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Abstract

Android applications (apps) pose many risks to their users, e.g., by including
code that may threaten user privacy or system integrity. Most of the cur-
rent security countermeasures for detecting dangerous apps show some weak-
nesses, mainly related to users’ understanding and acceptance. Hence, users
would benefit from an effective but simple technique that indicates whether
an app is safe or risky to be installed. In this paper, we present MAETROID
(Multi-criteria App Evaluator of TRust for AndrOID), a framework to eva-
luate the trustworthiness of Android apps, i.e., the amount of risk they pose
to users, e.g., in terms of confidentiality and integrity. MAETROID performs
a multi-criteria analysis of an app at deploy-time and returns a single easy-
to-understand evaluation of the app’s risk level (i.e., Trusted, Medium Risk,
and High Risk), aimed at driving the user decision on whether or not in-
stalling a new app. The criteria include the set of requested permissions and
a set of metadata retrieved from the marketplace, denoting the app quality
and popularity. We have tested MAETROID on a set of 11,000 apps both
coming from Google Play and from a database of known malicious apps. The
results show a good accuracy in both identifying the malicious apps and in
terms of false positive rate.
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1. Introduction

Smartphones and tablets allow users to access desired services everywhere,
at any time. According to the recent market analysis in [1], in several coun-
tries more than 90% of registered mobile devices are smartphones or tablets,
leading to more than 2 billions active subscribers. Noticeably, more than 80%
of these devices are based on the Android operating system (OS), the most
popular OS for smartphones and tablets [2]. Such a dominance of use makes
Android also the almost exclusive target for mobile threats identified in the
last years [3]. Currently, 99% of the Android security attacks are brought
through infected mobile apps [3]. In particular, in 2014 Android accounted
for 97% of all mobile malware [4]. Moreover, the number of new malware is
alarming: on average, more than 160,000 new specimens are reported every-
day [5]. Recently, work in [6] pointed out that a quarter of all Google Play
free apps are clones, i.e., repackaged apps of popular ones, such as WhatsApp
and Angry Birds.

Currently, apps for mobile devices are distributed through online mar-
ketplaces, such as Google Play or App Store. These marketplaces act as an
hub where app developers publish their own products, which can be bought
or downloaded for free by users. While official markets may charge users
for these apps, several unofficial marketplaces distribute their own apps free
of charge. When downloading apps from unofficial markets, trust is at risk,
since there is no centralized control, as it happens with official markets, and
it may happen that untrusted developers distribute malicious apps.

MAETROID statically evaluates the trustworthiness of an app at deploy
time, before installation, starting from a set of criteria that are combined
by means of a multi-criteria decision method called Analytic Hierarchy Pro-
cess (AHP). As a result of the evaluation, MAETROID labels the app in a
user-friendly way as either trusted, medium risk or high risk. MAETROID
considers both objective and subjective criteria. The objective criteria con-
sist in i) a global threat score deriving set of permissions required by the
app, ii) the number of downloads of the application, and, iii) the market the
app has been downloaded from. The subjective criteria consist in i) the app
rating and ii) developer reputation.

The contributions of this paper are:
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• A static evaluation method that exploits the app metadata and does not
require code analysis. Our approach has shown to be effective without
incurring into the complications and limitations of code analysis.

• A set of evaluation criteria for app evaluation. While other criteria
might be conceived, we experimentally demonstrate that the set we
propose is both reasonable and effective.

• MAETROID has been tested against a set of more than 11,000 apps,
coming either from Google Play, unofficial markets and two important
mobile malware database, namely Genome [7] and Contagio1;

• The implementation of MAETROID for Android devices, downloadable
from: http://icaremobile.iit.cnr.it/.

With respect to our previous work [8], the current work’s novel contributions
are a detailed investigation and formalization of the global threat score de-
riving from the permissions list required by the application, the detailing of
the implementation of MAETROID as an Android app, and the results of
the classification extended to a set of 11,000 apps.

Structure of the Paper. Section 2 recalls some notions on Android security
mechanisms. Sect. 3 describes MAETROID by discussing in detail the crite-
ria used for assessing the trustworthiness of an app. The current implemen-
tation of MAETROID for Android devices is presented in Section 4, which
also presents the results of the analysis on the testbed apps. In Section 5,
advantages and limitations of the MAETROID are reported, also in com-
parison with alternative solutions. In Sect. 6, we discuss related work on
the security of mobile devices. Finally, Sect. 7 draws some conclusions and
proposes some future research directions.

2. Android Permission System

To reduce the likelihood that a user installs a dangerous app, Android
implements an access control mechanism called Permission System. The Per-
mission System forces app developers to declare the security critical resources
that the app can access and the security critical operations that the app can

1http://contagiominidump.blogspot.it/
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perform. At run-time, an Android component called Permission Checker
monitors the access requests to security critical resources and operations. If
an access request is issued by an app without authorization declared in the
Permission System, the permission checker denies the access.

During the period 2009-2015, starting with the original set of 90 permis-
sions, a further set of 55 permissions has been added, mainly due to new
device resources and apps functionalities. Currently, Android defines 136
permissions2, where each permission is related to either a specific device re-
source or a critical operation. Permissions required by an app are declared
by the developer in the AndroidManifest.xml file (manifest, for short),
which is included in the app package (apk), bound to the app code by means
of digital signature. Android classifies permissions in four classes: normal,
dangerous, signature, and signature-or-system. For the scope of this paper,
we only focus on normal and dangerous permissions, since signature and
signature-or-system permissions cannot be required by any not-Google app.
In fact, only apps signed with the Google private key (signature), thus
developed by Google, or with specific authorizations released from Google
(signature-or-system), can declare those permissions. The rationale
behind signature and signature-or-system permission is that Google is di-
rectly interested in providing only genuine apps. This permission classifica-
tion is used to choose which permissions are shown to the user at deploy-
time. In fact, all dangerous permissions are automatically shown to the
user, whereas the normal ones are listed in a separate sub-list (the “Other
Permissions” list). Once a permission has been granted, the app can access
the corresponding protected resource (or perform some corresponding critical
operations) without asking for further authorizations. On the other hand,
if a permission has not been declared in the app manifest, the application
will never be allowed to access the resource or operation protected by that
permission.

Figure 1 reports a time-line of the Android evolution, in terms of per-
mission and vulnerabilities, during the time-span 2009-2015, by highlighting
the major changes concerning permissions and security. In particular, until
2011 malware for Android systems were only confined to research proof-of-
concepts. In 2011, Android-specific malware started to spread, by exploiting

2http://developer.android.com/reference/android/Manifest.
permission.html
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Figure 1: Time-line of Major Changes in the Android Permission System and Vulnerabil-
ities

a vulnerability of the Gingerbread system, named Gingerbreak. This
vulnerability allowed malicious apps to get root privileges, enabling them to
potentially take the control of the device. This issue has been fixed with
the introduction of Android Ice Cream Sandwich in 2012. However, in
2013, another important permission vulnerability has been discovered [9].
This vulnerability allows an attacker to modify the app permissions with-
out modifying the app signature, mining thus the main pillar of Android
security. An attempt to solve this issue has been proposed in the release of
Jelly Bean (2013), which also includes for the first time the possibility to
dynamically and selectively revoke, or grant, permissions to apps, through
the AppOps permission manager.

Several criticisms have been raised against the Android permission sys-
tem. Firstly, the system is considered too coarse-grained [10], since the user
can only choose whether to accept all of the permissions declared by an app
or to refuse to install the app. Secondly, users are generally unease at de-
termining if an app can be trusted to be secure or not. In fact, the list of
the required permissions is not very user-friendly, and it is quite difficult to
fully understand the risk posed by such permissions. Since the number of re-
quested permissions is rather large, and since some of them are quite difficult
to understand, even for expert users, several users simply ignore them when
installing a new app, leading to malicious apps being installed [11]. The
aforementioned AppOps feature included in Jelly Bean, which allows users
to revoke selected permissions to an already installed app, still presents is-
sues related to the coarse granularity of the permissions system. In fact, any
time the app tries to perform an operation for which the permission has been
revoked, the operation is denied by the permission checker. Thus, since the
error coming from the denied operation is not handled, the app is likely to
terminate with error (it crashes).

