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Abstract. Single nucleotide polymorphism (SNP) is the most frequent
form of DNA variation. The set of SNPs present in a chromosome (called
the haplotype) is of interest in a wide area of applications in molecular
biology and biomedicine, including diagnostic and medical therapy. In
this paper we propose a new heuristic method for the problem of hap-
lotype reconstruction for (portions of ) a pair of homologous human
chromosomes from a single individual (SIH). The problem is well known
in literature and exact algorithms have been proposed for the case when
no (or few) gaps are allowed in the input fragments. These algorithms,
though exact and of polynomial complexity, are slow in practice. There-
fore fast heuristics have been proposed. In this paper we describe a new
heuristic method that is able to tackle the case of many gapped frag-
ments and retains its e�ectiveness even when the input fragments have
high rate of reading errors (up to 20%) and low coverage (as low as 3).
We test our method on real data from the HapMap Project.

1 Introduction
The single nucleotide polymorphism or SNP (pronounced �snip�) is the most
common variation in the human DNA. In fact a recent study of 2001, has shown
that similarity among human DNA sequences is over 99% and only a few bases
(just 1.42M bases overall) are responsible for the variations in human pheno-
types [12]. A SNP is a variation of a single nucleotide in a �xed point of the
DNA sequence and in a bounded range of possible values. The sequence of SNPs
in a speci�c chromosome (or a large portion of a chromosome) is called generi-
cally Haplotype. Since most cells in humans are diploid, each chromosome (except
the X and Y chromosomes in males) comes in two almost identical copies, one
inherited from the mother and one from the father. Thus the haplotype of a
chromosome is fully described by two sequences of SNPs in the two copies of the
chromosome. The Single Individual SNP Haplotype reconstruction problem is
the problem of rebuild the two strings forming the haplotype from a set of frag-
ments obtained by shotgun sequencing of the chromosomes' DNA strands. The
most important aspect of the problem is that with the current technology it is
di�cult and/or impractical to keep trace of the association of the fragments with
their chromosome, thus this association has to be reconstructed computationally
and it is a preliminary necessary phase to the actual fragment assembly to recon-
struct the haplotype. Unlike the classical DNA fragment assembly problem, in



which the position and orientation of fragments is unknown, in the parental hap-
lotype reconstruction problem the position of each fragment is �xed and known.
Further aspects that must be considered that render the problem di�cult (and
computationally interesting) are the following:

1) Reading errors. The complex nature of the biological/chemical/optical
processes involved in shotgun sequencing implies that a non negligible error
probability is attached to each single SNP reading.

2) Coverage of fragments. Algorithms using fragments to reconstruct a string
rely heavily on the fragment's overlaps and on the redundancy of information
provided by several fragments covering the same SNP position, to perform in
silico correction of reading errors. Thus a critical parameter of the input data
is the minimum (or average) coverage of SNPs by fragments. This number
is also related to the throughput of the sequencing equipment.

3) Gaps in fragments. Ideally each fragment covers consecutive SNP positions
in the order of the SNPs of a chromosome. However in practice we may have
many fragments with gaps due to several phenomena.
3.1 Ambiguous Readings. In the reading of fragments it may happen that

is impossible to detect the value of a SNP with a su�cient con�dence.
It is better to model this ambiguous case with a small gap rather than
introduce spurious values.

3.2 Matepair sequences. Some shotgun sequencing methodologies pro-
duce pairs of fragments that are from the same chromosome, do not
overlap and whose distance is known up to a certain degree of preci-
sion. Matepair sequences are used to cope with the presence of repeat
subsequences that complicate the reconstruction e�orts This extra infor-
mation attached to the produced fragments can be considered logically
equivalent to a single fragment with one gap.

