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Abstract In the current Web scenario a video browsing tool that produces
on-the-fly storyboards is more and more a need. Video summary techniques
can be helpful but, due to their long processing time, they are usually unsuit-
able for on-the-fly usage. Therefore, it is common to produce storyboards in
advance, penalizing users customization. The lack of customization is more
and more critical, as the number of videos is increasing day after day, users
have different demands and might access the Web with several different
networking and device technologies. In this paper we propose STIMO, a
summarization technique designed to produce on-the-fly video storyboards.
STIMO produces still and moving storyboards and allows advanced users
customization (e.g., users can select the storyboard length and the maxi-
mum time they are willing to wait to get the storyboard). STIMO is based
on a fast clustering algorithm that selects the most representative video con-
tents using HSV frame color distribution. Experimental results show that
STIMO produces storyboards with good quality and in a time that makes
on-the-fly usage possible.

1 Introduction

The availability of digital video contents in the Web is growing at an excep-
tional speed and websites like YouTube and iTunes Video, where people can
upload/download videos, are receiving an enormous success. In this scenario,
a tool for video browsing that is based on video contents, rather than tags
(not always available, coherent, or relevant), would be really appreciated.
This tool should provide users with a concise video content representation
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to give an idea of a video content, without having to watch it entirely, so
that a user can decide whether to download/watch the entire video or not.

Recently, the production of a concise video content representation has
been the goal of the so-called video summarization techniques, which can
produce two different types of summary: still storyboard (a.k.a. static video
summary), which is a collection of still video frames extracted from the orig-
inal video, and moving storyboard (a.k.a. dynamic video skimming, moving-
image abstract, or summary sequence), which is a collection of short
video clips/shots extracted from the original video, joined in a se-
quence, and played as a video clip1. The main difference between these
approaches is that the former does not preserve the time evolving nature
of the video and does not include any aural information, whereas the lat-
ter, being itself a video (but with significant shorter duration),
potentially produces storyboards with higher expressiveness and
information.

The production of a storyboard involves two aspects: the selection of
the relevant frames/shots to be displayed, and the layout of the selected
frames/shots [11]. The former aspect is more global in nature involving a
notion of global importance and representativeness, whereas the latter is
closer in spirit to the general problem of data layout onto a spatial domain
(i.e the pixels of the screen) or a temporal domain (i.e. multi-thread simul-
taneous visualization). Both aspects are important, but since they are to a
large extend independent, in this paper we address the frame/shot selection
problem.

In the literature, different summarization techniques have been proposed
to select the most relevant frames/shots to be displayed: some are related to
specific videos (e.g., sport videos), others make use of specific information
(e.g., close-caption, user preferences) and others are designed for generic
videos. Among this latter, the most common approach is to use clustering
algorithms to group together frames with similar features (e.g., color distri-
bution, motion vector, etc.) and to extract a limited number (in most cases,
only one) of frames per cluster (e.g., [24,30,15,12,14,19], just to name a
few).

Although existing techniques produce storyboards with acceptable qual-
ity, they are computationally expensive and very time consuming, as they
are usually based on complicated clustering algorithms. For instance, in [19]
the computation of the storyboard takes around ten times the video length.
The problem of video summarization is, in fact, amenable to several trade
offs concerning the computations to be done off-line and on-the-fly. At one
end of the spectrum a summary is produced completely off-line, stored, and
delivered to a user when requested. The drawback of this approach is the
complete lack of user customization. At the other end of the spectrum a
summary is produced on-the-fly, by analyzing and aggregating video frames
based on specific low level features (e.g., color distribution). This approach

1 An example of a popular moving storyboard is a movie trailer/preview.
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allows for advanced customization, but unfortunately, existing methods are
too slow for doing on-the-fly processing. An intermediate approach (e.g.,
the one proposed in [5]) involves both an off-line computation (the selec-
tion of an appropriate, and usually large, number of key frames/shots),
and an on-the-fly computation (the selection, among the pre-selected set,
of frames/shots taking into account user requirements). Although this ap-
proach offers some forms of user-customization, it is not flexible as the cus-
tomization relies on the first off-line phase (e.g., a change in the similarity
metrics would require the off-line phase to be recomputed).

In this paper we address the approach for advanced customization by
proposing a very fast video summarization technique that attains on-the-fly
performance with minimum pre-computation while retaining high quality
output. We are convinced that advanced customization is becoming more
and more important in the current Web scenario, where users have differ-
ent resources and needs, where, for instance, a mobile user might want to
receive a storyboard with few frames in order to save bandwidth, whereas a
DSL-user may be looking for a specific video scene and might want a more
detailed storyboard.

The contribution of this paper is STIMO (STIll and MOving story-
board), a summarization technique designed to produce on-the-fly still and
moving storyboards. The mechanism is designed to offer customization:
users can select the length of the storyboard and can specify the time they
are willing to wait in order to have the storyboard. STIMO does not use
any specific information beyond audio and video information (e.g., no close-
caption, or user preferences) and is designed to summarize generic videos
and to produce moving storyboards equipped with completely intelligible
audio. STIMO core is composed of a procedure that computes the HSV
color space distribution of all the video frames, and of fast clustering al-
gorithm that groups together similar video frames and, for each group,
determines the most representative frame based on the color sim-
ilarity.