5



It is worth noting that AppOps has been removed starting from the third
Kit-Kat release (Android 4.4.2). Google claimed to remove it because meant
for experimental purpose and misuse can break apps3. Indeed, as discussed,
removing needed permissions will likely cause an app to crash. Thus, the de-
cision to remove a permission should not be left to users which often lacks the
required expertise for taking such a decision. With Android Lollipop (ver-
sion 5) new permissions have been added to handle multi-users profiles and
to give a stronger control on social network information sharing. The new
version of Android (Marshmallow, version 6) brings a further improvement,
allowing developers to require permissions not at deploy-time, but when the
permission is effectively used, leaving to the user the decision to grant or
not the authorization. However, some issues have already raised for this
paradigm, since the procedure of granting permissions one by one may result
cumbersome for apps with several permissions (e.g., the famous messaging
app Whatsapp requires more than 20 permissions). Moreover, postponing
the decision does not solve the problem of difficult permission interpretation.
Another issue is that often developers declare (by mistake or for convenience)
more permissions than those actually necessary, leading to the so called Per-
mission Overdeclaration [12]. This happens because some permissions have
similar names and their description is not self-explicative for some develop-
ers. It is quite intuitive that users, seeing a very long permissions list, are
less encouraged to read and understand them.

These current limits of the Android permission system motivate the de-
sign of a user-centric advisory system, which analyzes the application security
threat, providing to the user advises on whether it is safe or not to install a
specific app.

3. MAETROID Design

To assess the apps’ trustworthiness, MAETROID builds on a specific
and customized instantiation of a well-known multi-criteria decision making
process. We adopt the Analytic Hierarchy Process (AHP) [13]: given a
decision problem, where several different alternatives can be chosen to reach
a goal, AHP returns the most relevant alternative with respect to a set of
criteria. The decision problem is structured as a hierarchy, by linking goals

3http://www.cnet.com/news/why-android-wont-be-getting-app-ops-anytime-soon/
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Table 1: Fundamental Scale for AHP

Intensity Definition Explanation

1 Equal Two alternatives contribute equally to the criterion

3 Moderate One alternative is slightly more relevant than another

5 Strong One alternative is strongly more relevant than another

7 Very strong One alternative is very strongly more relevant than another

9 Extreme One alternative is extremely more relevant than another

and alternatives through the criteria. AHP subdivides a complex problem
into a set of sub-problems. Then, the most relevant alternative, i.e., the best
solution for the decision problem, is computed by properly merging the local
solutions.

Pairwise Comparison Matrices. Local solutions are computed by means of
pairwise comparison matrices. Given a criterion, a pairwise comparison ma-
trix describes how much an alternative is more relevant with respect to an-
other one, in a pairwise fashion. It is a square matrix n × n (where n is
the number of alternatives), which has positive entries and it is reciprocal,
i.e., for each element aij, aij = 1

aji
, where aij ∈ {1, ..., 9}. For instance if

we consider that the criterion i is five times more relevant than the criterion
j, ai,j is equal to 5, and consequently aj,i is equal to its reciprocal 1

5
. Sim-

ilarly, given the goal, a comparison matrix describes how much a criterion
is more relevant with respect to another one. Again, it is a square matrix
k×k (where k is the number of criteria), with positive entries and reciprocal.
Table 1 shows the standard scale adopted in AHP to weigh alternatives with
respect to the criteria. The same scale holds to weigh criteria with respect
to the goal.

Computing Local Priorities. Local priorities express the relevance of 1) the
alternatives for a specific criterion, and 2) the criteria for the specific goal.
Given a comparison matrix, local priorities are computed as the normal-
ized eigenvector associated with the maximum eigenvalue of the matrix [14].
Thus, for each criterion cj, AHP extracts from the criteria comparison ma-
trix a vector pcj of size n expressing the relevance, in percentage, of each
alternative for that criterion. Similarly, for the goal comparison matrix, a
vector pg of size k is computed, expressing the relevance, in percentage, of
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each criterion for the goal.

Computing Global Priorities. Global priorities are computed through a weighted
sum of all the local priorities calculated over the whole hierarchy (from al-
ternatives to goal):

P ai
g =

k∑
j=1

pcjg · paicj (1)

In the formula, P ai
g is the global priority of the alternative ai, p

cj
g is the local

priority of criterion cj with respect to the goal and paicj is the local priority of
alternative ai with respect to criterion cj.

Instantiation of goal, alternatives, and criteria in MAETROID. The goal of
MAETROID consists in assigning one of the following alternative labels to
the app under investigation:

Trusted: The app works correctly and does not hide malicious functionali-
ties. Intuitively, a trusted app is characterized by a low global threat
score, i.e., it is considered not being able to harm the system, due to
the low threat of the required permissions. Moreover, a trusted app
generally comes from the official market, it has been downloaded by
thousands of users, it has very good reviews and/or has been devel-
oped by a developer with an outstanding reputation (i.e., a so called
“top” developer). All the aforementioned features shape an app, as
both secure and appreciated by the users. Therefore, the user could
reasonably install the app without meeting with risks.

Medium Risk: The app may not work correctly and may include unde-
sired, or malicious, functionalities. An app is considered to feature
medium risks, in terms of the device security, when, even if it shows
an acceptable (low) global threat score, it has received poor reviews,
and/or it has been downloaded by too few users (less than 100) to infer
that the app does not hide threats. Generally, this label should be as-
signed to low quality apps, published on official or unofficial markets,
by non-skilled developers. Another reason for the assignment could
be that the app is likely to be unwanted from the user, such as an
advertising-supported software (Adware).
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High Risk: The app likely includes malicious code. This label is given to
apps that ask for several dangerous permissions, representing a poten-
tial threat to the device and the user. In fact, the largest majority
of malware (95% [3]) asks for many suspicious permissions related to
text messages, which should reasonably not be asked by apps unre-
lated to instant messaging. As highlighted in the following, apps that
genuinely ask for several dangerous permissions are correctly evalu-
ated as “Trusted” by MAETROID, mainly due to the positive user
reviews combined with a conspicuous number of downloads (more than
100,000).

For MAETROID, we have defined five criteria, namely (i) a global threat
score, obtained according to the declared permissions of the application, (ii)
the marketplace, (iii) the developer’s reputation, (iv) the user’s rating, and
(v) the number of downloads. In particular, the global threat score is calcu-
lated in terms of the amount and type of the declared permissions, on the
basis of the resource the application may access and the operations it may
perform. In the following, we detail all these criteria.

3.1. Threat score

We describe the scheme we have devised to compute the app global threat
score, which is based on a weighted and normalized sum of single threat
scores computed by manually evaluating all the permissions defined by An-
droid. The single scores have been defined by referring to the resources and
operations that can be accessed when each permission is granted. In detail,
for each permission, we have evaluated the level of threat with respect to three
security parameters: privacy (considering threats to user’s data confidential-
ity), system (considering threats to the device integrity), and the financial
threats (against the user’s mobile credit). Table 2 shows the threats levels
associable to such parameters.

