reputation,
which is a mutable attribute, is equal to “excellent”. Hence, while the N sessions were in progress, we
changed the value of this attribute to “bad”, and we measured the time required by the Usage Control
service to decide which of the running sessions should be revoked. This time was measured starting
from the moment when the PIP notified the CH of the new attribute value. The results are shown in
Figure 9(a). Each experiment was performed 1,000 times and we computed the average of the results (the
variance was negligible).

The pseudo-code we used to perform these measurements is described in Listing 5, and it was executed
on the machine hosting the Usage Control service. Figure 9(b), instead, shows the normalized time, i.e.,
the total time divided by the number of sessions.

Listing 5 Pseudo-code for session based measurements

Require:
S : {tryaccess, startaccess}
CONDITION : ∀ requests, ∃ output | {S} := true
WHERE : tryaccess ≺ startaccess
STRING : u.reputation := ”excellent”

for all {S} do
Timer Start← Current T ime (µs)
{S} → UCS
Timer Stop← Current T ime (µs)

end for
u.reputation← ”bad”
Timer Start← Current T ime (µs)
revokeaccess→ PEP
Timer Stop← Current T ime (µs)

First of all, we noticed that the time required to perform the tryaccess action and the time required
to perform the startaccess action are similar. This is because the two actions have very similar workflows,
as detailed in Section 3.3, and because the pre-policy and the on-policy we used for our tests were similar.
Moreover, we noticed that varying the number N of sessions that are created/started, the time required to
perform the corresponding N tryaccess/startaccess actions is linear because, as shown by Figure 9(b), the
time to perform one tryaccess or startaccess action does not depend on the number of existing sessions.

Concerning the revokeaccess action, we recall that the results shown in Figure 9(a) refer to the execu-
tion of one revokeaccess action only, which involves the re-evaluation of the on-policy for all the existing
sessions. The total time required to re-evaluate the on-policy obviously depends on the number of sessions
that need to be re-evaluated. However, Figure 9(b) confirms that the time required to re-evaluate the
on-policy for a single session does not depend on the number of running sessions. Moreover, we noticed

23



0 500 1,000 1,500 2,000
0

10

20

30

40

50

number of sessions

ti
m
e

(s
)

tryaccess
startaccess
revokeaccess

(a) Total time

0 500 1,000 1,500 2,000
0

2

4

6

8
·10−2

number of sessions

ti
m
e
×

10
−
2
(s

)

tryaccess
startaccess
revokeaccess

(b) Normalized time

tryaccess(s) startaccess(s) revokeaccess(s)
1 Session 0.015 0.015 0.023

2 Sessions 0.033 0.035 0.028
4 Sessions 0.072 0.071 0.048
8 Sessions 0.147 0.141 0.089

16 Sessions 0.289 0.277 0.179
32 Sessions 0.565 0.529 0.342
64 Sessions 1.125 1.069 0.686

128 Sessions 2.302 2.202 1.354
256 Sessions 4.595 4.593 2.754
512 Sessions 9.228 9.245 5.454

1024 Sessions 18.717 18.707 10.918
2048 Sessions 37.223 38.221 23.422

(c) Reported values

Figure 9: Time required to perform the Usage Control actions

that the time required to decide to revoke N sessions is less than the time required to create or start
them. This is due to the fact that, to create or to start N sessions, the tryaccess or the startaccess actions
must be executed N times by the acPEP or by the startPEP, thus executing N communications with the
Usage Control service. Instead, when the mutable attribute changes its value, the policy re-evaluation
process is executed on all the N sessions, but only one revokeaccess message is sent to the revPEP (and
hence one communication only is executed). This message reports the IDs of all the sessions that must
be revoked. Finally, the time required to revoke a session measures how much time the Cloud resources
have been used without holding the corresponding right. The results of our experiments show that, even
in case of a very large number of sessions to be re-evaluated, this time is acceptable. As an example, the
decision process for the revocation of 1024 session requires about 11 seconds.