To investigate the performance of STIMO we set-up an experimental
scenario considering different categories of video that differ in color, length,
and motion terms (e.g., cartoon, talk-show, TV-show, and TV-news). The
investigation compares two fundamental features for the on-the-fly produc-
tion of storyboards: production time and storyboard quality. These features
are compared against other summarization techniques (DT Summary [19],
Open Video [21], and k-means[22]). Results show that STIMO produces sto-
ryboards with computational speed-up and quality that makes it suitable
for on-the-fly production, whereas other summarization techniques are too
time consuming for on-the-fly usage.

This paper extends and completes the work presented in [7], with the
production of storyboards composed of moving images, with an in-depth
discussion of the state-of-the-art literature on this subject, with an improve-
ment of the technique to produce still storyboards, and with an extended
evaluation of still storyboards.
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The remainder of this paper is organized as follows. In Section 2 we
briefly present related work in the area of video summarization; STIMO
is presented in Section 3, whereas its evaluation is shown in Section 4.
Conclusions are drawn in Section 5.

2 Related Work

A video storyboard gives a good representation of the original
video if it contains little redundancy and if it gives equal attention
to the same amount of contents. Redundancy is a key aspect in
video summary, as not all the extracted key frames are important
(or necessary) to convey the visual content of the video. In fact,
since the selected key frames are content independent, video sum-
marization techniques based on key frames may not be significant
representatives of the video content [28]. To address the prob-
lem of producing redundant-free storyboards, different approaches
have been proposed in the literature. In general, as shown in Figure 1,
these can be classified according to several categorical axis: the data domain
(generic, news, etc.), the features used (visual, audio, user-context, etc.), and
the duration (defined a priori, a posteriori, or user-defined). For instance,
[28] focuses on news video and proposes an automatic video sum-
marization scheme based on affinity propagation clustering and
semantic content mining; [29] focuses on rush videos and pro-
poses a mechanism based on multi-stage clustering mechanisms
to reduce key frames redundancy; [23] proposes using adaptive
clustering to summarize rush videos; [9] focuses on video clip and
presents a summarization algorithm based on the affinity prop-
agation clustering algorithm. Since our approach does not pose any
constraints on the type of video to summarize, in the following we review
clustering techniques that can be applied to generic videos and that use only
visual and audio features (e.g., no additional information like close-caption
or user-preferences).

In [30] authors propose a clustering algorithm to group frames with
similar color histogram features, but they define a priori the length of the
storyboard; therefore, this may compromise the quality of the result [19].
[15] presents a partitioned clustering algorithm where the frames closest to
cluster centroids are selected as key-frames. In [19] an automatic clustering
algorithm based on Delaunay Triangulation (DT) is proposed; here frames
are described through HSV color space distribution, whereas [14] uses lo-
cal motion estimation and an algorithm based on the k-medoids clustering.
In [15] clustering is used to produce dynamic storyboards: the mechanism
works at frame level using a partitional clustering method applied to all
video frames. The optimal number of clusters is determined via a cluster-
validation analysis and key frames are selected as centroids of the clusters.
Video shots, to which key frames belong, are concatenated to form the
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Fig. 1 Classification of video storyboard techniques. STIMO is designed to be
a general video summarization technique; therefore it analyzes visual and aural
features of generic video contents and produces still and moving storyboards whose
length are defined by users.

moving sequence, making the dynamic efficiency/quality directly depen-
dent from those of the static case. A different approach is considered in
[25], where the problem of producing a moving storyboard is formulated
as a partitioning problem over a scene transition graph where each node is
associated to a shot, and an edge is set up if the similarity of two shots
is higher than a pre-defined threshold. In this case, the clustering is done
using an iterative block ordering method. In [8] a study analyzes benefits
of using clustering techniques while producing moving storyboards: results
showed that for some categories of video (e.g., news) a clustering approach
may be not worth pursuing.

We refer the readers to [26] for an interesting survey of these and other
different methods. Here, we highlight that none of the mechanisms for
frame/shot selection claims to have the pure on-the-fly performance and
the user-oriented flexibility that is needed in web video browsing applica-
tions. A limited customization is provided with the approach [5], where the
storyboard is produced in two stages: first, the mechanism, once-for-all and
off-line, selects an appropriate large set of key frames/shots, and secondly,
the user can select a desired number of frames/shots to produce the story-
board. It is to note that this approach offers only a limited customization as
it is based on the set of frames/shots pre-computed. For instance, a change
in the similarity metrics would require the off-line phase to be recomputed.
This is not reasonable if we consider that a single video sharing website may
host millions of video (e.g., YouTube hosts more than 5 millions of videos).
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The off-line production (either total or partial) is done to reduce the
long clustering computational time, which can take up to ten times the
video length (i.e., 20 minutes to summarize a 2 minutes video [19]). This
enormous computational time is necessary to analyze all the characteristics
of the video frames, usually stored in a huge bi-dimensional matrix that con-
tains the characteristics of every video frames. Another approach to reduce
the long clustering computational time is to reduce the size of the matrix
with mathematic techniques (e.g., [12] applies the Singular Value Decom-
position, whereas [19] uses the Principal Component Analysis), or sampling
techniques (e.g., [19] and [20] consider only a sub-set of the video frames).
Unfortunately, the former approach requires additional computational time,
whereas the latter strongly affects the quality of the produced storyboard.