The values in the table have been adapted from the standard for privacy
risk management by CNIL (Commission Nationale de l’Informatique et des
Libertés) [15], which describes the potential impact on privacy due to the
misuse of digital resources. Here, we have extended the CNIL indexes also
to system and financial threats. Consequently, it is possible to assign to
each permission a score, which is representative of the threat it brings to
the three security parameters. Finally, the global threat score is computed
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Table 2: Threat Levels

Given Score Meaning

0 No Threat

0.2 Negligible

0.4 Limited

0.6 Significant

0.8 Relevant

1 Maximum

by combining, weighting and normalizing, the three single scores of all the
permissions declared by an application.

To explain the rationale behind our analysis of permissions, let us consider
the permission CALL_PHONE as an example. We have assigned a score of 0.6
to its privacy threat, since this permission allows an app to operate phone
calls without the user awareness. For example, this permission enables an
app to start a phone call, without user consent to remotely record, on the
called number, the user activities and nearby sounds to infer her behaviour.
We have further assigned a score of 0.2 to the system threat, since the phone
drains the battery faster during a call, but it is unlikely that an attacker
can exploit phone calls to attack the device integrity by reducing the battery
lifetime. Finally, we have assigned a score of 1 to the financial threat, since an
app with this permission can call any phone number, including premium-rate
numbers. Hence, a malicious app can cause a consistent financial damage to
the user, e.g., by issuing calls to premium numbers which are likely to pass
unnoticed (at least until the user credit ends or the user receives the bill).

Table A.7 in Appendix A gives an excerpt of the threat scores we have
assigned to all the Android permissions (we refer the reader to [16] for a full
list). In Table A.7, acronyms PT, ST, and FT are an abbreviation of privacy,
system, and financial threat, respectively. The threat values have been given
according to the documentation associated with all the permissions, which
gives details on how they can be exploited by an app. The rationale behind
the assignment of threat values to permissions is detailed in the following.
Following the CNIL standard [15], a high level description of each threat level
is also presented for all the three parameters.
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3.1.1. Privacy threat score

Personal data, i.e., any information referring to an identified, or identi-
fiable, individual (the so called data subject)4, are governed by principles to
guarantee their privacy [17]. As an example, the Use Limitation Principle
states that “Personal data should not be disclosed, made available or other-
wise used for purposes other than those specified at the time of data collection
except: i) with the consent of the data subject, or ii) by law.”. Following the
principle, we define the privacy threat values for each permission as follows:

• No Threat: The permission does not affect users’ data governed by
privacy principles.

• Negligible: The permission affects data that either are not governed
by privacy principles or whose violation let the data subject encounter
really few inconveniences. Some examples are the active applications
and connectivity interfaces (Wi-Fi) of the device.

• Limited: The permission affects data whose violation would lead to
limited inconveniences, since, e.g., the disclosed information has poor
accuracy and it does not strongly affect the user’s privacy. An example
is the ACCESS_COARSE_LOCATION permission, which gives access to
the user location with a city-level granularity.

• Significant: The permission affects data whose violation leads to a sig-
nificant inconvenience, with serious potential consequences. This value
is assigned to permissions affecting data with serious privacy implica-
tions that however cannot be disclosed without a synergy with other
permissions. An example is the WRITE_SOCIAL_STREAM permission,
which grants the possibility to modify social network streams, but it
does not allow to read them, thus limiting the privacy leakage issues.

• Relevant: The permission regulates the access to a resource or oper-
ation with serious privacy implications, which may definitively affect
the privacy of the user. An example is the ACCESS_FINE_LOCATION
permission, which grants full access to the user precise location.

4http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML
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• Maximum: The permission regulates the access to a resource or op-
eration seriously affecting both the privacy of the device’s owner and
of other users connected to that owner. The disclosure can cause se-
rious damage to these users and the consequences are likely to be not
recoverable. An example is the READ_SMS permission, which gives full
access to all SMS messages received by the device’s owner. An applica-
tion with this permission can read both the SMS text and the number
of the sender.

Examples of actions that may compromise or shatter the privacy princi-
ples are accessing the user’s contacts, files, Internet bookmarks and chronol-
ogy, as well as IMEI and IMSI codes. Permissions referring to these actions
have received a high value for the privacy index. In particular, based on the
principles highlighted in [17], we have given the highest privacy threat value
to the following permissions:

• android.permission.READ_CONTACTS: it allows an app to ac-
cess the contact list on the device. This may create a serious privacy
leakage, since the app can send the data in the contact list to an at-
tacker through Internet or text message.

• android.permission.READ_PROFILE: it allows an app to access
data of the user account, which may contain private information, like
birth-date, location, occupation. Apps with this permission can read,
store, and eventually send them outside the user device.

• android.permission.READ_SMS: it allows an app to access SMS
messages. Apps are able to read both the text and the sender number
of all the private SMS messages stored in the device.

• android.permission.RECEIVE_SMS: it allows an app to control
and handle the event of incoming SMS messages. This permission leads
to privacy risk similar to that of the READ_SMS permission, even if, in
this case, the app can only intercept incoming messages and it is not
able to access the messages history. Remarkably, the app with such a
permission granted may even decide not to show notifications of the
received message to the user.

• android.permission.RECEIVE_MMS: it allows an app to control
and handle the event of incoming multimedia messages. Same consid-
erations of the above permission hold, applied to multimedia messages.
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3.1.2. System threat score

A high value to system threat is assigned to those permissions accessing
system components and potentially causing integrity issues to the OS, to
files, and to the physical device. The interpretation of the indexes that we
have given for the system threat is:

• No Threat: The permission does not regulate the access to any re-
source or operation affecting the device integrity.

• Negligible: The permission regulates the access to resources or oper-
ations that have a limited impact on the device integrity. Moreover,
misuses of these permissions can be easily noticed and halted by users.
Examples of these permissions are the one regulating the on/off status
of connectivity interfaces, such as Bluetooth, whose excessive misuse
may cause battery depletion. It is worth noting that on Android de-
vices Bluetooth activity is indicated through a status icon, which also
allow the user to deactivate it.

• Limited: The permission regulates the access to resources, which have
a limited impact on the device integrity, but whose continuous misuse
can cause noticeable issues, such as battery depletion, or device misbe-
havior. Differently from negligible, the “Limited” index is assigned to
those permissions whose (mis)use is not actively notified to the user.
An example is the CHANGE_CONFIGURATION permission, which al-
lows an application to modify some settings like the font-size. In the
case of a misbehavior, the user would have to manually change the
configuration back to the preferred value.

• Significant: The permission affects resources whose misuse can cause
significant damage to the device. The user may not notice the effect of
the misbehavior. However a full exploitation would require an associ-
ation with other permissions. An example is the BLUETOOTH_ADMIN
permission, which allows an app to handle the pairing with other de-
vices: this may bring to the download of unrequested files on the device.

• Relevant: The permission regulates the access to a resource that is
critical for the device integrity. The app may alter the device function-
ality and it may interfere with other apps. Damages caused by a misuse
of these permissions could be reversed, but at cost of a significant user
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effort. An example is the SET_PROCESS_LIMIT permission, which
determines the maximum number of active processes.

• Maximum: The permission regulates the access to resources or op-
erations seriously affecting the device integrity. The damage caused
by misuse of this permission could be not reversible. An example is
the MOUNT_FORMAT_FILESYSTEM, which allows an app to format
removable storage, causing permanent file loss.

A list of permissions that are critical for the system threat is:

• android.permission.INSTALL_PACKAGES: it allows the app to
install new packages. This functionality has been used by several mal-
wares to install dangerous apps with additional permissions (e.g., the
ZFT malware) or advertisement apps (Adware).

• android.permission.WRITE_EXTERNAL_STORAGE: it allows the
app to modify the external memory content. An app with this permis-
sion can fill the device memory and remove or permanently modify files.
As an example, the malware Moghava permanently damages all the
pictures in the user gallery, loading instead a propaganda image.