Our contribution. In this paper we propose a heuristic algorithm for the SIH
problem that is fast, handles well gaps, and is able to deal with high reading error
rates and low fragment coverage. We demonstrate these properties via experi-
ments on real human data from the HapMap project [5]. Advanced Personalized
Medicine is one of the goals of current research trends and in this area new
genetic diagnostic methods are critical. It is thus important to support diagnos-
tic technologies that can be used as much as possible in the �eld (closer to the
patient, and far from the traditional high tech labs). Away from the controlled
environment of a lab it is likely that the current portable technology for sequenc-
ing will produce less reliable data. Moreover, if a real time and high throughput
response is needed to care for the needs of many individuals in a short time span,
one might not be able to guarantee a high coverage of the fragments and low
reading error rates. Our algorithm is a step forward in the direction of extracting
e�ciently useful information even from low quality data.
Formalization of the problem. From the computational point of view the
problem of the haplotype reconstruction was de�ned in [7, 13]. It can be easily
described as follow: let S = s1, s2, . . . , sn a set of SNPs (speci�c positions in a
DNA string) and F = f1, f2, . . . , fm a set of DNA fragments. Each SNP can
be covered by a certain number of fragments and can take only two values
(The values of the haplotype in that position). The natural way of representing
fragments is to store them in an m x n matrix M called SNP matrix. The element
Mi,j contains the value of the SNP sj in the fragment fi or the special character



− if that SNP is unspeci�ed in the fragment. If the element Mi,j = − we say that
it is a gap or, equivalently, that the fragment fi contains a gap at position j. Let
fi ∈ F and 1 ≤ a ≤ b ≤ n such that ∀k ∈ [a, b], Mi,k 6= − and ∀k ∈ [1,m] \ [a, b],
Mi,k = −, the fragment fi is called gapless. We say that M is gapless if all its
fragments are gapless.
We say that two fragments fi and fj have a collision if the following condition
is true: ∃k ∈ [1, n] such that Mi,k 6= Mj,k ∧ Mi,k 6= − ∧ Mj,k 6= −. Given the
matrix M the con�ict graph G = (V, E) is de�ned as follow: for each row of
M there is a vertex labelled with the correspondent fragment fi. If fi has a
collision with fj , insert an edge between Vi and Vj . In this case the haplotype
reconstruction is easy to solve. The rows of M can be split in two disjoint sets
according to the bipartition of G. By construction of graph G the i-th character
of all elements of a set induced from bipartition have the same value or is a gap.
Thus for each set we build an haplotype simply choosing as value for SNP si the
value of the i-th character (not equal to −). If M is not error free, the graph G
may be not bipartite. The single individual haplotype reconstruction problem,
can be reduced to one of the following problems [2]:
� Minimum Fragment Removal (MFR): determine a minimal number of

fragments (rows of the matrix M) whose removal from the input set induces
a bipartite graph.

� Minimum SNP Removal (MSR): determine a minimal number of SNPs
(columns of the matrix M) whose removal from the input set induces a
bipartite graph.

� Longest Haplotype Reconstruction (LHR): determine set of frag-
ments (rows of the Matrix M) whose removal from the input set induces a
bipartite graph and the length of the induced haplotype is maximized.

� Minimum Error Correction (MEC): determine a minimal set of entries
of the matrix M whose correction to a di�erent value induces a bipartite
graph.

Our approach. We give a heuristic method for the minimum error correction
problem MEC, since we permit to change single matrix entries. It is a heuristic
method since we have no guarantee of attaining the minimum, nor any guarantee
on the approximation to the minimum that we can achieve. Note however than
MEC is the hardest of the problems listed above. Our method is organized in
phases (four phases) and it is greedy in nature (making choices that are optimal
in a local sense). In each phase we perform three tasks: 1) detect likely positions
of errors 2) allocate fragments to the two partially built haplotype strings, and 3)
build partial haplotype strings deciding via majority on ambiguous SNPs. The
di�erence among the phases is twofold: on one hand we can use the knowledge
built up in the previous phases, and on the other hand in passing from one phase
to the next we relax the conditions for the decisions to be taken regarding tasks
1), 2) and 3).
Organization of the paper. In Section 2 we review the state of the art for the
SIH problem. In Section 3 we describe our algorithm. In Section 4 we describe
the experiments and their results.