STIMO is designed to fill this gap. The novelty of STIMO is that
it produces on-the-fly storyboards of generic videos and it al-
lows storyboard customization as users can select the length of
the storyboard and can specify the time they are willing to wait
in order to have the storyboard. Being designed to summarize
generic videos, STIMO is based on the analysis of simple visual
and aural information and it avoids exploiting additional video
features (e.g., close-caption) as this would narrow the fields of
application to specific videos (e.g., many videos are not provided
with close-captions); at the same time, being designed to produce
on-the-fly storyboards, STIMO does not analyze the semantic im-
portance of each frame/shot, as this analysis would introduce an
excessive computational overhead, not to mention that techniques
that attempt to identify frames/shots that are semantically im-
portant may work well for some specific experimental settings, but
since these methods strongly rely on heuristic rules drawn from
empirical observation, they may be ineffective outside the tested
sequences or specified domain [26]. Finally, it is worth mention-
ing that STIMO differs from proposals that aims at extracting
frame/shot semantically important in order to better represent
interesting events (e.g, movie highlights), as it is designed to give
an extent visual coverage of the given video.

3 Our proposal

In this section we present STIMO, a summarization technique designed to
produce STIll and MOving storyboards for the Web scenario. In such a sce-
nario, a pre-computed storyboard is usually un-desired as the Web is filled
with people with different devices, technologies, resources and needs. Hence,
for the same video, it is common to have a user who is seeking for a very
detailed storyboard with a lot of frames, whereas another user may desire
a storyboard with few frames. For this reason, STIMO is designed with the
following goals: i) management of generic videos; ii) advanced users cus-
tomization (storyboard length and the maximum time they are willing to
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wait to get the storyboard); iii) usage of only audio and video information
(e.g., no additional information like close-captions or user preferences) to
produce the storyboard; iv) moving storyboards have to be coupled with
completely intelligible audio; v) storyboards have to be produced in a rea-
sonable time and with acceptable quality, so as to allow on-the-fly usage.

The core of STIMO is an improvement of the Farthest Point-First (FPF)
algorithm [13,16], specifically modified for the case of video storyboard pro-
duction. FPF is a clustering algorithm used to group together similar frames
(based on the HSV color space distribution of the video frames), and to
select, for each group, the most representative frame. The overall ar-
chitecture of STIMO is shown in Figure 2. A still storyboard is produced by
first extracting the HSV color description of each frame; second the cluster-
ing algorithm is applied to the extracted data and third, a post-processing
phase removes possible redundant or meaningless video frames from the
produced storyboard. A moving storyboard is produced by first segmenting
the video in several video shots; secondly, the HSV color description of each
shot is computed; third, the clustering algorithm is applied to the extracted
data and, finally, the moving storyboard is built by sequencing the shots
selected by the clustering algorithm.

In the following subsections we present details of these phases.

Video frame

feature extraction

Storyboard

post processing

Clustering
Video

Segmentation
Feature

extraction
Segments

sequencing

Clustering

Customization

Customization

Still Storyboard

Moving Storyboard

Fig. 2 The STIMO architecture to produce still/moving storyboards.

3.1 Video Frame Feature Extraction

This phase is used when producing still storyboards. Each video frame is
described with a HSV histogram color distribution. This technique is simple
and robust to small changes of the camera position and to camera partial
occlusion, and is supported by the MPEG-7 standard. It defines the color
space in terms of: Hue (the dominant spectral component, i.e., the color
in its pure form), Saturation (the intensity of the color, represented by the
quantity of white present), and Value (the brightness of the color). Accord-
ing to the MPEG7 generic color histogram description [18], in this paper, for
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each input frame, we extract a 256-dimension vector, which represents the
256 bin colors histogram in the HSV color space of the given video frame.
The vector is then stored in a matrix MHSV for clustering purpose.

3.2 Video Segmentation and Feature Extraction

This phase is used when producing a moving storyboard. Being composed
of a sequence of the most important segments of the original video, the
quality of a moving storyboard depends on how segments are obtained. In
particular, since STIMO is designed to produce moving storyboards with
completely intelligible audio, it is of fundamental importance that the audio
of a video segment is not truncated. To this end, it uses a video segmentation
process that considers both audio and video features. In fact, if video is
divided according only to visual information (for instance by splitting the
video where there is a video cut, which happens when two consecutive video
frames have few parts in common), it is likely that a video segment has a
truncated audio. To avoid this, STIMO uses the approach presented in [6]:
when a video cut is detected, audio energy at video transition is checked:
if there is silence, the transition is considered to be the end of a segment,
otherwise it is assumed that the segment is not over. As a result, the audio
of every segment is not truncated, and, when sequencing segments, we get
a fluid, understandable moving storyboard in which audio is completely
intelligible.

For each video segment, we extract a 256-dimension vector that repre-
sents the average 256 bin colors histogram in the HSV color space of the
video segment, as described in [25]. The vector is then stored in a matrix
MavgHSV for clustering purpose. This approach is called scene-based and
is in contrast with the frame-based approach, where video segments are se-
lected according to the most representative video frames selected. In this
paper we consider the scene-based approach, as, after an initial experimen-
tal investigation, results obtained from using the frame-based approach were
much worse than the one of the scene-based approach.

3.3 Clustering Algorithm to Produce Storyboards

This phase consists of a clustering algorithm that groups together similar
frames (segments) and selects a representative frame (segment) per each
group, so as to produce a still (moving) storyboard.

We recall that, given a set N of elements and a way to measure distance
between elements (or similarity, in a dual approach), a k-clustering is a
partition of N into k sets (called clusters) such that close elements are in
the same cluster, whereas distant elements are in different clusters.