• android.permission.CHANGE_WIFI_STATE: it gives to the app
the control on the WiFi device status. The WiFi interface has a con-
sistent impact on the device battery lifetime and it may cause Internet
disconnection, since WiFi overrides the mobile data connection even if
the access point is not connected to the Internet. Thus, a malicious
control on the WiFi represents an integrity violation.

Other permissions with a consistent value of system threat are those giving
access to the device interface and peripherals (e.g., camera, vibration, etc.),
whose (mis)use causes both a performance or a battery overhead.

3.1.3. Financial threat score

Financial threat involves those permissions that, if misused, cause direct
(or indirect) monetary loss for the user. The interpretation of the values that
we have given for the financial threat is:

• No Threat: The permission does not imply any financial cost.
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• Negligible: The permission regulates the access to resources whose
misuse can cause limited damage in terms of monetary loss. However,
the loss happens only if other conditions, not related to the permission,
are verified. An example is represented by those permissions allow-
ing the access to online resources, such as, READ_SOCIAL_STREAMS,
which also require permissions for Internet access to impose a cost.

• Limited: The permission regulates the access to resources that impose
a limited and indirect cost to the user. An example is the INTERNET
permission, which allows an application to open network sockets. It can
cause indirect monetary loss if the device is using the 3G/4G network
to receive and send data.

• Significant: The permission regulates the access to resources that
impose an indirect but potentially severe financial cost. An example
is the CHANGE_WIFI_STATE, which, by deactivating the WiFi during
the download of a large file, could impose the cost of the downloaded
Mbytes on the 3G/4G traffic.

• Relevant: The permission regulates the access to a resource that
may impose a direct cost to the user. This value is assigned to the
RECEIVE_SMS permission, which controls the access to received mes-
sages, even allowing an app to intercept and hide new incoming mes-
sages. This strategy is used by SMS trojan malware to hide the regis-
tration to premium services.

• Maximum: The permission regulates the access to resources with a
serious direct effect on user’s money. An example is the SEND_SMS
permission, which allows an application to potentially send unlimited
text messages.

Some permissions that we consider critical for the financial threat are:

• android.permission.SEND_SMS: as introduced above, it allows
an app to send text messages. With this permission, an app can
virtually send unlimited messages to whatever number. Sending text
messages is an operation that has a monetary cost established by the
provider and that may vary with the recipient. Moreover, text messages
can be used for the subscription to premium services, which impose a
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weekly or monthly cost. Such a strategy has been exploited by several
malware known as SMS Trojan [18].

• android.permission.CALL_PHONE: it gives to an app the autho-
rization to initiate phone calls. Phone calls have the same financial
implications of text messages, with usually a higher cost imposed on
the user [19].

• android.permission.INTERNET: as introduced before, it gives to
an app the authorization to open sockets for external connections. Re-
ceived and transmitted bytes of data are other elements that telephony
providers charge to users. Opening a connection and streaming data on
it always generates a cost and an app with this permission can virtually
send unlimited amount of data. This permission becomes particularly
dangerous if coupled with the CHANGE_WIFI_STATE permission dis-
cussed formerly.

3.2. Global threat score

For each app, we define the global threat score σ, which summarizes, in
a single index, the threat scores previously introduced, the privacy, system,
and financial ones. The global threat score is computed by analyzing the
manifest file, and by calculating a weighted sum as follows:

σ =

n∑
i=1

wp · pti + ws · sti + wf · fti

1 + dlog(1 + n)e
(2)

where n is the number of permissions declared by a specific app, pti, sti,
fti are, respectively, the privacy, system, and financial threat scores of the
i-th permission required by the app. The numerator is weighed by wp, ws,
wf . It is worth noting how these weights can be customized to better fit the
users’ perception of threats. In particular, when installing the MAETROID
application, users will be able to select one of three usage modes: privacy,
financial or system integrity. This choice impacts on the weights, by giving a
higher weight to the corresponding threat score. The weights values can also
be fine-tuned by expert users. By default, in MAETROID wf is set to be
three times greater than ws and wp: this means that we consider the finan-
cial threat three times more relevant than the system and privacy threats.
However, values and proportions among weights are not fixed and they can
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be adjusted, according, e.g., to the user’s perception. The denominator of
Equation (2) has been introduced so that the threat represented by requested
permissions is considered more relevant than the number of permissions. We
consider apps with σ lower than 4 as low-threat apps, while apps with σ
between 4 and 7 (4 ≤ σ < 7) are considered moderate threat to high-threat.
Higher values of σ (σ ≥ 7) mean extremely critical apps.

Summarizing, the value σ estimates how much an app is critical from the
security point of view, by considering the declared permissions only. Hence,
the more permissions are required by an app, and the more dangerous these
permissions are, the more critical the app becomes. The fact that an app
receives a low global threat score should increase the likelihood that this app
will be downloaded and, as a consequence, this should encourage developers
to accurately choose the permissions required by their apps.

3.2.1. Criteria and their association with the application labels

In addition to the global threat score σ, in the following we present the
other criteria that will be used to rank the trustworthiness of an Android
application.

Market (µ). Apps are normally distributed through online marketplaces.
The most popular market is Google Play, also referred as the official mar-
ket. This market is considered a more protected environment than unofficial
ones since app developers build their reputation on the base of the apps they
publish. More specifically, a developer, who wants to publish apps on Google
Play has to buy a developer account, at the price of 25$. In exchange, the
developer receives a private key, which she can use to digitally sign her apps
[20]. If users report an app as malicious, then this app is removed both
from the market and remotely from all the devices that have installed it.
Moreover, the developer can be tracked and blacklisted. In addition, Google
Play includes some reputation indexes that should help users to understand
the app quality. These features make the official market a trustworthy place
where to download apps. Nevertheless, several malware have also been found
in the official market [3] [21] [22].

There also exists a plethora of unofficial marketplaces, among which:

• http://www.appbrain.com,

• http://www.aptoide.com,
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• http://www.androiddrawer.com,

• http://androidlife.ru,

• http://www.anruan.com,

• http://www.appsapk.com,

• http://android.pandaapp.com,

• http://slideme.org.

These marketplaces do not require developer registration and they still at-
tract several users since they usually give access to apps that are not available
on the official market, or they distribute free versions of apps, which should
be bought instead on the Play store. However, unofficial markets often miss
reputation indexes and, sometimes, there is no control at all on the quality
of the apps, so it is easier to download malicious apps. Related to the market
source, in the problem instantiation we also consider another label, namely
apps that are manually installed, which happens when the user manually in-
stalls the app (e.g., when she downloads the app apk and installs it through
a file manager).

Thus, given the three possible values featured by an app with respect to
its market (official, unofficial, and manually installed), we define the rela-
tive relevance of the three labels MAETROID assigns to the application as
follows:

• µ = official: we consider that Trusted is moderately more relevant than
Medium Risk and strongly more relevant than High Risk;

• µ = unofficial: we consider that High risk is moderately more relevant
than Trusted and slightly more relevant than Medium Risk;

• µ = manually installed: we consider that High Risk is slightly more
relevant than Trusted and Medium Risk (that are equally relevant).

According to this information, it is possible to fill the AHP comparison matrix
expressing the relevance of the alternatives towards the criterion Market.

18



Developer (δ). We consider three types of developers: Standard, Top, and
Google. Google rewards the best app developers with a Top Developer badge,
which is reported on each app they publish. Hence, these developers should
be considered strongly trusted since they usually produce high-quality apps
and they should not be interested in lowering their reputation. On Google
Play, Google Inc. itself is considered a Top Developer. However, we consider
Google more trusted than other developers, given the interest that Google has
in protecting the security of Android users. It is worth noting that such an
assumption is in line with the trust hypothesis for Signature and Signature-
or-System permissions. All the other developers are considered standard and,
since the Top Developer badge is only used on Google Play, all developers of
apps coming from unofficial markets have been labeled standard as well, since
on these markets apps are not digitally signed. The AHP comparison matrix
for the developer parameter is defined according to the following analysis:

• δ = Google: we consider that Trusted is extremely more relevant than
Medium Risk and High Risk (that are equally relevant);

• δ = Top Developer: we consider that Trusted is very strongly more
relevant than High Risk and Medium Risk (that are equally relevant);

• δ = Standard: we consider that the three alternatives are equally rele-
vant.