2 State of the art
SNP's and Haplotypes have become recently a focus of research (See the HapMap
project [5]) because of their potential for associating observable phenotypes (e.g.



resilience to diseases, reactivity to drugs) to individual genetic pro�les [15]. The
technology for detecting the position of SNP's in the human genome has been de-
veloped [9, 12] and continues to be re�ned to produce more accurate SNP maps.
Two large and active areas of research involving haplotypes are the determina-
tion of the genetic variability in a population (see surveys in [2, 6]) starting from
genotyping data, and the association of genetic variability with phenotypes.

In this paper we discuss the problem of determining the haplotype of a single
individual based on fragments from shotgun sequencing of his/her DNA which is
known as the Single Individual SNP Haplotyping Problem (SIH)1. This problem
has been tackled both from a theoretical point of view [1, 3, 4, 7, 13] and from a
more practical one [8, 11, 14]. Weighted versions of the problem are studied in
[16]. The SIH problem is clearly not formally an input/output problem as de-
�ned usually in computer science2, therefore precise complexity statements can
be made only for the derived problems such as: MEC, LHR, MFR and MSR.
MEC even with gapless fragments is NP-hard [3], and it is APX-hard for frag-
ments with at most 1 gap [4]. There is an O(log n)-approximate polynomial time
algorithm [11]. LHR with gapless fragments can be solved exactly in polynomial
time [3]; it is NP-hard and APX-hard for fragments with at most 1 gap [4].
MFR is NP-hard for fragments with at most 1 gap, and MSR is NP-hard for
fragments with at most 2 gaps [7]. If we have a bound k on the total number of
gaps, for k constant, MFR and MSR are polynomially solvable [13]. In general
MFR and MSR are APX-hard. The polynomial time algorithms proposed for the
above problems are at least cubic (in the gapless case) therefore a faster heuristic
method has been proposed in [11] that is based on an incremental construction.
We improve upon [11] by giving a method that is as fast in practice and more
accurate when the reading error rate increases and/or the fragment coverage
decreases. Interestingly, even if exact polynomial algorithms are known for MFR
on gapless input in [13], simulations reported in [11] show that the heuristic
method of [11] achieves better accuracy in solving the original SIH problem. For
this reason we take [11] as baseline algorithm even when dealing with fragments
with gaps.
Wang et al. [14] describe a Genetic Algorithm for this problem that in some
reported experiments gives good performance for short haplotypes (about 100
SNPs). It is unclear how this method would performs on longer haplotypes and
with lower coverage rate. We are not aware of any publicly available implementa-
tion of the methods described in [8, 11, 14, 16], therefore we chose as baseline the
method in [11] that is comparable to ours in terms of speed, and does not rely
on any statistical model. As future work we plan a comparison of our method
with the one in [14].

3 Our Heuristic
The Input to the problem is a set of fragments F and a set of SNP's positions
S. The Output is pair of consensus strings calS1 and S2. In the process of
1 Also called the Haplotype Assembly Problem.
2 SIH informally relates the output of the algorithm to an unknown DNA string whose
"approximation" is the purpose of the algorithm. The formal input to the algorithm
is a set of fragments that are related to the unknown string via physical error-prone
processes. Thus there is no mathematically formalized relationship between the input
and the criterion for evaluating the output of the algorithm.



obtaining the consensus strings one has to decide to which string a fragment
should be associated, whether any letter in a fragment should be modi�ed and
�nally decide by majority the output letter at any given position. Ideally one
should strive for a minimal modi�cation of the input letters. Note however that
our quality metric is the reconstruction error, not the number of letters changed.
We start by building the SNP matrix M with m rows and n columns where each
row is a fragment. The element in position Mi,j is the j-th SNP in fragment
fi or −, if it is a gap. Our heuristic builds the haplotype consensus with a
pre-processing (phase 1) and three main phases (2-4):

Ph-1 We perform a statistical analysis of potential con�icts among pairs of columns
in M ;

Ph-2 in phase Ph-2 we select a �rst group of columns with the highest possible
con�dence to be error-free and we build an initial solution from them;

Ph-3 in the third phase we select those columns that we are able to disambiguate
using the solution obtained in the previous phase;

Ph-4 in the last phase we try to complete the solution using weaker conditions for
assigning columns to the �nal solution.