The general approach to produce a storyboard using a clustering algo-
rithm can be described as follows: select a clustering algorithm and cluster
frames/segments specifying a distance measure; give a method to select one
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key-frame/segment per cluster and place the selected frames/segments in
the storyboard. Needless to say, the selection of the clustering algorithm, of
the distance function, and of the key-frame/segment within a single cluster
is very important as it affects both the quality of the storyboard and the
time necessary to produce the storyboard.

The engine of STIMO is a clustering algorithm that approaches the
problem of clustering video frames/segments as that of finding a solution
to the classic k-center problem:

Given a set S of points in a metric space M endowed with a metric dis-
tance function D, and given a desired number k of resulting clusters, parti-
tion S into clusters C1, . . . , Ck and determine their “centers” c1, . . . , ck ∈ S
so that the radius of the widest cluster, maxj maxp∈Cj D(p, cj), is mini-
mized.

In our scenario, the metric space M is �256, the set S is the frame feature
matrix MHSV in the static case and MavgHSV in the dynamic one, and the
distance function D is given by the Generalized Jaccard Distance (GJD)
[2] defined as follows: given two vectors with non-negative components s =
(s1, ...sh) and z = (z1, ...zh), the GJD is given by

D(s, z) = 1 −
∑

i min(si, zi)∑
i max(si, zi)

.

The choice of the specific metric that implements the informal notion of
similarity is critical to obtain a good clustering. We tested several classical
metrics (e.g. Euclidean, City block, Cosine), and the metric that exhibits
the best discriminative power in our setting is the GJD.

The k-center problem is known to be NP-hard [4], but it can be 2-
approximated using the Furthest-Point-First algorithm [13,16]. We use a
new variation of the FPF algorithm that we describe in the following.

Basic Algorithm and Variant Given the set S of n points, FPF increasingly
computes the set of centers C1 ⊂ . . . ⊂ Ck ⊆ S, where Ck is the solution to
the problem and C1 = {c1} is the starting set, built by randomly choosing
c1 in S. At a generic iteration 1 < i ≤ k, the algorithm knows the set of
centers Ci−1 (computed at the previous iteration) and a mapping µ that
associates, to each point p ∈ S, its closest center µ(p) ∈ Ci−1. Iteration i
consists of the following two steps:

1. Find the point p ∈ S for which the distance to its closest center, D(p, µ(p)),
is maximum; make p a new center ci and let Ci = Ci−1 ∪ {ci}.

2. Compute the distance of ci to all points in S\Ci−1 to update the mapping
µ of points to their closest center.

After k iterations, the set of centers Ck = {c1, . . . , ck} and mapping µ define
the clustering: cluster Ci is defined as the set {p ∈ S \ Ck | µ(p) = ci}, for
i = 1, . . . , k. The overall cost of the algorithm is O(kn) and experiments
have shown that the random choice of c1 to initialize C1 does not affect
neither the effectiveness nor the efficiency of the algorithm.
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An improved version of FPF, called M-FPF [10], exploits the triangular
inequality in order to filter out useless distance computations and speed up
step two of the original algorithm. Moreover, the efficiency of the algorithm
is further improved by applying it only to a random sample of size

√
nk of

the input points (sample size suggested in [17]) and adding the remaining
points one by one. The completion of clusters is guided by medoids, rather
than centers: points are placed in the cluster with closest medoid, which
is updated after each new insertion. We recall that, given a cluster and
a diametral pair a, b (i.e., a pair of points with maximum distance), the
medoid is the point that minimizes the quantity M(x) = |D(a, x)−D(b, x)|+
|D(a, x) + D(b, x)|, over all points x in the cluster.

STIMO algorithms The process of adding points to clusters, and conse-
quently update medoids, is very time consuming. To reduce this processing
time we introduce a new heuristic that is based on the computation of a
good approximation of the medoid.

The algorithm that selects the most representative frames to pro-
duce a still storyboard of k frames works in the following way:

a) Apply FPF to a random sample of size
√

nk and obtain clusters Ci, 1 ≤
i ≤ k;

b) within each cluster Ci determine (1) the point ai furthest from the center
ci; (2) the point bi furthest from ai (intuitively the pair (ai, bi) is a good
approximation to a diametral pair); (3) the medoid mi;

c) add the remaining points one by one to the cluster with closest medoid
and approximately update medoids and diametral pairs in the following
way: if the newly added point p falls in between the diametral pair
and if it is a better medoid than the current one (i.e., D(p, mi) <
min{D(mi, ai), D(mi, bi)} and M(p) < M(mi)), then update mi by set-
ting it to be p. Otherwise, if the new point is outside the approximate
diametral pair (ai, bi) (i.e., D(ai, bi) < max{D(p, ai), D(p, bi)}), the pair
is updated accordingly.

Step (c) is further enhanced using the following ad-hoc heuristic: given
two points p and p′ that represent two consecutive frames, if their dis-
tance is under an appropriate given threshold, with high probability the
two points belong to the same cluster. Hence, whenever D(p, p′) ≤ 0.22

we simply place p′ in the same cluster of p and proceed to update medoids
and diametral pair.
This heuristic is not guaranteed to work well for all applications, but in
the case of video frames it does not affect the quality of the result: we
clustered the same datasets by using and not using this heuristic and we
observed that the resulting clusterings show practically no differences,
whereas the time needed to produce the clusterings decreases drastically.

2 The threshold is determinated on a statistical base looking at distances be-
tween very similar frames.
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When the clustering is completed, medoids are selected as representative
elements to be in the storyboard.