User rating (ρ). On several markets, users can rate apps and leave a com-
ment, which can be shown to other users. Rating is generally expressed as a
number that ranges from 1 to 5 (or it is normalized in this range). We con-
sider apps with a rate less than 2 as low-quality, for which the Medium Risk
alternative is extremely more relevant than the Trusted one. A score higher
than 4 means a high-to-very-high quality apps for which the Trusted alter-
native is very strongly more relevant than the others. Intermediate values
mean a neutral comparison matrix.

Number of Downloads (η). Several markets report the number of downloads
for each app. As an example, the so-called “killer apps”, i.e., extremely pop-
ular apps, have been downloaded from Google Play more than 100 millions of
times. These apps should be considered differently from those downloaded a
low number of times, e.g., less than 100 times. In fact, apps with a very high
amount of downloads are popular apps already tested by several users and
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are, usually, more trustworthy. Note that the number of downloads, though
independent, is needed to contextualize the User Rating criterion: a rating of
five stars (out of five), given to an app downloaded by a single user, is indeed
not very relevant. Hence, we define 7 intervals in which the value η may fall.
For very high values of η, Trusted is extremely relevant. As the value of η
decreases, the relevance gradually turns from Trusted to High Risk.

Global threat score (σ). As explained in Section 3.1, a global threat score is
associated to each app. According to its value, the relative relevance of the
three possible application labels is as follows:

• σ < 4: Trusted is very strongly more relevant than High Risk and
moderately more relevant than Medium Risk;

• 4 ≤ σ ≤ 7 : High risk is very strongly more relevant than the other
alternatives (that are equally relevant);

• σ > 7: High Risk is extremely more relevant than Trusted, and Medium
Risk is strongly more relevant than Trusted.

On the comparison matrices. For those marketplaces without download coun-
ters and/or rating systems, we have defined two additional comparison ma-
trices whose elements are all equal to 1. In such a way, when using these
matrices to evaluate the relevance of the alternatives with respect to the cri-
terion, the alternatives have the same relevance for that criterion. Hence,
this criterion will not influence the decision.

We have defined 20 comparison matrices, but it is possible to increase
their number to have a finer, or customized, granularity for each criterion.
Finally, it is worth noting that the list of proposed criteria is not exhaustive,
and the methodology enable the insertion of other criteria to evaluate the
alternatives.

Finally, in the current implementation, we consider all the criteria as
equally relevant in achieving the goal. However, we highlight that the relative
importance among the criteria, with respect to the goal of classifying an
application, can be customized, as to have more granular results with respect
to the user’s expectation. As an example, a user can decide to give more
importance to the developer criterion rather than to the market one. This
could happen in those situations in which the user always downloads from
official markets. In the AHP-based MAETROID design, this would lead to a
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comparison matrix where the developer criterion is, e.g., very strongly more
relevant than the market one.

3.3. Classification

The classification process of MAETROID is depicted in Figure 2. The
system takes as input an Android application, which belongs to one of three
possible classes:

• Good Apps: applications behaving as expected by the user, well de-
signed and bugs-free, generally popular and with good rating, which
also do not contain malicious code;

• Bad Apps: applications that, even if they do not contain malicious
code, do not behave as users expect, e.g., they are poorly designed,
malfunctioning (bugs, crash, missing functionalities), or they have a
high impact on performance;

• Infected Apps: applications that contain malicious code, specifically
designed to harm the user and/or the device.

As output, we have the same app, labeled with one of the three indexes of
the right-hand side of the figure (Trusted, Medium Risk, High Risk). Ideally,
the classification is correct if a Good App is classified as Trusted, a Bad App
is classified as Medium Risk and an Infected App is classified as High Risk.
The criteria used to perform the classification are the market reputation, the
developer reputation, the global threat score, the downloads number, and
the user rating.

4. MAETROID Implementation and Results

The MAETROID framework has been implemented as an app for An-
droid devices. The MAETROID app is composed of an activity5 and several
services6 running in background. Whenever a new app is being installed,
MAETROID intercepts the event broadcast by Android through an intent

5http://developer.android.com/reference/android/app/Activity.
html

6http://developer.android.com/guide/components/services.html
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Figure 2: MAETROID Classification Process

filter7. Hence, MAETROID comes in foreground with its activity, showing
that the app is being analyzed to the user. In the meanwhile, the analysis
services transparently retrieve the values of the five criteria (market, devel-
oper reputation, user rating, number of downloads and global threat score)
for the app under investigation. The global threat score is computed by pars-
ing the app manifest file, to retrieve the set of requested permissions, and
by computing the global threat score as shown in Section 3.2. Note that the
evaluation is performed locally on the user device, whenever a new app is
going to be installed. Hence, there are not scalability issues on the market,
since the market is not affected by the computation.

The market is inferred from the installer of the downloaded app. In fact,
as discussed in Section 3, both official and unofficial markets provide an on-
device custom app called “installer”, which is used to browse the marketplace,
to download and install some selected apps. The name of the installer is
reported in the message which is broadcast by the OS, to communicate the
event of a new app installed on the device. The other criteria (user rating,
number of downloads and developer reputation) are extracted by parsing
the market’s web page. Upon computing the values for the five criteria,

7http://developer.android.com/guide/components/
intents-filters.html
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MAETROID implements AHP through Jama, the Java matrix package for
matrix calculi8.

Upon completing the analysis, MAETROID returns its decision in the
form of a smiley. We have decided to use such a simple graphical represen-
tation to make the outcome more user-friendly and understandable. If the
app is considered High Risk (resp., Medium Risk), the user is advised of
the potential threat through a red ‘sad’ smiley (resp., a yellow ‘poker face’
smiley), and she is asked if she wants to uninstall the app. If the user de-
cides to uninstall the app, MAETROID handles the uninstallation process.
Otherwise, if MAETROID considers the app as trusted, the user is invited
through a green ‘happy’ smiley to run the installed app.

It is worth noting that MAETROID does not block the installation pro-
cess, but it prevents the app from being started until the analysis outcome is
shown and the user has taken her decision. The fact that installation process
is not blocked a priori by MAETROID is not harmful. In fact, in Android, an
app does not perform any operation (including deploying assets and saving
files on the device) until it runs. Given that users follow the MAETROID
advise, a dangerous app can neither harm the user nor device, since apps can
be opened only after that users trigger the app start from the launcher
app. A key point in MAETROID is giving the users a “peace of mind”.
Indeed, Android users will have little or no interaction with the classification
process and they will be relieved from the burden of understanding the se-
curity implications brought both by the values of the five criteria and by the
permissions list.

We remark that MAETROID performs the classification directly on the
device. This approach has the following advantages:

• MAETROID is not affected by scalability issues, since it is not nec-
essary to classify a priori all the existing Android apps, building a
centralized database which would need continuous update and mainte-
nance;

• app updates automatically trigger a reclassification process when the
updated version is downloaded. Thus, if the classification result changes
because the updated version asks for more permissions, the new version
will not run on the device, given that the user follows the MAETROID

8http://math.nist.gov/javanumerics/jama/
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decision.