In order to measure the delay introduced by our framework when the AMs exploited by the Usage
Control service are remote, we performed further experiments. To this aim, we installed 5 MySQL servers
supporting SSL connections on distinct machines located in our department network, and we configured
5 PIPs in the Usage Control service to exploit these MySQL servers as remote AMs. Each PIP performed
a communication over SSL to retrieve the values of the attributes from the related AM. In particular,
we fixed the total number of attributes evaluated by the Usage Control service, respectively, to 10 and
100, and we measured the time of the pre-decision phase when these attributes were allocated on 1, 2,
and 5 remote AMs. We think that, in real scenarios, it is unlikely that a Cloud provider exploits more
than a couple of remote AMs. Please notice that in our tests each PIP was configured to perform one
query to retrieve all the required attributes from the related AM. The pseudo-code exploited to perform
these measurements is shown in Listing 4, and it was executed on the machine running the Usage Control
service. Each experiment was performed 1,000 times and we computed the average of the results (the
variance was negligible).

24



1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

number of remote AMs

ti
m
e

(s
)

10 attributes
100 attributes

(a) Execution time

1 2 3 4 5
0

20

40

60

80

100

number of remote AMs

p
er
ce
n
ta
g
e

10 attributes
100 attributes

(b) Time spent for remote attributes retrieval (percentage)

Figure 10: Time required to perform the pre-decision phase with remote Attribute Managers

Figure 10 reports the time required to perform the pre-decision phase varying the number of remote
AMs, and shows the percentage of this time due to the retrieval of remote attributes. The results of
the experiments where the total number of attributes is 10 (red line in Figure 10(a)) show that, in
case of 1 remote AM (which stores 10 attributes) the time required to perform the pre-decision phase
is about 100 milliseconds, in case of 2 remote AMs (which store 5 attribute each), this time is about
160 milliseconds, and when 5 remote AMs store 2 attributes each, the decision process takes about 350
milliseconds. The results of the experiments we performed with a Usage Control policy consisting of 100
attributes (green dashed line in Figure 10(a)) show that the evaluation time is about 180 milliseconds
when all the 100 attributes are stored on one remote AM only, about 240 milliseconds when 2 remote
AMs store 50 attributes each, and about 430 milliseconds when 5 remote AMs store 20 attributes each.

Comparing the results reported in Figure 10(a) with the ones in Figure 7, we observed that the adoption
of remote AMs introduced an overhead which considerably affected the time required to perform the pre-
decision phase. For example, the evaluation of a Usage Control policy with 10 attributes takes about 22
milliseconds when these attributes are local, about 100 milliseconds if these attributes are stored on one
remote AM, and about 350 milliseconds in case of 5 remote AMs. In fact, the results in Figure 10(a) show
that in our testbed the time required to retrieve remote attributes increases with the number of remote
AMs that are exploited.

Moreover, from Figure 10(b) we observe that, for both 10 and 100 attributes, the remote attribute
retrieval phase is the main factor which impacts on the performance of our framework. This overhead
is mainly due to the communications between the PIPs and the AMs over the network, and depends on
the latency of the network, and on the cost of secure connections. The adoption of AMs located in other
domains with respect to the Usage Control service would lead to larger overheads. However, this time
could be reduced in some scenarios by implementing proper strategies to optimize the communications.
Our results are in line with the ones presented in [49], where the authors propose a Usage Control based
security framework for collaborative computing systems, such as the Grid. In fact, the authors of [49]
claim that, in their experiments, the time required by the Usage Control decision process was mainly due
to the remote attribute retrieval phase.

The last set of experiments we performed on our testbed was aimed at evaluating the impact of the
Usage Control service on the performance of OpenNebula based Cloud IaaS services. In other words,
these experiments were meant to evaluate whether the adoption of the Usage Control service significantly
affects the user experience when deploying a new VM on OpenNebula. Figure 11 shows the time required
by OpenNebula to start a new VM both with and without the Usage Control service. Each test was
performed 100 times, and Figure 11 reports the average of the results (the variance was negligible). As
previously stated, in our testbed OpenNebula and the Usage Control service were deployed on distinct
machines, and the communications between the PEP embedded in OpenNebula and the Usage Control
service were over HTTPS. In these experiments, the Usage Control service evaluated 10 attributes which

25



0

5

10

15

20

25 24.62 24.74 24.84 24.91 25.29

ti
m
e

(s
)

ONE
ONE+UCS(localAM)

ONE+UCS(1remoteAM)

ONE+UCS(2remoteAMs)

ONE+UCS(5remoteAMs)

Figure 11: Time required to deploy a Virtual Machine

were allocated on a local AM or on a varying number of remote AMs. The operating system of the VM
which was deployed on OpenNebula was Linux Ubuntu Desktop 14.04, and the VM image was downloaded
from the OpenNebula Marketplace.