To produce a moving storyboard of length T , we apply the FPF algo-
rithm, enhanced using triangular inequality, to segments. At each iteration,
the algorithm generates a new permanent center of a new cluster, giving a
way to rank centers, i.e., a selection order, completely independent from the
order in which the segments appear in the original video. Hence, at the time
in which centers are created, the corresponding segments are considered
representative, are selected and inserted in the moving storyboard. The
process continues until the total length reaches the desired time T .

Storyboard Customization STIMO allows users to select the length of the
storyboard and the maximum time they are willing to wait in order to get
the storyboard.

The storyboard length is specified either in number of frames (for still
storyboards), or in seconds (for moving storyboards). However, we can not
exclude the case in which a user has no idea of what such a number might be.
STIMO helps the user by suggesting a possible value. For still storyboards,
STIMO computes the number of abrupt scene changes applying a fast shot
boundary detection to the HSV matrix and suggests this number unless it
is higher than 30 (on a statistical base looking at several storyboards, 30
video frames are considered sufficient to understand the video content). Note
that the computation of abrupt scene change takes a negligible overhead.
For moving storyboards, STIMO suggests 1 or 2 minutes (these lengths are
usually used in entertainment for previews and video recaps). However, with
STIMO users are free to select the desired storyboard length.

STIMO allows users to specify the maximum time they are willing to
wait to get the storyboard. This feature is offered as the storyboard produc-
tion time depends on the original video length: the longer the video is, the
longer the production time will be. Studies on users behavior showed that
waiting time is critical. For instance in the Web scenario, up to five seconds
to get a complete webpage is considered a good waiting time, whereas over
10 seconds is poor. However, if the webpage loads incrementally, waiting
time up to 39 seconds are good [1]. Since storyboards are produced for the
Web, we consider this threshold a reasonable waiting time to produce a
storyboard.

STIMO estimates the time necessary to produce the storyboard, but
gives the user the possibility to specify the maximum time he/she is willing
to wait. The estimation process exploits the knowledge that the
storyboard production time is proportional to the number of dis-
tances the algorithm has to compute. By considering that every
frame is characterized with the same number of bins, the compu-
tation of the distance between two frames requires a fixed amount
of time. It follows that to estimate the time necessary to produce
the storyboard, STIMO multiplies the cost of a distance compu-
tation with the total number of distances required to complete
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the clustering (i.e., nk, where n is the video length in frames, and
k is the storyboard length).

It is worth noting that the storyboard production time might
be too long in the still case, as the matrix to cluster might be very
huge. This is why STIMO gives the user the possibility to specify
the maximum time he/she is willing to wait. Using this maximum
waiting time, STIMO takes advantage of redundancies among the
number of frames per second of the input video (e.g., 25 fps) so
as to reduce the number of frames to analyze (i.e., a pre-sampling
technique is applied to the matrix containing the video frame
characteristics; in particular, STIMO selects the lower sampling
rate in order to meet the requested time-constraint). Needless to
say, the user is warned that the shorter the waiting time is (i.e.,
the higher the sampling rate is), the poorer results might be.

3.4 Still Storyboard Post Processing

To avoid the presence of possible meaningless video frames in the final sto-
ryboard (e.g., mono-color frame due to fade-in fade-out effect or to the use
of flashes very common in sport videos or in news video), STIMO uses the
HSV color distribution to identify and remove such frames. This investiga-
tion consumes a negligible time, as the number of selected frames is usually
very small.

3.5 Moving Storyboard: Segment Sequencing

This phase actually organizes the selected scenes according to the time in
which they appear in the original video and the resulting sequence represents
the moving storyboards. Note that, thanks to the used video segmentation
process, moving storyboards have completely intelligible (not truncated)
audio.

4 STIMO Evaluation

To produce on-the-fly storyboards two parameters are of fundamental im-
portance: the time necessary to produce the storyboard and the quality
of the produced storyboard. Therefore, we setup an experimental scenario
where STIMO and other approaches extract storyboards from videos with
different characteristics. In particular, the benchmark is composed of short
and long videos: short videos are taken from [3] and are a subset of videos
available within the Open Video Project [21], whereas long videos are chosen
to cover different color, length, and motion characteristics. The set of long
videos is composed of cartoons (The Simpsons, Futurama, and Family Guy),
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TV-Shows (Charmed, Roswell, and Lost), TV-News (Sky TV and BBC), and
talk-show (MTV and RAI)3. All the videos are MPEG-1 encoded.

STIMO is compared against DT Summary [19], Open Video Project
[21], and k-means [22] when possible. It is worth mentioning that we con-
sidered k-means as well representative of a large class of general purpose
clustering algorithms whose time/quality trade-off are appropriate for our
problem. Other methods, like HAC (Hierarchical Agglomerative Cluster-
ing), might also be used to produce storyboards, but they are clearly too
slow (being n the number of frames and k the length of the storyboard,
with n � k in our problem, HAC runs in time O(n2), whereas k-means
runs in time O(nk)). For these reasons, it is not worth comparing STIMO
against clustering methods other than k-means. Although the source code of
DT Summary and Open Video Project is not available, we considered these
approaches because several short videos and related still storyboards are ac-
cessible; therefore storyboards comparison is possible. In addition, STIMO
is compared against a RANDOM approach that randomly produces still
and moving storyboards, so as to investigate whether clustering techniques
might help in producing storyboards or not.