The whole sequence of steps of the MAETROID analysis process is de-
picted in Figure 3 and it is summarized as follows:

Step 1: a new app is downloaded locally from the marketplace;

Step 2: the user decides to perform the app installation;

Step 3: the installation process is hijacked (and paused) by MAETROID
(which was previously installed on the user device);

Step 4: MAETROID retrieves the metadata used to perform the classifica-
tion, locally from the app manifest file and remotely from the market-
place;

Step 5: MAETROID exploits the retrieved metadata to apply the AHP
classification, locally on the device;

Step 6: the decision is shown to the user, in form of a smiley;

Step 7: the user decides whether to continue the installation or remove the
app, based on the output of the classification.

4.1. Classification Results

To evaluate the MAETROID performances, we have conducted two sets of
experiments, one on a large set of applications coming from known databases
and one on a smaller set, manually analyzed.

In the first set, we have used the classification algorithm of MAETROID
to classify a dataset of 11,046 apps. This dataset is composed of 9,804 apps
selected from the official market Google Play, while the remaining 1,242 apps
come from the database of known malware Genome[7]. To extract the meta-
data of the Google Play apps, we have built a crawler to retrieve the rating,
download number and permissions set, starting from an existing database9.

The classification results are shown in Figure 4 and also reported in Table
3 for the sake of clarity. As shown, malicious apps of the Genome database

9The crawler is based on: https://github.com/MarcelloLins/
GooglePlayAppsCrawler
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Figure 3: Overview of MAETROID Process
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Figure 4: Classification Results on 11,046 Apps

have all been classified as risky by MAETROID. More precisely, 85% of the
malicious apps of Genome have been classified as High Risk and the remain-
ing 15% as Medium Risk. None of the apps from Genome have been classified
as Trusted. We have used the apps from Google Play as a control set. We
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can see that the greatest share of Play apps (77.37%) have been classified as
Trusted, while 22.4% have been classified as Medium-Risk and only 0.23% as
High-Risk. It is worth noting that, in this test, we have no previous knowl-
edge about the nature of the apps from Google Play. However, we argue that
the classification results over the control set are plausible. In fact, the results
show that 77.37% of the apps from Google Play do not represent a threat to
security, while about 22% of the apps show some criticality, usually due to
a low number of downloads. Only a very small number of apps represent a
potential threat to security, mainly due to the set of dangerous permissions
they ask10

Table 3: Classification results on the first set (11,046 apps)

Trusted High Risk Medium Risk

Google Play 7586 22 2196

Genome 0 1064 178

In the second set of experiments, we have verified the classification ac-
curacy of MAETROID, by measuring both its precision and recall, i.e., the
overall classification error. The testbed dataset does not overlap with the
previous one and it is composed of 180 Android apps, which are known in
advance to be:

• Safe Apps : those apps that behave correctly both from the security
and functional point of view. This class is further divided in two sub-
classes: Official and Unofficial, stating, respectively, whether the app
has been downloaded from Google Play or not. Good Apps are cor-
rectly classified by MAETROID if its output is “Trusted” (green happy
smiley);

• Apps with Unwanted Behavior : the app permissions given to these
apps may be used to cause potentially unwanted behavior, such as
with Adware. These apps are correctly classified by MAETROID if its
output is “Medium Risk” (yellow poker face smiley);

10Additional details on this set of experiments, i.e., links to the tested apps and their
metadata, can be retrieved at http://www.android-security.it/maetroid/
app_list_final.xlsx.
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• Malicious Apps : those apps infected by a malware. Malicious Apps are
correctly classified by MAETROID if its output is “High Risk” (red sad
smiley).

In more details, the test-set consists of 180 manually analyzed apps: 90
from Google Play, 50 from unofficial markets, and 40 manually installed.
Among all these 180 apps, 40 were infected by well-known malware. Apps
belong to different categories: augmented reality, books and news, commu-
nication, desktop manager, entertainment, file managers, game, social and
utility, and anti-virus. The app user rating ranges over [1, 5], the number
of downloads ranges over [0, 10M+], and the apps were produced either by
standard developers, or by Top Developers, or by Google.

The MAETROID outcome over the 180 apps set is reported in Figure 5,
where the x-axis shows the three possible output labels of MAETROID
(Trusted, High Risk, Medium Risk), while the y-axis shows the number of
apps classified per outcome. The light-green colour represents safe apps (in
dark green the ones coming from unofficial markets), the red color represents
apps infected with malware, whilst violet (vertical lines pattern) represents
apps with unwanted behavior. All the infected apps have been correctly re-
cognized by MAETROID as High Risk. It is worth noting that some good
apps also fall in this class. These apps come from unofficial markets (labeled
as “Good Apps (Unoff.)” in Figure 5). Since no user rating is available
for these apps, MAETROID applies a safe approach by considering them as
High Risk, at least initially. However, as soon as new information become
available for these apps [23], they will eventually be classified as trusted ones.

All the apps coming from Google Play have been classified either as
Trusted or Medium-Risk, based upon user rating, global threat score, and
number of downloads. All the apps with unwanted behavior coming from
Google Play have been correctly considered as Medium-Risk. These apps do
not work as expected or they crash upon starting. An example of this class
of apps is the game Avoid the Ghosts11, which is a reproduction of the
classic Pac Man game. The app does not work correctly: in fact, when the
app starts, it is impossible to control Pac Man movements. The app has been
found on the official market, but it has been downloaded few times and it
has received bad ratings. However, Avoid the Ghosts does not require

11The app was available on Google Play at time of our experimentation, while at time
of writing it was no more available.
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Figure 5: Classification results on the second set (180 apps)

dangerous permissions and, hence, it is considered Medium Risk instead of
High Risk.

In the following, we detail the classification process for two popular apps,
namely Angry Birds Space and Skype.

Classification example 1: Angry Birds Space. The values of the five criteria
computed by MAETROID are shown in Table 4. In detail, the app developer
is a Top Developer, the app has been downloaded by more than 10 millions
of users, receiving a global rating of 4.7. Furthermore, it comes from the
official market Google Play and it has a low global threat score (2.7).

Table 4: Values of criteria for Angry Birds Space

σ ρ µ δ η

2.7 4.7 Google Play Top Developer 10M+

Table 5 shows the matrix used to compare the three alternatives, with
respect to the “App Developer” criterion. Top Developers generally produce
high quality apps and they are not likely to publish malicious apps. Ac-
cording to this intuition, we assigned the following pairwise relevance to the
alternatives: Trusted is very strongly favorite with respect to Medium Risk
and strongly favorite with respect to High Risk. Trusted (green happy smi-
ley) obtains the highest priority (0.7) compared to the other two alternatives.

MAETROID merges the local priorities for criterion “developer” with
the ones coming from the comparison matrices of the other four criteria. We
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Table 5: Comparison matrix for Top Developer for Angry Birds Space

Top Developer Trusted
High
Risk

Medium
Risk

Local
Priorities

Trusted 1 4 7 0.7

High-Risk 1
4

1 4 0.23

Medium-Risk 1
7

1
4

1 0.07

finally obtain the following global priorities [0.7, 0.16, 0.14]. The three values
represent the priorities for the three alternatives, respectively Trusted, High
Risk, and Medium Risk. Trusted is the alternative with the highest value
and, thus, it is also the result of the MAETROID classification for that app.

On the contrary, when MAETROID analyzes a version of Angry Birds
Space found on a database of infected apps, it outputs High-Risk as the
highest priority. This app has been found in the past to be infected by the
malware Geinimi [18]. The malware steals information concerning both
the user and the device, which are sent via SMS to a number controlled
by the attacker. To perform these further operations, the malware asks for
several other permissions (Figure 6), leading to a global threat score equal to
7.3. This high value for the global threat score correctly drives MAETROID
towards the High-Risk outcome.