The results in Figure 11 show that, in case of local AM, the overhead due to the Usage Control service
is about 0.5% of the VM deployment time. This overhead is mainly due to the secure communications
between the PEP and the Usage Control service. When the attributes are provided by remote AMs,
the overhead increases because of the attribute retrieval phase, which requires secure communications
between the PIPs and the related AMs. In particular, our experiments show that, when the attributes
are provided by one remote AM the overhead is about 0.9%, while exploiting 2 or 5 remote AMs the
overhead is, respectively, about 1.2% and 2.7% of the VM deployment time. Hence, we think that, in
our scenario, the overhead introduced by the Usage Control service cannot significantly affect the user
experience.

6 Related Work

In our previous work we studied how to extend XACML to enforce UCON policies [10] and we provided
a pilot implementation [25] for the Cloud environment. In this paper we provide the complete design
and implementation of a framework for regulating the usage of Cloud IaaS services based on the Usage
Control model, integrated within OpenNebula.

Gouglidis et al. [21] survey access control requirements for Cloud and Grid computing. They consider
the UCON model as the best candidate to address these requirements. Another review of the security
challenges of the Cloud environment has been published by Masood et al. [28]. Their paper presents
a systematic analysis of the existing authorization solutions in Cloud and evaluate their effectiveness
against well-established industrial standards that conform to the unique access control requirements in
the domain. They also describe the adoption of UCON in Cloud systems using XACML.

Danwei et al. [13] and Tavizi et al. [41] propose the architecture for the enforcement of UCON policies
in Cloud. The work of Danwei et al. [13] is focussed on the pre-authorization phase and on the privacy
of security attributes. The authors handle these privacy issues by integrating trust negotiation in their
model. The paper is a very high-level and does not provide details on the continuous control. The
implementation of the proposed model is missing too. Tavizi et al. [41] focus mostly on the obligation
enforcement. They argue that XACML should be extended to express UCON policies, but they do not
provide details on how these policies can be enforced. Finally, it is not clear which Cloud systems can
exploit their model.

The UCON model was successfully adopted in other distributed systems, e.g., the Grid [27, 49]. Sandhu
et al. [49] consider which parts of the UCON model can be modelled exploiting standard XACML. In
contrast, our approach considers how XACML should be extended to represent continuous control. Also,

26



they require that attribute providers trigger the access re-evaluation, while we argue that the Usage
Control service should be able to detect attribute changes through properly configured PIPs.

Recently, Yin et al. [45] proposed an extension of the XACML language for Usage Control, and they
adopted it for regulating the usage of Cloud storage services in multi-Cloud platforms. Another work
focused on Cloud storage services is [18]. In contrast, in our paper we focussed on IaaS services, with
reference to OpenNebula. However, we think that our approach could be used to regulate the storage and
sharing of data on the Cloud as well.

De Oliveira et al. [2] exploit obligations to define a new accountability policy language for the Cloud
computing environment. Accountability policies are exploited by Cloud providers to protect the privacy
of personal data.

Others interesting works are [16], which concerns e-health platforms for federated authorization, and
[48] which extends the attribute based access control with CP-ABE algorithm [44].

A further interesting recent work is the one of Dan et al. [14], where they developed a centralized au-
thentication and authorization architecture implementing several kind of access control models, although
they didn’t consider the Cloud computing environment.

Finally, a different approach is the one described in [12], where the Cloud provider enforces security
policies by embedding an agent in each VM running in its Cloud.

7 Discussion

We remark that the proposed Usage Control authorization system, that runs as a separate service, is not
very suitable to be exploited in case of very short lived operations, i.e., operations whose execution lasts
a few milliseconds or less, such as disk accesses. In these cases the time required for the policy evaluation
would be even greater than the time required for the operation itself. Hence, the delay introduced by the
pre-decision phase would considerably affect the user experience by degrading the system performance.
Moreover, the time required to perform the on-decision phase to detect a policy violation would be greater
than the duration of the operation to be suspended. Consequently, the Usage Control service would not
be effective, because it would try to suspend the operation when it is already terminated.