To evaluate the storyboard production time, we use a general purpose
computer (Pentium D 3.4 GHz equipped with 3GB RAM). Although more
sophisticated (and expensive) hardware would decrease the storyboard pro-
duction time, it is to note that the goal of this investigation is to study the
relative difference among the compared approaches, and not the absolute
production time.

Since a consistent evaluation framework for video summariza-
tion quality is seriously missing [26], to evaluate the storyboard
quality we consider the Mean Opinion Score (MOS) test. The
MOS test is a widely used technique that gives an indication of
the storyboard quality by performing subjective tests to a num-
ber of people and by averaging the obtained results. As long as
the obtained results do not present a large statistical difference,
the MOS test can be considered effective in measuring the qual-
ity of the video storyboard. To evaluate the STIMO storyboards,
we consider a group of 20 people and we ask them to score the
storyboard quality on a scale from 1 (bad quality) to 5 (good qual-
ity). In particular, the group of evaluators is composed of people
from both academic and private sectors, with different background
(faculty, Ph.D. students, grad students, employees in the fields of
computer science, engineering, and social sciences) and with no
previous experience in storyboarding systems. During the evaluation,
we observed that MOS results of still storyboards do not present a large sta-
tistical difference, whereas for moving storyboards there was a considerable

3 Movies have not been considered since storyboards reveal too much contents
(e.g, the end of the movie), and hence ad-hoc techniques to produce highlights are
more suited for this category.
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statistical difference. For this reason, the evaluation of moving storyboards
is done with a ground-truth evaluation. In particular, instead of scor-
ing the storyboards, we produce a ground-truth reference video
by splitting the original video into several segments, and by ask-
ing our evaluators to score such segments based on the semantic
importance they have; successively, we use the ground-truth ref-
erence video to rate the produced storyboard.

4.1 Evaluation of Still Storyboards

As a first investigation we consider short videos taken from [3]. Results
show that STIMO, on average, is 25 times faster than k-means and 300
times faster than DT4.

Figure 3 presents a deeper investigation where we vary the length of
the video to summarize from 10000 frames (400 seconds) to 60000 frames
(40 minutes), the length of the produced storyboard (15 and 30 frames),
and the rate of the pre-sampling (none and 1 out of 10) that is applied to
the video frame feature matrix. We compare STIMO against k-means, as
the code of other approaches is not available. RANDOM production time is
not presented as it is negligible. Results are related to TV-show videos, but
those of other video categories are similar and therefore are not presented
here (this is not surprising as the the production time only depends on the
number of frames that compose the video).

4 Results of DT are simply estimated considering that the mechanism requires
between 9-10 times the video length to produce the summary [19]
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With no surprise, the storyboard production time depends on its length
(the longer the storyboard is, the longer is the computational time) and on
the pre-sampling rate (the higher the sampling rate is, the shorter is the
computational time). This applies to both STIMO and k-means.

For on-the-fly usage, by considering a maximum waiting time of 39 sec-
onds [1], k-means is out of the game unless using a higher pre-sampling.
STIMO with pre-sampling of 1 out of 10 can be used, as well as STIMO
without pre-sampling for videos up to 30000 frames (20 minutes). We re-
call here that the storyboard production time strictly depends on
the computational power of the employed hardware. Results pre-
sented in this paper have been obtained producing storyboards
with a general purpose computer (Pentium D 3.4 GHz equipped
with 3GB RAM). Needless to say, the employment of faster hard-
ware would decrease the production time. However, the obtained
results are useful to compare the storyboard production time of
different methods in order to understand the relative difference
among the compared approaches.

Figure 12 better highlights the speed-up comparison between STIMO
and k-means for the production of storyboards of 30 frames: on average,
STIMO is 55 times faster than k-means (20 times faster if using pre-sampling
of 1 out of 10). For storyboards of 15 frames, STIMO is 40 times faster than
k-means (18 times faster if using pre-sampling of 1 out of 10).

To investigate the quality of the storyboards, we compare STIMO against
Open Video Project, DT Summary, and k-means, for the short videos taken
from [3]. On the other hand, for long videos we compare STIMO only against
k-means since the source code of Open Video Project and of DT Summary
is not available.

As earlier mentioned, quality evaluation is investigated through a Mean
Opinion Score test. The procedure is the following: we first show the video
to the evaluators and then the storyboard asking whether the storyboard is
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a good representation of the original video. The summary quality is scored
on a scale 1 to 5 (1=bad, 2=poor, 3=fair, 4=good, 5=excellent) and people
are not aware of the mechanism used to produce the storyboard. The length
of the storyboard is set in order to match the other approaches (i.e., if the
Open Video storyboard is of 5 frames, the length of the STIMO storyboard
is set to 5 frames, too).

Figure 4 reports the average MOS results obtained from evaluating short
videos taken from [3] (the MOS scores produced no significant statistical
difference). DT, Open Video and RANDOM achieve poor results for most
of the videos, whereas STIMO has the highest score for Hurricane 3, Exotic
1, and Voyage 15. With respect to the remaining videos, STIMO and k-
means achieve comparable results.