Classification example 2: Skype. Skype is a popular software used for VoIP
and free chat and its mobile version is considered reputable, since it enables
phone calls with smartphones, using the data connection instead of tradi-
tional (and more expensive) landline and cellular calls connections. To work
properly, the Android version of Skype requires a large number of permis-
sions. Computing the global threat score by means of Equation (2), Skype
gets a score of 6.8. Skype is an example of a high-threat app. In our analysis,
we have considered two Skype versions, one from the official market and the
other from an unofficial market, see Table 6.

The global priorities vector computed by MAETROID on the version
coming from the official market is [0.47, 0.4, 0.13]. This slightly favors the
Trusted alternative. Both the marketplace and the large number of down-
loads increase the trustworthiness of this app, even if it has a high global
threat score. For the version from the unofficial market, which does not even
provide a download counter, the global priorities are very different from the
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Figure 6: Permissions declared by Angry Bird Space trojanized by Geinimi

Table 6: Two Skype versions

Name σ ρ µ δ η

Skype_1 6.8 3.8 Google Play
Standard
Developer

10M+

Skype_2 6.8 4 Unofficial
Standard
Developer

N.A.

previous ones: [0.29, 0.52, 0.19] and the app is labeled as High Risk (“sad”
smiley). Even if the two versions require the same set of permissions, it is
possible that their source codes are different (possibly malicious). Since more
than 10 millions of users have downloaded the version from the official mar-
ket, it is strongly unlikely that malicious behaviors have not been noticed
and reported, forcing the app removal from that market.

5. Discussion

MAETROID is an app that helps users to understand the level of risk
of downloaded apps, i.e., if those apps have potential security and privacy
risks. Several factors contribute to make an app likely dangerous. The most
relevant is the requested set of permissions, which effectively gives the app
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the power to invoke critical functions and access critical resources. This, per
se, cannot be the only criterion to decide whether an app is risky or not.
In fact, genuine apps may request these permissions to legally access, for
example, the contact detail (as a contact manager), or to send SMSs (as a
customized text manager), and so on. Obviously, if these permissions were
dangerous regardless of the apps, then Android would remove the possibility
of using them. Hence, other criteria can be relevant, such as the marketplace
(an official market has usually a pre-filtering step to remove some malicious
or repackaged apps), the developers (the most important ones do not want
to risk their reputation), the user ratings, and the number of downloads.

MAETROID is shipped as a custom app to run on the user-device. When-
ever a new app is downloaded, the installation process is paused to run the
classification process locally. Then, MAETROID gives the user a friendly
decision about the app risk level, and it is up to the user to decide whether
the installation needs to be resumed or terminated. We have to point out
that MAETROID is not an anti-virus nor an intrusion detection system.
MAETROID focuses on elements which are visible to each user, i.e., per-
missions, market and app popularity, it evaluates them and then generates
a single, easy to understand, decision. Furthermore, it does not analyze
the app’s code. On the contrary, anti-virus solutions base their decision by
looking statically for known bad signatures inside the app’s code (black-list
approach). Other approaches, such as anomaly intrusion detection systems,
look for anomaly patterns at run-time. For these reasons, we see MAETROID
as an orthogonal approach to these solutions. In particular, MAETROID can
be the first line of defense in deciding whether an app may be potentially
dangerous. As an example, if an app is classified as Medium Risk (yellow
face), one can decide to run it in a sand-boxed environment under control of
an intrusion detection system.

As introduced in the previous sections, MAETROID acts at deploy-time
and no further checks are performed after that the user accepts the decision.
In particular, MAETROID does not enforce security at run-time, to not
impose any overhead on the apps execution. The approach of MAETROID
is also scalable, since apps are evaluated at deploy-time, directly on the user
device. Thus, despite the huge amount of available Android apps and their
possible different provenances, the proposed approach is viable, since (i) it
simply requires the users to install the MAETROID app on their devices (ii)
apps are evaluated at installation time only.

We have analyzed the user response and acceptance of MAETROID, de-

31



signing and proposing a survey to a set of about 200 subjects at a public
event about Internet technology12. The survey’s results have been analyzed
to synthesize outcomes on the users perception on mobile security and re-
lated threats and to receive a feedback on the MAETROID effectiveness and
usability. The results of the survey show that the interviewees are aware
of mobile security threats, since only 10% of them state that they are not
concerned about possible threats at all. However, more than 25% of the
subjects gives no importance to the Android security warnings and only 27%
of the subjects considers the Android permissions as useful and meaningful.
The results of the survey have also confirmed that the MAETROID evalua-
tion is effective in driving the users decision, by avoiding the installation of
malicious apps. In particular, 90% of the interviewees changed their mind
about installing a malicious app after that MAETROID evaluates the app
as dangerous.

Since MAETROID uses a single index for evaluation, with three possible
values only, this might somehow be too coarse-grained in some situations.
As an example, the vast majority of apps found on official market, such as
Google Play, are classified as trusted. This is because it rarely happens that
malicious apps are hosted on official markets. However, one could argue that,
even if safe, these apps sometimes require a too large set of permissions and
this should be pointed out. Further, advanced users would like to know more
about the threats for each of the MAETROID categories (financial, privacy
and system), which is not represented by the final output. The first issue can
be easily taken into account by penalizing apps that requires a large number
of permissions, regardless of the market, the developer and the number of
download. As we have already detailed, the parameters, such as the weight
given to each criteria, can be customized by the users. Regarding the second
issue, one future development concerns the addition of some further expla-
nations to the final decision, in the form, e.g., of an optional tab that the
user can open to understand in detail the final decision.

6. Related Work

Several extensions and improvements to the Android permission system
have been recently proposed. The work presented in [24] proposes a security

12http://www.internetfestival.it/
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framework that regulates the actions of Android apps defining security rules
concerning permissions and sequence of operations. New rules can be added
using a specification language. The app code is analyzed at deploy-time
to verify whether it is compliant to the rule, otherwise it is considered as
malicious code. With respect to this work, MAETROID does not require the
code to be decompiled and analyzed. Indeed, it only requires the permissions
list that can be retrieved from the manifest file and other pieces of information
that can be retrieved from the website where the app can be downloaded.

Authors of [10] present a finer grained model of the Android permission
system. They propose a framework, named TISSA, that modifies the An-
droid system to allow the user to choose the set of permissions she wants to
grant to an app and those that have to be denied. Using mocking data, they
ensure that an app works correctly even if it is not allowed to access the re-
quired information. However, their system focuses on the analysis of privacy
threatening permissions and it relies on the user expertise and knowledge.
A work similar to TISSA is presented in [25], where the authors design an
improved app installer that allows users to define three different policies for
each permission: allow, deny, or conditional allow. Conditional allow is used
to define a customized policy for a specific permission by means of a policy
definition language. However, the responsibility of choosing the right per-
missions still falls on the user, whilst MAETROID directly shows to the user
the risk classification of the app, performing automatically the permissions
analysis.

In [26] and [27], the authors present a multi-level behavior-based intru-
sion detection system called MADAM. The proposed system learns the cor-
rect devices’ behavior and then detects significant deviations signaling an
intrusion. The MADAM approach is orthogonal to that of MAETROID be-
cause MADAM analyzes the app behavior at run-time, while MAETROID
performs a risk analysis before installing the app. In [28], apps have been
classified based on their required permissions. Apps have been divided in
functional clusters by means of Self Organizing Maps, proving that apps
with the same set of permission have similar functionalities. However this
work does not differentiate between good and bad (trojanized) apps. An-
other analysis of Android permissions is presented in [12], where the authors
discuss a tool named Stowaway, which discovers permission over-declaration
errors in apps. Using this tool, it is possible to analyze the 85% of Android
available functions, including the private ones, to obtain a mapping between
functions and permissions. This work mainly concerns the analysis of permis-
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sions without proposing a direct link between declared permissions and apps
security, as with MAETROID. A system to implement security policies on
Android devices is presented in [29]. This system is based on the introduction
of a monitor of security critical functionalities, which matches the performed
actions with security policies defined by the mobile device user. However,
the presence of the monitor imposes a consistent overhead. Another security
framework based on user defined policies, preventing app to perform non
compliant operations, is presented in [30]. The framework attempts to re-
duce the overhead and to improve the effectiveness through a probabilistic
contract based approach. This leads to a probabilistic satisfaction of security
requirements.

