Hybrid Static-Runtime Information
Flow and Declassification
Enforcement

Bruno P. S. Rocha
Mauro Conti
Sandro Etalle
Bruno Crispo

Submitted

Introduction

* Language-based information flow aims to
analyze programs with respect to flow of
information between channels of different

security levels

* Non-interference is a formal property for
specifying valid flows (Goguen & Meseguer

1982)

Non-interference

Private Input
Public Input P

A

|

Public Output
Change in the pribktanpod tsaincaidngest thieogépite output

Declassification

* Non-interference is too stringent for most
practical applications

* Classic examples:
— Average salary
— Password verification
— Encryption
* In many occasions, it is necessary to

downgrade the security level of specific data
l.e., to declassify that data

Current approaches

» Static analysis
— + Detects implicit flows
— + Easy to code declassification in the program.

— - Policies that need runtime information cannot be enforced,
e.g. runtime security labels, constraints on control flow
execution

— - If security labels vary between systems, analysis must be done
on target machine

 Runtime enforcers
— Some runtime overhead is incurred

— Cannot handle implicit flows
* needs to check code that was not executed

— Support to declassification is too expensive
* needs to keep track of every operation performed on data

Hybrid approaches

Solution seems obvious: a hybrid mechanism that combines the strenghts
of both static and runtime approaches

Some solutions do exist: direct combination of static and runtime
mechanisms originally designed to work independently

Static analysis

* Ensures type-safety

e Detects implicit flows

e Supports declassification in the code

Annotated programming language:
needs input from programmer
System-dependent analysis

Runtime enforcement

* Ensures that code deemed insecure
by previous step is not executed

* Checks every instruction

Overhead still not negligible

What if type-safety and declassification
also needs runtime information?

Current mechanisms handle policies that need either static or runtime
information, but not policies that need both

Our contribution

* A hybrid mechanism designed to:

1. Support policies that need both static and runtime
information

2. Has minimum runtime overhead (works in smartphones)
* And that, additionally:

— Does not require specially annotated code

* declassification policies decoupled from the program’s code
e with possibly runtime constraints

— Handles information-flow at the level of program variables

— Performs system-independent static analysis (can be
performed by a different, external system)

— Supports security labels only known at runtime

Three Phases

Static analysis — (an extension of graph-based PCR analysis, published at IEEE S&P 2010)

» Detects information flows and points where declassification occurs

* Unannotated language: declassification policies specified separately

* Symbolic analysis: generates a flow report which is independent from security labels

Pre-load check
* Performed just before program is executed

* Maps the flow report on the security labels of the 1/O channels
* For labels known only at runtime (e.g. filename), and runtime constraints associated
to declassifications, a runtime checklist is generated, for the next stage

Runtime enforcement
* For each element of the runtime checklist, a call to the runtime enforcer is injected in

the application’s bytecode, at the program point where the check is necessary

* As a result, only statements that need runtime information to be validated are
checked and, due to the code injection, the enforcer performs only constant time
computation (i.e. it never loops), making it extremely lightweight

Two examples

secureConn := secConnect (“some.host”); sum := 0;
myLoc := getLocation(); num := 0;
myTz := timezone (myLoc); db := openDBConnection () ;
otherLoc := recv(secureConn); while !exitSignal do
otherTz := timezone (otherLoc); rec := fetch(db);
if myTz = otherTz then prop := getProperty(rec);
send ("ACK”, secureConn) ; sum := sum + Prop;
near := isNear (myLoc, otherLoc); num := num + 1;
if near then avg := sum / num;
print (“Host is nearby!”); output (avg) ;
print (“Location:”, otherLoc);
Declassification policy allows: Declassification policy allows:
* timezone of any location * An average of several getProperty
* 1 sNear of any two locations values, from several records of the DB
* Average must include at least 25 distinct
records to be allowed
OBS: the secure connection has dynamic runtime
security labels, which are set after each transmission

Static Analysis (1)

secureConn := secConnect (“some.host”);

myLoc := 0;

myTz := timezone (mylLoc) ;

otherLoc := 84;

otherTz := timezone (otherloc) ;

if myTz = otherTz then

O¢ := “ACK”

near := isNear (myLoc, otherLoc);

if near then
Yg := “Host is nearby!”

Yi0:= “Location:”, otherLoc

sum := 0;
num := 0;
db := openDBConnection();

while !exitSignal do

rec := 0;
prop := getProperty(rec);
sum := sum + pProp;

num := num + 1;

avg := sum / num;

V10:= avg;