Figure 5 reports the average MOS results obtained from evaluating dif-
ferent categories of long videos. In this case the comparison is against k-
means due to source code availability. For any given video, the evaluation
process considered two different storyboards: one of 15 frames and the other
30 frames. The RANDOM approach achieves the worst results. STIMO and
k-means achieve comparable scores for TV-show and for TV-news; k-means
gets higher scores for cartoons video; STIMO gets higher scores for talk-show
videos. Figures 6-9 show the storyboards of 15 frames produced
by STIMO and k-means for the considered categories of videos:
talk-show, cartoon, TV-news, and TV-show. In particular, Fig-
ure 6 shows the storyboards of a talk-show video (the category of
videos where STIMO gets higher scores); here, k-means produces
a storyboard with several frames that contain the same subject,
whereas STIMO gives a more comprehensive overview of the peo-
ple participating to the talk show.

To summarize, the evaluation of still storyboards shows that STIMO
is faster than k-means (from 25 times to 55 times by analyzing all the
frames that compose a video; from 18 to 20 time by analyzing 1 out of
10 frames that compose a video). With the hardware used to perform the
evaluation, STIMO could be used to generate on-the-fly still storyboards,
whereas k-means can be used only if a more powerful hardware (up to 55
times more powerful) is available. The quality investigation shows that the
great computational speed-up does not compromise the storyboard quality.
Note that although the RANDOM approach is the fastest one, it produces
storyboards with poor quality.

4.2 Evaluation of Moving Storyboards

Figure 10 presents the time necessary to produce moving storyboards of
different categories of video. We present here the case of 2 minutes long
moving storyboards (results of 1 minute storyboards have a similar shape)
produced with STIMO and with k-means. The RANDOM approach is not
reported as it requires a negligible computational time.
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Looking at the chart, it can be noticed that production time does not
necessarily increase with increasing video length: it might take less to pro-
duce a storyboard of a longer video; e.g., it takes less to get the storyboard
of a 45000 frames cartoon video, than of a 35000 frames cartoon video.
Although this may appear strange, it is not. In fact, the HSV matrix is
composed of vectors that represent the average HSV distribution of a video
segment, and not of a single video frame. Therefore, since videos of the same
length are likely to have a different number of video segments and video
segments have different lengths, the size of the HSV matrix varies even for
videos of same length. It might also happen that moving storyboards of the
same length for different videos are composed of a different number of video
segments. For instance, to generate the storyboard of a cartoon video 35000
frames long k-means needs to produce 29 clusters, whereas only 4 clusters
are necessary to generate the storyboard of a cartoon video 45000 frames
long.

On average, STIMO results 5 times faster than k-means (details con-
cerning different categories of videos are shown in Figure 12). In addition,
it is to note that to produce a moving storyboard of a desired length, k-
means needs to know in advance the number of clusters k. Unfortunately,
the selection of k might be very time-consuming as there is no way of know-
ing k in advance as it is not easy to associate the number of clusters with
scene lengths; therefore, the choice of k may be incorrect. In this case, the
clustering algorithms should not be obliged to start over again if the choice
of k results incorrect. STIMO allows interrupting the clustering procedure
without any problem, whereas k-means does not (the computation has to be
redone from the beginning). The possible solution of cutting the clustering
tree at the most suitable point is of no help since the clustering tree internal
nodes are not correlated with scene lengths and a movie storyboard made
of k + 1 scenes can be shorter than one made with k scenes.
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STIMO K-means

Fig. 6 Still storyboards of 15 frames extracted from a talk-show video.

STIMO K-means

Fig. 7 Still storyboards of 15 frames extracted from a cartoon video.

STIMO K-means

Fig. 8 Still storyboards of 15 frames extracted from a TV-news video.

STIMO K-means

Fig. 9 Still storyboards of 15 frames extracted from a TV-show video.

To investigate the quality of the produced storyboards, we consider a
ground-truth evaluation. The choice is motivated by the facts that objective
metrics like PSNR cannot be applied to moving storyboards as they are of
different lengths, and that by using MOS we observed results with large
statistical difference.

To get a ground-truth evaluation, we considered the same group
of evaluators (20 people from both academic and private sectors,
with different background in the fields of computer science, en-
gineering, and social sciences and with no previous experience in
storyboarding systems) and we proceed by first creating a ground-
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truth reference video, and then by rating the produced storyboard
with respect to the ground-truth reference video. In particular,
we proceed as follows:

1. Build-up of the ground-truth reference video
a) Given the original video, we manually divide it into Super-Scenes (s-
scene) each having a self contained meaning (e.g., dialog between two
characters in the kitchen). A s-scene might contain more than one video
segment or can be a fraction of a segment (e.g., two different actions
taking place during one single background piece of music).
b) We ask our evaluators to score each s-scene with a value from zero
to five (0 = un-influent, 5 = fundamental). Then, to each s-scene we
associate a score that is computed as the average of the scores given by
the users.

2. Rating of the produced storyboards
Given a storyboard, each scene of the storyboard is scored with the score
given to the s-scene it belongs to or with the sum of the scores given to
the scenes it is composed of. The storyboard receives a score equal to
the sum of the scores of the scenes it is composed of.

Note that the rating of the produced storyboards uses the eval-
uation done in step 1.b) and therefore several storyboards of the
same video can be evaluated without incurring into a superficial
scoring due to evaluators’ boredom.

During the process of building the ground-truth reference video,
we noticed that the ground-truth approach presented a relevant
statistical difference in TV-news video, whereas more homoge-
neous scores have been given for cartoon, talk-show, and TV-
show video. Looking deeply at the characteristics of the analyzed
videos, we noticed that TV-news videos present multiple story-
line, each one presented in a different video clip. We found that
the lack of a single storyline causes the large statistical difference
in the evaluators’ scores. In fact, it may happen that a piece of TV-
news (say a soccer news) is evaluated as very important by a soccer fan, but
meaningless by his wife. Conversely, when there is a single (or few) story-
line, evaluators tend to score the video storyline and not their specific and
subjective interests.