In this section we will give priority to an intuitive understanding of the several
phases and steps, skipping on some more formal details to be expanded in the
full paper.
First phase: Preprocessing. For each column of M we build a group Gi

containing a certain number of sets. Each set is initialized with the indexes of
all the rows which have in position i a character di�erent from −. So Gi can
contain from 0 up to 4 sets (the empty set and one for each base: a, c, g, t).

Observation 1 If Gi has 0 sets, column i is empty. In this case there is no data
to reconstruct the haplotype for column i. If Gi has just 1 set, all the character
in column i are the same. If Gi has more then 2 sets, column i contains errors.

If Gi contains three of four sets, we can suppose that the one or two smaller sets
are due to errors. Unfortunately we can only detect the presence of errors, but
we have not enough information to correct them. In this case we remove from
the matrix M the information about the possibly uncorrect values and update
Gi accordingly. Note that in cases where Gi contains a large set and two smaller
ones of the same size, we can not remove those sets because we could likely be
removing correct data. If we suppose a constant coverage of each locus by both
the haplotypes, in the case Gi has two sets and one of them is much bigger
than the other, we can suppose that locus to be homozygote and the data in
the smaller set is a reading error. Clearly in this case we can predict the right
content of the matrix M in these positions. After �ltering out the above easy
cases we are left to deal with groups of two sets of non negligible size. Given two
groups Gi = (Si,1, Si,2) and Gj = (Sj,1, Sj,2) having exactly 2 sets and such that
i 6= j, we call con�ict matrix the squared matrix Ei,j of order 2:

Ei,j =
(

Si,1 ∩ Sj,1 Si,1 ∩ Sj,2

Si,2 ∩ Sj,1 Si,2 ∩ Sj,2

)

When only one diagonal of E has its elements non-zero and it is of full rank,
there are no detectable errors. Otherwise we have a con�ict between column i
and j. The detected errors could be in one or both columns.



Observation 2 If Ei,j has only one element equal to ∅ we can suppose that the
corresponding diagonal element contains the reading errors and its cardinality is
the number of such errors. For example if in Ei,j only the element Si,2 ∩ Sj,1 is
0 then there are |Si,1 ∩ Sj,2| errors in at least one of the columns i and j in the
rows of indexes in Si,1∩Sj,2. The assumption that the elements in Si,1∩Sj,2 are
the errors in Ei,j becomes more plausible if its cardinality is signi�cantly smaller
than the others.

Observation 3 In presence of errors in Ei,j we can not establish if the error is
in column i or j or both. We can locate the error if one of the following conditions
hold:
� If ∀k 6= j Ei,k does not contain errors, then errors is likely in column j;
� If ∃k such that Ei,j has an error, Ej,k has an error and Ei,k has no errors,

then we deduce that the error is likely in column j.

In the case of the example in observation 2, if also one of the conditions of
observation 3 holds, we deduce that the errors are in the rows Si,1 ∩ Sj,2 in the
column j. So we can correct the error by removing from M the incorrect values
and updating Sj,2 via removing Si,1∩Sj,2. If none of the conditions in observation
3 hold we can not discriminate between columns i and j so we can remove the
errors at the cost of a loss of information by assigning: Sj,2 = Sj,2\Si,1∩Sj,2 and
Si,1 = Si,1 \ Si,1 ∩ Sj,2. We have observed empirically that the error correcting
criteria of �rst Phase are e�ective when the input has a very low reading error
rate. As the error rate increases the bulk of the disambiguation is on the next
phases 2-4.
Second phase. The main goal of this phase is the selection of a set of pair
of groups with the highest possible probability of containing no inconsistencies
and extract from them two sets of fragments that will be the core of the �rst
(partial) solution.
Candidate list selection. The optimal set of candidate pairs to select is that
in which each group has no con�icts with all the other groups. Unfortunately, if
the percentage of errors in M is high this set can be empty. Moreover a correct
group can be involved in a con�ict with another group due to reading errors
in the latter. This fact causes the removal of all the pairs in which that group
appears. Higher coverage tends to increase this bad e�ect on the size of the
candidate set. In fact the probability that a group with no errors has a con�ict
with a group with errors is proportional to the coverage. If the optimal candidate
set of groups pairs is empty, we must to �nd the set with the highest con�dence
to be a good candidate set. First of all we compute the mean number of con�icts
among pairs of groups. As candidate set we pick all the pairs for which all the
following conditions hold:

a) both its groups have two sets,
b) the number of con�icts in which its groups are involved is less than the mean,
c) the matrix E of its groups is diagonal and of full rank

Extraction of initial core. From the candidate list obtained in the previous
paragraph, we build now two disjoint set of rows of M that will be used as core
of the �nal solution. We build a series of chains of pair in this way: the �rst pair
of a new chain is the �rst unused pair of the candidate list. Then we add a pair
to the chain if at least one group of the pair is already in the chain until no



more pairs can be added to the chain. The procedure stops when all the pairs
are in a chain. At the end we select the longest chain. The construction of the
series of chains is straightforward. First of all, we sort the candidate pairs in
lexicographic order and place them in a vector L = [C0, . . . , C|L|]. We build also
a vector V in which we store all the indexes j ∈ [1, |L|] of L such that the the
�rst elements of consecutive pairs are di�erent, Cj [0] 6= Cj−1[0]. We set as �rst
element of V the value 0 and as last element of V the value |L|. We build also a
vector v of size m containing several status �ags: position i is set to �to visit� if
the group i-th does not appear in any chain, set to �visited� if it appears in the
chain we are building and set to �complete� if all the pair containing the index
i were already used. A new chain is built as follows:

1. Find an index i such that the pair Ci is not already used and set it as the
�rst element of the chain.

2. All the elements of L not yet used in the range [V [i], V [i + 1]− 1] are added
to the chain, if they exist. The vector v is updated accordingly.

3. If there is an index j such that v[Cj [0]] is set to �visited� got step (2.) using i
such that V [i] = j. Otherwise search a pair where v[Cj [1]] is set to �visited�
and goto step (2.) using i such that V [i] = j.

4. if v has no element set to �visited� the chain is complete.

It is easy to note that the arbitrary choice of the �rst element do not in�uence
the pairs that will fall in the chain, but only their order that is not important
in our heuristic. Chains have the important propriety:

Property 1 If we consider groups in the same order in which they appear in a
chain, one of the following conditions holds:
1. Si,1 ∩ Si+1,1 6= ∅ ∧ Si,2 ∩ Si+1,2 6= ∅ ∧ Si,1 ∩ Si+1,2 = ∅ ∧ Si,2 ∩ Si+1,1 = ∅
2. Si,1 ∩ Si+1,2 6= ∅ ∧ Si,2 ∩ Si+1,1 6= ∅ ∧ Si,1 ∩ Si+1,1 = ∅ ∧ Si,2 ∩ Si+1,2 = ∅
We are now ready to build a sort of �super-group� G = (S1,S2) in which S1 will
be used to build the �rst haplotype consensus, and S2 for the second haplotype.
If G0 is the �rst element of the longest chain, S1 is initialized with the elements
of S0,1 and S2 is initialized with the elements of S0,2. Property 1 suggests a
simple way to assign the sets of each considered group to a set Si. In fact if, for
example, the elements in set Si,1 are assigned to S1 and Si,1 ∩ Si+1,1 6= ∅ holds,
the elements in set Si+1,1 can also be assigned to S1. All the groups whose sets
are assigned to G are marked as �used� and will not be considered in the next
phases. If the considered columns of M , (remember that Gi refers to column i
of M), have no errors we have that S1 ∩ S2 = ∅. Otherwise3 there are errors
in the rows of M whose indexes are in the intersection and in at least one of
the columns considered. If there is an element j in both the Si's and we do not
remove it from one of these sets, the fragment fj would give its contribute to
both the haplotypes, which is incorrect. In order to choose to which haplotype
to assign the fragment fj , we simply count how many times j appear in the
sets assigned to S1 and S2 and assign j to the set with the highest number of
assignments.
Third phase. If we succeed in partitioning all the rows of M we are ready to
build the �nal haplotype consensus using the method described at the end of this
3 As before, high reading error rates reduce the e�cacy of previous �ltering steps.