TrustGo [31] is a framework aimed at classifying mobile apps exploiting
a multi-criteria analysis. TrustGo gives users a full description of the se-
curity threats brought by an app and also works as an antivirus. TrustGo
is catalog-based: available Android apps are analyzed by security experts
and are inserted in a catalog, checked when a TrustGo user is installing a
new app. TrustGo is effective and the catalog-based approach ensures a
good accuracy. However, it is not possible to collect all the existing apps,
since only the apps distributed through official channels can be analyzed.
Moreover, if an app is updated, it is possible that some security features may
change in the new version, i.e., new permissions are added in the manifest
and this requires a catalog update, which may not be triggered in time. On
the other hand, MAETROID is independent from the app version, i.e., the
app is analyzed “as is”. App update will trigger a new classification process.
Moreover, MAETROID classifies the app at deploy-time, without requiring
any centralized catalog. Thus, any app can be classified even if coming from
unknown marketplaces. Another app classification system is presented in
[32], where apps are classified in comparison with formerly analyzed apps.
The methodology exploits probabilistic generative models to analyze apps
on different criteria including permissions. However, the performed analysis
is more effective in creating an awareness on developers in trying to avoid
issues like permission over-declaration, instead of providing an index effective
in driving the user decision on the app installation.

Analysis of the Android permission understanding have been performed
in [11], where subjects from an university campus have been asked to fill a
survey on Android security and on their current approach to the permission
security mechanism. Recently, Android has introduced a service of remote
monitoring of installed apps, called VerifyApps [33], which acts as a remote
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antivirus by looking directly for known malware signature. The visual ap-
proach is similar to MAETROID: when an app is considered dangerous, the
user is advised about the potential threat and asked if she desires to in-
stall the app considered dangerous. On the contrary, the risk analysis of
MAETROID is based on different parameters that do not depend from the
app code. A dangerous app can be considered malicious by MAETROID
even if it is a brand new app with an unknown signature.

A similar approach to MAETROID is Androlyzer [34], which is a web-
based service that gives the user a lot of information about the used API,
used libraries, privacy leaks, requested permission, which might be too over-
whelming for an ordinary user. For these reasons, in MAETROID we have
decided to keep the output of the results as simple as possible. This is a
first step towards a better understanding of the risk of an app from the point
of average users. Furthermore, these reputation services, again with similar
one in [35], are usually centralized, hence they are not very scalable. In fact,
these services need, first of all, to download all the apps (or the most impor-
tant ones), and are usually limited to unofficial markets. Furthermore, their
databases need to be constantly updated and the centralized service need
to cope with several concurrent requests of different users. On the contrary,
MAETROID is run locally on the user device and only for the newly down-
loaded app so there are not scalability issues due to checking a large number
of apps concurrently.

Finally, MAETROID strongly differs, by design choice, from security
frameworks like MOCANA [36] or Samsung Knox [37] which are designed for
“high-security government or military deployment”, enforcing security from
the hardware to app level through trusted storage for remote attestation and
a dedicated market where only vetted apps are published. Furthermore, the
configuration of these systems are usually centralized and implemented by
expert administrators. The MAETROID solution is designed for a wider set
of users, not requiring dedicated hardware nor customized OS, and with little
(or none) knowledge of security.

7. Conclusions

Protecting users from dangerous apps is a compelling issue. Though
the main mobile OSs have already introduced some security mechanisms for
device and user protection, these still present several usability-related flaws.
Normally, users have a realistic view of mobile security threats and are willing
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to protect their devices. However, users are often tricked and they install
malicious apps looking as genuine. This mainly happens since they tend to
consider the app popularity and user rating more important than, e.g., the
declared permissions. To this end, we have developed MAETROID, a multi-
criteria decision framework for the analysis of Android apps. MAETROID
has been exploited to classify more than 11,000 Android apps, coming from
Google Play, unofficial markets, and databases of known malware. In our
experiments, the trustworthiness index of MAETROID has proved to be
able to drive correct decisions on whether to install dangerous apps.

We believe that the introduction of a simple index, as the one in out-
come by MAETROID, may improve the overall mobile device security and
the user awareness. In fact, suspicious apps could be identified and further
analyzed, before being executed by users. Moreover, the presence of the
global threat score could be an incentive for developers to accurately choose
the permissions needed by their apps, effectively tackling also the permission
over-declaration issue. Finally, MAETROID comes as an Android app which
enforces security without imposing overhead to the user, since it becomes ac-
tive only when installing a new app.
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Appendix A. Excerpt of Analyzed Android Permissions

Table A.7: Partial list of Android Permissions and Associated Threat Levels, per Index

Permission Class PT ST FT

android.permission.ACCESS COARSE LOCATION Dangerous 0.4 0 0

android.permission.ACCESS FINE LOCATION Dangerous 0.8 0 0

android.permission.ACCESS LOCATION EXTRA COMMANDS Normal 0.2 0 0

android.permission.ACCESS MOCK LOCATION Normal 0 0.4 0

android.permission.ACCESS NETWORK STATE Normal 0.2 0 0.4

android.permission.ACCESS WIFI STATE Normal 0 0 0.4

android.permission.AUTHENTICATE ACCOUNTS Dangerous 0.6 0 0

android.permission.BATTERY STATS Normal 0 0.2 0

android.permission.BLUETOOTH Dangerous 0.6 0.2 0

android.permission.BLUETOOTH ADMIN Dangerous 0.8 0.6 0

android.permission.BROADCAST STICKY Normal 0 0.2 0

android.permission.CALL PHONE Dangerous 0.6 0.2 1

android.permission.CAMERA Dangerous 0.8 0.6 0

android.permission.CHANGE CONFIGURATION Dangerous 0 0.4 0

android.permission.CHANGE NETWORK STATE Dangerous 0.2 0.6 0.6

android.permission.CHANGE WIFI MULTICAST STATE Dangerous 0 0.2 0.2

android.permission.CHANGE WIFI STATE Dangerous 0 0.6 0.6

android.permission.CLEAR APP CACHE Dangerous 0 0.2 0

android.permission.PROCESS OUTGOING CALLS Dangerous 0.8 0.6 0.2

android.permission.READ CALENDAR Dangerous 0.8 0 0

android.permission.READ CONTACTS Dangerous 1 0 0

android.permission.READ SMS Dangerous 1 0 0

android.permission.RECEIVE BOOT COMPLETED Normal 0.2 0.4 0

android.permission.RECEIVE MMS Dangerous 1 0 0.8

android.permission.RECEIVE SMS Dangerous 1 0 0.8

android.permission.RECEIVE WAP PUSH Dangerous 0.4 0.6 0.6

android.permission.RECORD AUDIO Dangerous 0.8 0.6 0

android.permission.REORDER TASKS Dangerous 0.4 0.2 0.4

android.permission.RESTART PACKAGES Normal 0 0.2 0

android.permission.SEND SMS Dangerous 0.8 0.2 1

android.permission.WRITE CALENDAR Dangerous 0.8 0.2 0

android.permission.WRITE CONTACTS Dangerous 0.6 0.6 0

android.permission.WRITE EXTERNAL STORAGE Dangerous 0.2 0.6 0

android.permission.WRITE SMS Dangerous 0.4 0.2 0

android.permission.WRITE SOCIAL STREAM Dangerous 0.6 0 0

android.permission.WRITE SYNC SETTINGS Dangerous 0 0.4 0
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