Nevertheless, we observe that the proposed framework can be applied in many different ways and to
several other scenarios. We can envisage at least two dimensions that we are going to discuss further: i) the
expressiveness of the Usage Control policies for continuous authorization (enhanced by the capability of
exploiting multiple remote attribute providers); ii) the adoption of the Usage Control service to regulate
the usage of other Cloud services. First of all, the Usage Control policies enforced by our framework
go well beyond traditional access control ones, since they take into account the duration of the actions
performed by the users and the mutability of attribute values over time. Indeed, the U-XACML language
extends the expressiveness of XACML because Usage Control policies include authorizations, conditions
and obligations which must be continuously satisfied for the whole duration of the actions. In other words,
a policy violation causes the suspension of actions that are in progress. This is a notable advantage of our
framework w.r.t. traditional access control ones, because the latter enforce their security policies only at
access request time and no further controls are executed during the execution of the actions. Moreover,
policies where actions performed by a user must be terminated as a consequence of other actions performed
by other users can be expressed and enforced as well by our framework. Another advantage of the Usage
Control service is the capability to exploit multiple providers of attributes, through the definition of
proper PIPs that are able to interact with the AMs of these providers. In particular, besides expanding
the set of attributes that a Cloud provider can exploit in his Usage Control policies, this features also
allows to implement a sort of cooperation among the Usage Control services of distinct Cloud providers,
by reading and updating the same attributes. As a consequence, our framework is able to suspend an
action executed on a Cloud provider because of a policy violation caused by another action executed on
another Cloud provider.

We think that our Usage Control service can be easily adopted to regulate the usage of resources in
other types of Cloud services. For instance, we are currently working on its integration within Cloud Stor-
age services implemented through the OpenStack framework, by suitably modifying the Swift component
to embed our PEP. Moreover, we think that the Usage Control service could be successfully exploited also
to regulate the usage of Cloud SaaS services, because the accesses to these services are long lasting as well.
For instance, supposing that a Cloud SaaS provider offers a suite of office software to some companies,
the employees of those companies will exploit this service for 8 hours every working day.

27



Summarizing, we believe that the applicability of the proposed service is thus quite significant and
could really extend the flexibility of Cloud services for what concerns authorization mechanisms.

8 Conclusion

In this paper we described model, architecture and implementation of an enhanced authorization service
based on the Usage Control model for regulating the usage of Cloud IaaS services. In particular, we
showed that the proposed authorization service can be successfully adopted to deal with long lasting
accesses, such as the execution of VMs. In fact, it is able to continuously enforce security policies while
these accesses are in progress, and to suspend them when the corresponding rights do not hold any more.
Besides the description of the implementation of the Usage Control based authorization system and of
its integration within a IaaS Clouds service built on top of OpenNebula, this paper also presented a set
of experimental results to evaluate the performance of the proposed solution. Concluding, we think that
the integration of the Usage Control service within the OpenNebula toolkit for regulating the usage of
the Cloud IaaS service represents a real improvement of the OpenNebula security support, allowing to
continuously enforce more complex and fine grained security policies without significantly affecting the
user experience.

9 Acknowledgements

This work was partially supported by the EU FP7 project Confidential and Compliant Clouds (Coco
Cloud), GA #610853, and by the EU H2020 project European Training Network for CyberSecurity (NeCS),
GA #675320.

References

[1] A. Alva, O. Caleff, G. Elkins, A. Lum, K. Pasley, S. Sudarsan, et al. The notorious nine: Cloud
computing top threats in 2013. Cloud Security Alliance, 2013.

[2] M. Azraoui, K. Elkhiyaoui, M. Onen, K. Bernsmed, A. S. De Oliveira, and J. Sendor. A-PPL: An
accountability policy language. In Data Privacy Management, Autonomous Spontaneous Security,
and Security Assurance: 9th International Workshop, DPM 2014, 7th International Workshop, SE-
TOP 2014, and 3rd International Workshop, QASA 2014, Revised Selected Papers, volume 8872,
page 319. Springer, 2015.

[3] M. Batet, K. Gibert, and A. Valls. The data abstraction layer as knowledge provider for a medical
multi-agent system. In Knowledge Management for Health Care Procedures, pages 87–100. Springer,
2008.

[4] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[5] R. Biswas and E. Ort. The java persistence api-a simpler programming model for entity persistence.
Sun, May, 2006.

[6] G. Brunette, R. Mogull, et al. Security guidance for critical areas of focus in cloud computing v2. 1.
Cloud Security Alliance, pages 1–76, 2009.