section. Experiments with high error rates show that at the end of the previous
phase we are able to assign a large part of the rows of M , but not all of them
because we had not enough information to unambiguously assign some fragment
to a set Si.
In this phase we already have a partial solution that could give us more infor-
mation and we can use weaker conditions to assign elements of the groups to
G. The �rst information we distill from the partial solution is an estimation of
the mean ratio between the cardinality of sets of the fragments belonging to the
two haplotype strings. We compute this ratio only for those groups that were in-
volved in the partial solution because they have higher probability to be correct
with respect to the others. We can now safely assume that if the ratio between
the cardinality of the sets of an unused group is far enough from the mean, the
locus represented from that group is homozygote and the elements in the smaller
set of that group are all errors and can be corrected updating M accordingly.
Considering G as a group, we can build a vector of con�ict matrices E =
E1, . . . , En, such that Ei is the con�ict matrix relative to G and Gi. Note that
these matrices are more informative than those of previous phase because they
are representative of a greater part of the input and not only of two columns.
In case of con�icts in Ei we can with high probability say that the errors are
in Gi and not in G. This becames more evident in the case of a matrix Ei that
have just one element equal to 0 and the value in the diagonal with the 0 is
much smaller than the values in the other diagonal. A matrix of this form was
discarded in the previous phase, because the error position was not predictable
with enough con�dence. Instead, here the information provided by G gives us the
ability to deduce the exact position of the errors in the i-th column of M and
correct them. The main goal on this phase is to add as many possible elements
to Gi trying to correct some errors in M for improving the haplotype consensus.
The procedure acts as follow:

1. Let α = ∅, β = ∅
2. For all those groups Gi with i ∈ [1, n] not yet marked, with 2 sets and such

that Ei is diagonal and of full rank: if Si,1∩S1 6= ∅ and Si,1∩S2 = ∅ add the
elements of Si,1 to α and Si,2 to β. Otherwise, due to the fact Ei is diagonal,
must hold that Si,2 ∩ S1 6= ∅ and Si,2 ∩ S2 = ∅. In this case simply add the
elements of Si,1 to β and Si,2 to α. Gi becomes marked.

3. If an element j appear in both α and β, we simply count how many times
j is present in the sets assigned to α and β and assign j to the set with the
highest number of assignments.

4. Assign all the elements of α to S1 and the elements of β to S2.
5. Recompute the con�ict matrix for the groups that are still not marked and

restart from step (1.) until no more groups can be marked.
6. Correct errors that can be detected in M and restart from step (1.) until no

more groups can be marked.

Fourth phase. At the end of phase three, if there is some other group that
is not marked yet, there is no further weaker condition that we can use to add
those groups to G safely. The goal in this phase is not to add elements to G
one by one, but to build another super-group G from the remaining unmarked
groups and merge it with G, if possible. This strategy relies on the fact that an
aggregation of columns is more robust to errors with respect to a single column.
The choice to reuse the previous phases seems the most reasonable, but we must