Figure 11 reports the ratings obtained from evaluating the sto-
ryboards with respect to the ground-truth reference video. It sur-
prises that the storyboards produced with the RANDOM approach achieve
considerable scores (even better than k-means). In particular, if one con-
siders that the RANDOM approach needs a negligible production time, it
follows that clustering techniques are not worth using for TV-news and
for talk-show. Conversely, for cartoon and TV-show videos, clustering algo-
rithms introduce benefits and STIMO achieves higher scores that k-means.
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In particular, results show that the RANDOM generation of
storyboards is effective when applied to video with multiple sto-
ryline (e.g., TV-news and talk-show), but less effective when ap-
plied to single storyline video (e.g., cartoon and TV-show). The
reason is that when dealing with multiple storyline videos, a user
is usually satisfied if the produced storyboard represents as many
storyline as possible. In this case, a good storyboard is the one
similar to a highlight storyboard than the one that gives an extent
visual coverage of the given video. The RANDOM approach, by
uniformly selecting shots of the video, is likely to better highlight
the multiple storyline contained in the given video. Conversely,
when a video has a single storyline the uniform selection of shots
may produce storyboards with poor quality as many shots may
be semantically meaningless (from the storyline point of view).
In this case, clustering techniques produce better results as they
better group and select the most representative shots of the given
video.



21

4.3 Still or moving storyboards?

A still storyboard provides the user with a fast indication of what
the video is about, but neglects the available motion information
in video. A moving storyboard provides the user with a video
composed of a sequence of short video clips, but to have an insight
of the entire video contents, the whole video has to be watched.
Therefore, whether it is better to summarize a video with a still
or with a moving storyboard is not a trivial choice.

As pointed out in [27], the selection does not only depend on
content (still or moving), but also on the user preferences, on
the context (e.g., mobile or fixed scenario), on the reason (e.g.,
video browsing to kill time or to look for something), and on the
used system (e.g., smartphone, netbook, or desktop with 20 inches
monitor). For instance, a user who is looking for something may
prefer having a fast insight of the video contents, whereas a user
who is browsing to kill time may prefer a moving storyboard; a
user with a cellphone connection may prefer still storyboards to
save bandwidth (and money), whereas a user with DSL residen-
tial flat-rate plans may prefer moving storyboards; a user with a
device that has a small display may prefer moving storyboards,
whereas a user with a desktop computer may prefer watching a
set of still pictures.

To grant users’ wishes, STIMO leaves the selection to them. In
fact, thanks to the high speed-up of STIMO, users can have both
types of storyboards in a reasonable time: a still storyboard to
have a fast insight of the video content, and a moving storyboard
to enjoy the motion and aural information of the video content.

4.4 Summary of Results

Although experiments have been performed with an entry-level
computer, results showed that STIMO produces storyboard in a
time that makes it suitable for on-the-fly usage. Since the produc-
tion time is hardware dependent (with faster hardware the com-
putational speed increases and the storyboard production time
decreases), a relative comparison between STIMO and k-means is
worth analyzing. For the sake of clarity, Figure 12 summarizes the
comparison between STIMO and k-means with respect to the pro-
duction time of storyboards (both moving and still). In particular,
results present the ratio between the storyboard production time
of k-means and the one of STIMO. It can be noted that, for the
production of moving storyboards, STIMO, on average, results 5
times faster than k-means. By looking at the categories in detail,
STIMO is 6.5 times faster while producing cartoon video story-
boards, 5.3 times faster for talk-show videos, 4.6 times faster for
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TV-show, and 3.5 times faster for TV-news. With respect to the
production of still storyboards, STIMO is much more faster than
k-means: 55 times faster when analyzing long videos, 25 times
faster when analyzing short videos, and 20 times faster when an-
alyzing 1 out of 10 frames of long videos.

The quality investigation showed that STIMO achieves com-
parable or better results than k-means in the production of still
storyboards. The same applies to the production of moving sto-
ryboards. However, it is worth noting that for some categories of
video (i.e., news and talk-show) both STIMO and k-means pro-
duced storyboards with poorer quality than a simple RANDOM
approach. By looking at the characteristics of each category of
video, we noticed that the RANDOM approach if effective when
summarizing videos with multiple storyline as it produces a mov-
ing storyboard with a uniform coverage of the entire video. Con-
versely, when the video is composed of a single storyline (e.g.,
TV-news and cartoons), clustering techniques are worth using as
they better group and select the most representative shots of the
video. In this case, STIMO achieved better results than k-means.

5 Conclusions

In this paper we presented STIMO, a technique designed to produce still and
moving storyboards in the Web scenario. The novelty of STIMO is the fast
clustering algorithm designed to group the video frames according to the
extracted HSV color space distribution. STIMO allows users to customize
the produced output by specifying the length of the storyboard and the time
they are willing to wait to get the storyboard. Figure 12 shows the speedup
of STIMO with respect to k-means. A further investigation showed that
the great speed-up does not compromise the storyboard quality (in most of
the experiments STIMO achieved higher scores). Therefore, the evaluation
showed that STIMO is an excellent tool for Web video browsing as it is
able to generate on-the-fly storyboards that give users a quick overview of
a video.
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