[7] R. Buyya, R. Ranjan, and R. N. Calheiros. Intercloud: Utility-oriented federation of cloud com-
puting environments for scaling of application services. In Algorithms and Architectures for Parallel
Processing, volume 6081 of Lecture Notes in Computer Sciences pages 13–31, 2010

[8] C. Caimi, C. Gambardella, M. Manea, M. Petrocchi, and D. Stella. Technical and legal perspectives
in Data Sharing Agreements definition. In Proceedings of the Annual Privacy Forum 2015 (APF15),
volume 9484 of Lecture Notes in Computer Sciences, pages 178–192.

[9] D. Clark. Introducing eclipselink. Eclipse Zone, Introducing EclipseLink/Eclipse Zone, pages 1–3,
2008.

28



[10] M. Colombo, A. Lazouski, F. Martinelli, and P. Mori. A proposal on enhancing XACML with
continuous usage control features. In proceedings of CoreGRID ERCIM Working Group Workshop
on Grids, P2P and Services Computing, pages 133–146. Springer US, 2010.

[11] M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli, P. Mori, J. Jensen, I. Johnson, and P. Kershaw.
The CONTRAIL approach to cloud federations. In Proceedings of The International Symposium on
Grids and Clouds (ISGC 2012), Proceedings of Science, 2012.

[12] J. Daniel, F. El-Moussa, G. Ducatel, P. Pawar, A. Sajjad, R. Rowlingson, and T. Dimitrakos. Inte-
grating security services in cloud service stores. In Trust Management IX. IFIP Advances in Informa-
tion and Communication Technology, volume 454, pages 226–239. Springer International Publishing,
2015.

[13] C. Danwei, H. Xiuli, and R. Xunyi. Access control of cloud service based on UCON. In Proceedings
of the 1st International Conference on Cloud Computing, pages 559–564. Springer-Verlag, 2009.

[14] P. Das and A. Das. Centralized authorization service (CAuthS) or authorization as a service (Au-
thaaS) - A conceptual architecture. International Journal of Computer Applications, 113(18), 2015.

[15] D. Dave, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet x.509 public key
infrastructure certificate and certificate revocation list (crl) profile. RFC5280, 2008.

[16] M. Decat, D. Van Landuyt, B. Lagaisse, and W. Joosen. On the need for federated authorization in
cross-organizational e-health platforms. In Proceedings of the 8the international conference on Health
Informatics, volume 8, pages 540–546, 2015.

[17] M. D. Dikaiakos, D. Katsaros, P. Mehra, G. Pallis, and A. Vakali. Cloud computing: distributed
internet computing for it and scientific research. Internet Computing, IEEE, 13(5):10–13, 2009.

[18] T. Esther Dyana and S. Maheswari A Secure Data Storage and Trustworthy Resource Sharing
In Cloud Computing Environment. International Journal of Advances in Computer Science and
Technology, 4(4), 2015.

[19] D.-G. Feng, M. Zhang, Y. Zhang, and Z. Xu. Study on cloud computing security. Journal of software,
22(1):71–83, 2011.

[20] R. Gellman. Privacy in the clouds: risks to privacy and confidentiality from cloud computing. In
Proceedings of the World privacy forum,, 2012.

[21] A. Gouglidis and I. Mavridis. On the definition of access control requirements for grid and cloud
computing systems. In Networks for Grid Applications, volume 25 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pages 19–26. Springer
Berlin Heidelberg, 2010.

[22] K. Hamlen, M. Kantarcioglu, L. Khan, and B. Thuraisingham. Security issues for cloud comput-
ing. Optimizing Information Security and Advancing Privacy Assurance: New Technologies: New
Technologies, page 150, 2012.

[23] B. Katt, X. Zhang, R. Breu, M. Hafner, and J. Seifert. A general obligation model and continuity:
enhanced policy enforcement engine for usage control. In Proceedings of the 13th ACM symposium
on Access control models and technologies (SACMAT ’08), pages 123–132, 2008.

[24] R. Kumar, N. Gupta, S. Charu, K. Jain, and S. K. Jangir. Open source solution for cloud comput-
ing platform using openstack. International Journal of Computer Science and Mobile Computing,
3(5):89–98, 2014.