use weaker constraints. We can not use the techniques of the second phase to
initialize G because at the end it could not intersect G (or the intersection could
be too small). The problem of the intersection between G and the G is important.
In fact if all the sets of both have null intersection there is not a way to join
G and G. Instead, if the intersection is small, because of errors, by mistake we
can join each set of G with the wrong one of G. The safest way to initialize G,
is selecting the unmarked group with the highest possible intersection with G.
Analyzing the matrices Ei from the previous phase for the unmarked groups,
the one with the highest sum of the elements in a diagonal is the best candidate
to initialize G.
After the initialization of G, we can use the previous phase to add other elements.
Here two constraints are relaxed: it is no more necessary that the con�ict matrices
are of full rank; detected errors in M are not corrected, but simply the wrong
data is removed from M . Let a and b such that |Sa ∩ S1| > |Sa ∩ S2| and
|Sb ∩ S1| < |Sb ∩ S2| and a 6= b, we assign to S1 all the elements of Sa not in
S2 and assign to S2 all the elements of Sb not in S1.
Haplotype consensus. At the end of the previous phase, some fragments could
still be assignable to both haplotype strings. They will be assigned a posteriori
after the process of consensus construction to the most similar haplotype. We
split M in two sub-matrices: M1 containing all the rows with indexes in S1 and
M2 containing the rows with indexes in S2 Naturally it is impossible to establish
which of the parent's haplotype is deduced from S1 and which from S2.
We call pivot of M at position i the element Pvi

M (di�erent from a gap) that
appears more frequently. If the column i of M has no elements, its pivot will be
a gap. The consensus haplotype induced from S1 is a sequence in which the i-th
element is Pvi

M1 and the consensus haplotype induced from S2 is obtained in
the same way from M2.

4 Experiments
In our experiment we compared the following algorithms:
A) Our heuristic, as described in section 3;
B) Our implementation of Fast Hare (F.H.) following the description in [11];
C) The trivial reconstruction algorithm by majority voting that has the true

fragment assignment as part if its input (Base).

We implemented the algorithms in Python. Tests have been run on a Intel(R)
Pentium(R) D CPU 3.20GHz with 4GB of RAM and with operating System
Linux. All algorithms completed their task in less than 10 seconds for the data
of largest size considered (strings of 1000 SNP's).
Input data and fragment generation. In previous papers [7, 11] experiments
were based on SNP matrices obtained from the fragmentation of arti�cially gen-
erated haplotype data. The most common approach to the generation of the
SNP matrices was suggested in [10]. The recent research project HapMap [12]
has produced a map of the human haplotypes that is now publicly available [5].
Thus we were able to generate the fragment matrices from real data instead of
using synthetic input haplotypes. Using real data, the Hamming distance be-
tween the two haplotypes is not a free parameter of our choice in the generation
of M . For the extraction of the SNP matrix from the haplotypes we were in-
spired by the approach suggested in [10] taking in account standard parameters



in current technology for shotgun sequencing. The free parameters we set in our
experiments are: (a) the length l of the haplotype section to be reconstructed,
(b) the coverage c of each haplotype and (c) the error rate e. Current technology
for shotgun sequencing is able to manage fragments of the order of one hundreds
of bases. In Li et al.[8] the average distance in bp of two SNP's in the DNA
sequence is quanti�ed as 300 bp on average, and each fragment is of 650 bp's.
Each fragment covers a number of SNP's in the range roughly [3, 7], thus we
chose the length of each fragment in this range. Our generation schema is as
follow for each experiment: we select the haplotype strings from a random chro-
mosome among the human chromosomes numbered in [1..22] (thus excluding the
gender chromosomes), we get a contiguous substring of length l from the �rst
haplotype starting from a random location and its homologous substring from
the second haplotype. As in [10] each such string is replicated c times. Next,
errors are inserted uniformly at random in the haplotype substrings with prob-
ability e. At this point the strings are split in fragments by selecting iteratively
the next cut point at an integer distance from the previous one chosen uniformly
at random in the range [3, 7], starting from the �rst base. Note that the number
of fragments is not determined a priori but it depends on the length l, on the
coverage c and on the distribution of the fragment lengths. Gaps came from two
sources. Input SNP gaps are those present in the original HapMap data.Mate
pairs are obtained as follows: random pairs of disjoint fragments belonging to
the same haplotype string are mated in a single gapped fragment (at the end of
this phase globally 50% of the fragments are 1-gapped).
Outcome of the experiments. We investigate the performance of our algo-
rithm in di�erent settings varying the input parameters. We choose three di�er-
ent length for the haplotyes: 100 bases as in [11], 500 bases like in [10] and 1000
bases. To test the e�ectiveness of the method we vary the coverage of each hap-
lotype from 3 to 10 considering that in most reported experiments the coverage
is about 5 [10]. To test algorithms robustness we used di�erent levels of errors:
from 0% to 20%. Each test was repeated 100 times and in table 1 is reported
the mean number of errors in the reconstructed haplotypes with respect to the
strings before error implants.
Analysis of the experiments. In absence if errors (but with gaps) our method
was able to reconstruct the haplotypes exactly in all cases. The reconstruction
error rate increases for all three methods as the reading error rate increases and
it decreases with the increase of coverage. In order to give a synthetic view of
the data in Table 1 we use the Merit Function f :