1. ldentifies input/output channels

N

3. Generates the flow report

Detects points where declassification may happen

The flow report

* o, is declassified at myTZ, then implicitly
flows to &, yoand v,

* 3, is declassified at otherTZ, thenit
implicitly flows to 6., yoand v,

* B, flows explicitly to y,,

* o, and 3, are declassified at near, then flow
to y,and vy,

* o is declassified at avg, then flows to y,

Loop must run at least 25 times

11

Pre-load checklist

* o, is declassified at myTZ, then implicitly
flows to &, y,and v,

* B, is declassified at otherTZ, thenit
implicitly flows to 6., y,and v,

* B, flows explicitly to y,,

* o, and B, are declassified at near, then flow
to y,and vy,

* o, = high
* 3,=data
* 5,=data
*V,=low

*V,0=low

* 0 is declassified at avg, then flows to y,

Loop must run at least 25 times

* o; = high
*V,0=low

1. Translates input/output channels to their respective labels
“data”’s security label is only known at runtime

Validates declassification constraints

e wn

Generates runtime checklist

Verifies flows that can be checked at this point (alert in case of unsafe flows)
Filters list of flows, leaving only those that need runtime information

12

Runtime checklist

* 0, is declassified at myTZ, then implicitly
flows to &, ygand y,

* B, is declassified at otherTZ, thenit
implicitly flows to ., ygand y,,

* 3, flows explicitly to v,

* o, and B, are declassified at near, then flow
to ysand y,,

* o is declassified at avg, then flows to y,

Loop must run at least 25 times

* a, = high
* B,=data
* 5,=data
* V= low

* V0= low

* o5 = high
* V0= low

13

Runtime enforcer

secureConn := secConnect (“some.host”);
myLoc := getLocation();
myTz := timezone (myLoc) ;
otherlLoc := recv (secureConn);
otherTz := timezone (otherLoc);
if myTz = otherTz then
send (YACK”, secureConn);
near := isNear (myLoc, otherLoc);
if near then
print (“Host is nearby!”);

Enforcer.checkInput(4,low) ;
print (“Location:”, otherLoc);

sum := 0;
num := 0;
db := openDBConnection();

while !exitSignal do

Enforcer.countlIter (4) ;

rec := fetch(db);
prop := getProperty(rec);
sum := sum + prop;
num := num + 1;
avg := sum / num;

Enforcer.eval (Enforcer.iter (4) >= 25);

output (avg) ;

1. Injects code of checks from the checklist, prior to execution
(this is actually done in the bytecode, source code shown here for clarity)

2. Program is then executed normally

14

Runtime enforcer overhead

 Implemented an Android version of the runtime enforcer
* Set of benchmarking programs used:

The 3 examples of the paper (2 in this presentation).

FileCopy performs a copy between files, but each 1KB block has a
dynamic runtime label. The label of the source has to be applied at the
target, for each transmission (stress benchmark).

FileEncrypt is the same as the above, but each block is encrypted
before written (i.e. computation added between checks).

InfGather accesses inputs from 10 different sources, all with labels
only known at runtime, then performs a single output combining them
all.

Statistics is the same as above, but labels are static, violating non-
interference. However, some statistical calculation is allowed by a
declassification policy, with runtime constraints.

Loops consists of several small loops, all of which need to have their
number of iterations counted (stress benchmark).

Execution time (ms)

Execution time

]
o
o

Not elnt:01‘ced e 90000 "Not enforced =
200 F Enforced - 20000 k Enforced i | |
180
70000
160 —_
Z 60000
140 e
0]
£ 50000
120 g
= 40000
100 §
30 | & 30000 R
60 g 20000
20 — 0 Ot T
Examplel Example2 Example3 FileCopy FileEncrypt InfGather Statistics Loops
Experiment Experiment

Stress tests cause significant overhead, but represent extreme and unlikely
scenarios. For the more realistic tests, overhead is barely measurable.

Memory usage

Values are the overhead between enforced and non-enforced programs

Program Allocation Count Allocated Size
Examplel 1.2% 0.3%
Example2 1.9% 0.2%
Example3 <0.1% <0.1%
FileCopy 2.2% 1.3%
FileEncrypt <0.1% <0.1%
InfGather 8.4 % <0.1%
Statistics 253 % 0.1%
Loops 341.3% 0.1%

Loop counting introduces many more memory allocations, but since tracked
value is small (an integer per loop), the allocated size (the value that really
matters here) remains very low. Highest overhead of 1.3%, on a stress test.

17

Thank you!

Questions?

Recent hybrid approaches

Yu et al. Leakprober: a framework for profiling sensitive data leakage paths.
CODASPY’11.

Russo and Sabelfeld. Dynamic vs. Static Flow-Sensitive Security Analysis. CSF’10.

Askarov and Sabelfeld. Tight enforcement of information-release policies for
dynamic languages. CSF’09.

Chong and Myers. End-to-End Enforcement of Erasure and Declassification. CSF’08.

Le Guernic. Automaton-based confidentiality monitoring of concurrent programs.
CSF07.

Shroff et al. Dynamic dependency monitoring to secure information flow. CSF’07.

Nentwich et al. Cross-site scripting prevention with dynamic data tainting and static
analysis. NDSS’07.

Le Guernic et al. Automata-based confidentiality monitoring. ASIAN’06.
Qin et al. A hybrid security framework of mobile code. COMPSAC’04.
Schneider et al. A language-based approach to security. 2001. (first proposed)