[25] A. Lazouski, G. Mancini, F. Martinelli, and P. Mori. Usage control in cloud systems. In International
Conference for Internet Technology And Secured Transactions, 2012, pages 202–207. IEEE, 2012.

[26] A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer security: A survey. Computer
Science Review, 4(2):81–99, 2010.

29



[27] F. Martinelli and P. Mori:. On usage control for grid systems. Future Generation Computer Systems,
26(7):1032–1042, 2010.

[28] R. Masood, M. A. Shibli, Y. Ghazi, A. Kanwal, and A. Ali. Cloud authorization: exploring techniques
and approach towards effective access control framework. Frontiers of Computer Science, pages 1–25,
2015.

[29] P. Mell and T. Grance. The NIST definition of cloud computing. recommendation of the national
institute of standards and technology. Technical report, NIST, 2011.

[30] D. Milojičić, I. M. Llorente, and R. S. Montero. Opennebula: A cloud management tool. IEEE
Internet Computing, 15(2):0011–14, 2011.

[31] R. Neisse, A. Pretschner, and V. Di Giacomo. A trustworthy usage control enforcement framework.
International Journal of Mobile Computing and Multimedia Communications, 5(3):34–49, 2013.

[32] E. Network and I. S. Agency. Cloud Computing: Benefits, Risks and Recommendations for Informa-
tion Security. ENISA, 2009.

[33] OASIS. Oasis eXtensible Access Control Markup Language (XACML) version 3, OASIS standard.
Technical report, 22 January, 2013.

[34] M. Ozsu and P. Valduriez. Principles of Distributed Database Systems (3rd ed.). Springer Science,
LLC, 2011.

[35] J. Park and R. Sandhu. The UCONABC usage control model. ACM Transactions on Information
and System Security, 7(1):128–174, 2004.

[36] A. Pretschner, M. Hilty, and D. A. Basin. Distributed usage control. Communications of the ACM,
49(9):39–44, 2006.

[37] B. P. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of cloud computing systems. In INC,
IMS and IDC, 2009. NCM’09. Fifth International Joint Conference on, pages 44–51. IEEE, 2009.

[38] S. Subashini and V. Kavitha. A survey on security issues in service delivery models of cloud com-
puting. Journal of network and computer applications, 34(1):1–11, 2011.

[39] H. Takabi, J. B. Joshi, and G.-J. Ahn. Security and privacy challenges in cloud computing environ-
ments. IEEE Security & Privacy, 8(6):24–31, 2010.

[40] B. Tang and R. Sandhu. Extending openstack access control with domain trust. In Network and
System Security, pages 54–69. Springer, 2014.

[41] T. Tavizi, M. Shajari, and P. Dodangeh. A usage control based architecture for cloud environments. In
IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum,
pages 1534 –1539, 2012.

[42] G. Toraldo. OpenNebula 3 Cloud Computing. Packt Publishing Ltd, 2012.

[43] L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds: towards a
cloud definition. ACM SIGCOMM Computer Communication Review, 39(1):50–55, 2008

[44] B. Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably
secure realization. In Public Key Cryptography–PKC 2011, pages 53–70. Springer, 2011.

[45] K. Z. Yin and H. H. Wang. Mcacm: A cloud storage access control model for multi-clouds environment
based on xacml. In Applied Mechanics and Materials, volume 713, pages 2451–2454. Trans Tech Publ,
2015.

[46] Y. A. Younis, K. Kifayat, and M. Merabti. An access control model for cloud computing. Journal
of Information Security and Applications, 19(1):45–60, 2014.

[47] K. Zeilenga. Lightweight directory access protocol (ldap): Technical specification road map.
RFC4510, 2006.

30



[48] L-x. Zhang and J-s. Zou. Research of ABAC mechanism based on the improved encryption algorithm
under cloud environment. In Ubiquitous Computing Application and Wireless Sensor, pages 463–469.
Springer, 2015.

[49] X. Zhang, M. Nakae, M. J. Covington, and R. Sandhu. Toward a usage-based security framework for
collaborative computing systems. ACM Transactions on Information and System Security, 11(1):1–
36, 2008.

[50] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model and policy specification of usage
control. ACM Transactions on Information and System Security, 8(4):351–387, 2005.

[51] D. Zissis and D. Lekkas. Addressing cloud computing security issues. Future Generation Computer
Systems, 28(3):583–592, 2012.

31