f =





0 if Our = FH
1− Our−B

FH−B if Our < FH

−
(
1− FH−B

Our−B

)
if Our > FH

(1)

where Our is the error count of our algorithm, FH is the error count for Fast
Hare and B is the error count for the baseline algorithm. Note that when Our
and FH tie f has value zero. When Our is better than FH, f assumes a value
in the range [0, 1], the higher the absolute value, the better is our algorithm
w.r.t. Fast Hare. Symmetrically when Fast Hare is better than Our algorithm
f assumes values in the range [−1, 0] the higher the absolute value, the better
is Fast Hare w.r.t. our algorithm. This indicator is almost always in our favor
(see Figure 1). The �gure of merit f gives an idea of the quality ratio of FH



Err. Alg. Coverage. l = 100 Coverage. l = 500 Coverage. l = 1000
3 5 8 10 3 5 8 10 3 5 8 10

0%
Base 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Our 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F. H. 0.00 0.00 0.00 0.04 0.72 0.40 0.04 0.27 8.94 1.79 2.24 0.04

5%
Base. 0.97 0.10 0.00 0.00 4.81 0.47 0.01 0.00 11.60 0.99 0.04 0.01
Our 0.97 0.15 0.07 0.02 5.60 0.57 0.01 0.04 14.95 1.59 0.13 0.03
F. H. 1.26 0.18 0.19 0.03 11.79 0.95 0.03 0.03 21.24 2.97 0.26 0.55

10%
Base. 4.05 0.75 0.03 0.01 21.14 3.74 0.24 0.03 43.38 7.85 0.60 0.13
Our 5.39 0.88 0.44 0.03 26.45 4.28 0.33 0.07 60.87 9.95 2.59 0.29
F. H. 9.32 1.54 0.41 0.02 45.52 5.91 0.43 0.07 123.92 15.17 1.43 0.46

15%
Base 9.78 2.26 0.34 0.08 47.71 12.57 1.49 0.38 95.40 25.42 2.66 0.77
Our 12.21 2.83 0.43 0.25 66.55 25.70 2.21 0.96 134.74 35.61 4.59 2.46
F. H. 18.41 3.40 1.55 0.83 102.60 25.34 2.65 0.88 268.09 58.81 4.63 1.59

20%
Base 15.13 5.71 1.19 0.35 80.97 27.90 5.04 1.68 159.74 56.90 10.86 3.53
Our 20.44 7.77 2.16 0.93 120.53 52.38 10.17 4.74 220.52 94.26 23.12 13.54
F. H. 32.63 11.51 3.40 1.68 224.46 64.14 12.32 4.16 469.54 150.18 22.21 11.05

Table 1. Quality measurements on the compared algorithms. Mean over 100 runs of
the number of errors in the reconstructed haplotypes for error rate in [0.0,0.2], coverage
in [3,10], and haplotypes length l = 100, 500, 1000.

and Our method w.r.t the baseline. There are 10 cases out of 60 in which FH
has a better ratio. This happens mostly with high coverage (8 or 10). However
in these case the quality di�erence is always rather small: less then 0.03 bases
over 100 bases, less than 0.58 over 500 bases and less than 2.49 over 1000 bases.
Conversely often when our method has a better quality ratio for lower coverage
also the absolute di�erence of the reconstruction errors is large.
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