

Usage Control in CONTRAIL Cloud

POFI 2011 Pisa, 9 June 2011

> Paolo Mori IIT - CNR

Agenda

- CONTRAIL project
- •Usage Control Model
- •Security Policy Language
- Usage Control System Architecture

CONTRAIL Project

CONTRAIL is co-funded by the EC 7th Framework Programme

Funded under: FP7 (Seventh Framework Programme)
Area: Internet of Services, Software & virtualization (ICT-2009.1.2)
Project reference: 257438
Total cost: 11,29 million euro
EU contribution: 8,3 million euro
Execution: From 2010-10-01 till 2013-09-30
Duration: 36 months
Contract type: Collaborative project (generic)

Objectives

- Design, implement, validate and promote an open source software stack for Cloud federations
- Develop a comprehensive Cloud platform integrating a full laaS and PaaS offer
- Allow Cloud providers to seamlessly integrate resources from other Clouds with their infrastructure
- Provide trusted Clouds by advanced SLA management
- Break the current customer lock-in situation by allowing live application migration from one cloud to another

CONTRAIL Federation

- A CONTRAIL federation integrates in a common platform multiple Clouds, both public and private
- Coordinates SLA management provided by single Cloud providers
- Does not disrupt providers' business model
- Allows to exploit the federation as a single Cloud

Expected Outputs

- A collection of infrastructure services
 - Virtual Infrastructure Networks
 - Virtual Cluster Platform
 - Globally Distributed File System
- Services to federate laaS Clouds
 - Identity Management
 - Management of federation policies
 - SLA management
 - Autonomic resource management
- A collection of PaaS services to support Cloud applications
 - High throughput elastic structured storage
 - Automatic set-up and configuration of SQL servers
 - Geographically distributed key/value store

Expected Outputs (II)

- A collection of run-time environments
 - An efficient map-reduce implementation
 - Scalable hosting for service oriented applications
 - Autonomic workflow execution
- A collection of applications
 - Distributed Provisioning of Geo-referentiated Data
 - Multimedia Processing Service MarketPlace
 - Real-Time Scientific Data Analysis
 - Electronic Drug Discovery

CONTRAIL in a Nutshell

Sub-projects and Workpackages

Project management

WP7

Security in Virtual Infrastructure

- -Authentication
- -Usage Control
- -Compartmentalization and Isolation
- -Auditing

Usage Control Model

Usage Control Model

- Defined by R. Sandhu et. al.
 - The UCON Usage Control Model. ACM Trans. on Information and System Security, 7(1), 2004
 - Formal Model and Policy Specification of Usage Control. ACM Trans.
 on Information and System Security, 8(4), 2005
 - Towards a Usage-Based Security Framework for Collaborative Computing Systems. ACM Trans. on Information and System Security, 11(1), 2008
- Main novelties
 - New decision factors
 - Mutability of Attributes
 - Continuity of Enforcement

Example: onGoing Authorization

The right is granted without pre decisions, but authorization decisions are made continuously while the right is exercised

authorize(s,o): true
revoke(s,o): (usageNum(o) >10) and (s,t) in startT(o) with t min

preUpdate(startT(o)): startT(o) = startT(o) U {(s,t)}
preUpdate(usageNum(o)) : UsageNum(o)++

postUpdate(usageNum(o)) : UsageNum(o)-postUpdate(startT(o)): startT(o) = startT(o) - {(s,t)} where (s,t) in startT(o) with t min

Access VS Usage Control

Access VS Usage Control

Access VS Usage Control

UCON Core Models

Decision	Decision	Attributes Update			
Factors	Time	IMMUT	PRE	ONGOING	POST
Auth	PRE	Y	Y	N	Y
	ON	Y	Y	Y	Y
Obbl	PRE	Y	Y	N	Y
	ON	Y	Y	Y	Y
Cond	PRE	Y	Ν	N	N
	ON	Y	Ν	N	Ν

Why Usage Control in CONTRAIL?

- Accesses to some resources last a long time (hours, days,..)
 - Run a Virtual Machine

— ...

— ...

- Mount a Global File System on a Virtual Machine
- Establish a virtual network connection
- The factors that granted the access when it was requested could change while the access is in progress
 - User's reputation could decrease
 - -Workload of resources could change
- The security policy should be re-evaluated every time that factors change
 - An access that is in progress could be interrupted

Security Policy Language

UCON XACML Security Policy Language

- We are extending XACML language to implement UCON features:
 - Attributes update
 - Continuous control
- Preliminary work:
 - A proposal on enhancing XACML with continuous usage control features. CoreGrid ERCIM WG Workshop on Grids, P2P and Service Computing, 2009

UCON-XACML Policy Schema

Example of UCON-XACML policy

```
<?xml version="1.0" encoding="UTF-8" ?>
```

```
- <Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="GeneratedPolicy" RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:ordered-permit-
overrides">
```

```
+ <Target>
```

```
- <Rule RuleId="LoginRule" Effect="Permit">
```

```
+ <Target>
```

```
- <Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-greater-than" DecisionTime="2">
```

```
- <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:double-one-and-only">
<SubjectAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#double"
AttributeId="urn:iit:cnr:names:subject:reputation" Issuer="iit.cnr.it" />
```

</Apply>

```
<a href="http://www.w3.org/2001/XMLSchema#double">0.9</attributeValue></article/condition>
```

</Rule>

```
+ <AttrUpdates>
```

```
<Rule RuleId="FinalRule" Effect="Deny" />
```

</Policy>

UCON XACML Security Policy

- CONTRAIL supports security policies at different levels:
 - Federation level
 - Cloud Provider level
 - Interactions through attributes

contrail-project.eu

Usage Control System Architecture

Security-Relevant Actions

• Are the action that are **relevant for system security**

- Their execution must be controlled by the usage control system

- We are defining the set of security-relevant actions for each component of the CONTRAIL architecture, e.g.:
 - Federation Manager
 - VM manager
 - -VIN
 - -GAFS
 - -VCP

Example: VM Manager

- Security Relevant Actions:
 - Create a new VM Image
 - Start a VM
 - Stop a VM
 - Delete a VM Image

Usage Control System Architecture

• We are extending XACML architecture to deal with continuous policy enforcement

Usage Control System Components

- Policy Enforcement Point: intercepts the execution of security-relevant actions
- Context Handler: constructs XACML requests for the PDP, retrieves attribute values
- Policy Decision Point: evaluates the security policy to determine user's right to execute a security relevant action
- Policy Information Point: manages the attributes of users and resources
- **Policy Administration Point**: writes policies and make them available to the PDP

Policy Enforcement Points (PEPs)

- PEPs must be "embedded" in the architecture components that implement the security-relevant action (SRA) to:
 - Intercept the SRAs before their execution and suspend them
 - Ask the PDP to evaluate the security policy and wait for the decision
 - Enforce the decision of the PDP
 - resume the execution of the SRA
 - skip the execution of the SRA
 - Interrupt the execution of the SRA that is in progress when requested by the PDP
 - Intercept the end of a SRA and communicate it to the PDP

contrail is co-funded by the EC 7th Framework Programme

Funded under: FP7 (Seventh Framework Programme) Area: Internet of Services, Software & virtualization (ICT-2009.1.2) Project reference: 257438 Total cost: 11,29 million euro EU contribution: 8,3 million euro Execution: From 2010-10-01 till 2013-09-30 Duration: 36 months Contract type: Collaborative project (generic)

