
An Efficient Combinatorial Approach for Solving the
DNA Motif Finding Problem

Filippo Geraci
filippo.geraci@iit.cnr.it

Marco Pellegrini
marco.pellegrini@iit.cnr.it

M. Elena Renda
elena.renda@iit.cnr.it

Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche

Via G. Moruzzi 1
56124, Pisa – ITALY

Abstract

The detection of an over-represented sub-sequence in a
set of (carefully chosen) DNA sequences is often the main
clue leading to the investigation of a possible functional role
for such a subsequence. Over-represented substrings (with
possibly local mutations) in a biological string are termed
motifs. A typical functional unit that can be modeled by a
motif is a Transcription Factor Binding Site (TFBS), a por-
tion of the DNA sequence apt to the binding of a protein
that participates in complex transcriptomic biochemical re-
actions. In the literature it has been proposed a simplified
combinatorial problem called the planted (l-d)-motif prob-
lem (known also as the (l-d) Challenge Problem) that cap-
tures the essential combinatorial nature of the motif find-
ing problem. In this paper we propose a novel graph-based
algorithm for solving a refinement of the (l-d) Challenge
Problem. Experimental results show that instances of the
(l-d) Challenge Problem considered difficult for competing
state of the art methods in literature can be solved efficiently
in our framework.

1 Introduction

The study of the insurgence and the evolution of genetic
diseases has recently turned to the analysis of the transcrip-
tional regulation modules in an effort to deepen our under-
standing [8, 1]. Transcription factors (TF), that are pro-
teins mediating the complex machinery of gene expression,
and transcription factor binding sites (TFBS), the specific
loci onto the DNA strings onto which TF bind, are among
the most basic concepts in transcriptomic research. In or-
der to abstract from the specific biochemical properties it
is often used the more generic idea of “motif” as an over-
represented substring with the potential of being a candi-

date TFBS. In this paper we deal with the “ab initio” motif-
finding problem that takes as input just a set of DNA strings
and produces the set of over-represented motifs.

Designing algorithms for “ab initio” detection of motifs
in biological sequences is a popular activity; indeed recent
surveys estimate that more than 100 methods (and variants)
have been proposed so far (see, for instance, [5, 7, 13, 17]),
assessing the performance of such tools on a common plat-
form and a well designed benchmark data sets (mixing both
synthetic and natural) is a sub-field that just started to be
developed [10, 16, 19]. The problem is complex both from
the biological point of view and from the algorithmic one
since many different characterizations of what constitute a
“motif” are possible and the biochemical machinery of tran-
scription is still being investigated.
The (l-d) Challenge Problem. In a seminal paper of 2000,
Pevzner and Sze [14] proposed the use of the so called
planted (l-d)-motif problem as benchmark for evaluating the
relative performance of motif finding algorithms.

Given t DNA sequences of length n, suppose there is a
fixed but unknown nucleotide sequence M (the motif con-
sensus) of length l, and that each sequence contains variants
(or instances) of M , derived from M with at most d points
substitutions. The (l-d)-motif problem consists in determin-
ing M and the location of the motif instances in each se-
quence.

This model simplifies most of the biochemical issues to
concentrate on a fairly simple to state combinatorial prob-
lem that, however, captures the hardness of the problem. It
is quite easy to generate synthetic data set in this model, al-
lowing algorithmic choices to be validated (or more often
discarded) in an early stage.
Among the combinatorial algorithms, a number of them use
as key focus graph theoretic notions and reduce the mo-
tif finding problem to the problem of detecting dense sub-
graphs (cliques) in appropriate graphs. In this category:

WINNOWER and SP-STAR [14], MULTIPROFILER [9],
cWINNOWER [11], MCL-WMW [3]. Some approaches
mix graph model with a deeper use of string properties
([6], [15]).
Other approached are based on randomized projections (e.g.
PROJECTION [4]), or on suffix trees (e.g. [12]).
In this paper we present a new combinatorial approach
for solving refinements of the (l-d) Challenge Problem, a
graph-based algorithm which, despite of its simplicity, is
able to efficiently perform on classes of planted-motif in-
stances considered hard to solve. It is well know that in
mammals the TFBS for a given gene can be at a distance of
many kilobytes from the start site of the regulated gene (see
e.g. [8] and references therein), which implies that longer
sequences must be processed. Motif finding in the DNA
of less complex organisms (e.g. Saccharomyces cerevisiae)
is easier since the distance of the TFBS to the start site is
much shorter (a few hundred bases). When searching for
motifs in a set of DNA strings the fraction of the strings in
the set in which the motif is represented is also a critical
parameter. Most method are efficient only when this frac-
tion is 1, and suffer a combinatorial explosion as soon as
this value decreases (in a typical motif finding experiment
it is very hard to ensure that the faction is 1 or close to 1).
Finally the length of the motif and the number of allowed
degeneracies (i.e. base substitutions) are critical parameters
of the problem. Most methods are scalable only in one (or
two) of the critical parameters of the problem, while our
method shows good empirical scalability properties in all
of them. This positive property is attained by relaxing the
classical definition of an (l-d) Challenge Problem aiming at
good performance on an average problem instance.
The paper is organized as follows. Section 2 introduces
the (l-d) Challenge Problem and Section 3 discusses our
proposed modification leading to the key algorithmic idea;
Section 4 reports a detailed description of the proposed
algorithm; Section 5 gives the experimental methodology
and evaluation of the experimental results; Section 6 con-
cludes and outlines the guidelines for further developing
this work.

2 The (l-d) Challenge Problem

Definition 1 Given: (i) a set of strings S = {si}t
i=1 over

an alphabet Σ, such that ∀i |si| = n, (ii) a distance thresh-
old d ≥ 0, and (iii) a length l, 0 ≤ d ≤ l, the (l-d)-motif
problem consists in finding a motif M ∈ Σl such that in q
strings si, 0 ≤ q ≤ t, exists a contiguous substring mi, with
|mi| = l and Hamming distance H(M,mi) ≤ d.

This problem is solved by exhibiting the motif M and the
set of representative motifs {mi}q

i=1 (also called instances
or variants of M) and the corresponding positions within
the sequences.

In the planted (l-d)-motif problem, each si ∈ S, i ∈
[1, t], is generated by randomly choosing n characters in
Σ, and M is chosen at random in Σl; finally, each mi, i ∈
[1, q], is obtained by mutating up to d uniformly chosen at
random characters in M . Each mutated motif mi is then
embedded in 1 of the q randomly selected strings of S, in
a position uniformly chosen at random in [1, n − l]. Let us
call the obtained planted set S∗M . The algorithms eligible
for finding the planted motifs receive as input the set S∗M
and the parameters l, d, and q. Note that, depending on the
choice of parameters n, t, l, d, q, there is the chance of hav-
ing a motif y ∈ S , y 6= M , satisfying the (l, d, q)-property.
The (l-d) Challenge Problem was first introduced in [14]
with l = 15, d = 4, t = q = 20 in sequences with length
n = 600. Since year 2000, other more difficult instances
with parameters set to (17− 6), (19− 7), (21− 7) [6] have
been tackled.

Denoting with E(l, d) the expected number of distinct
motifs in S satisfying the (l, d)-property [4], it is possible to
find an explicit analytic formula for computing the E(l, d),
as well as several typical values in tabular form [2]. In gen-
eral, for fixed values of n, l, q and t there is a value d′ such
that E(l, d′−1) is negligible but E(l, d′) is not, thus, for the
value d = d′, the probability of having spurious solutions
in S is high [2]. As the number t of sequences increases
and the length n grows, the number of noisy l length spuri-
ous (or nearby) motifs is more likely to grow, increasing the
difficulty of detecting the planted motif instances.

Most combinatorial algorithms in literature that aim at
finding the solution (M, m1, . . . , mq) to the (l-d) Challenge
Problem (as in definition 1) take the worst case approach
and assume implicitly that for each i ∈ [1..q], H(M, mi) =
d. Thus they assume that d represent both the minimum and
the maximum distance of some mi to M .

3 A refinement of the (l-d) Challenge Problem

In this section we propose a refinement in the definition
of the (l-d) Challenge Problem in which we make explicit a
new parameter δ.

Definition 2 Let S = {s1, . . . , st} be the set of t DNA
strings, l the length of the consensus motif M and d the
maximum number of mutations allowed in the planted in-
stances of M . The Motif Graph G≤h = {V, Eh} is a graph
in which each substring (signal) x of length l in a given
string sk ∈ S is represented by a vertex vx, labeled with x,
and the edge between vx and vy exists if the Hamming dis-
tance H(vx, vy) between the corresponding signals x and
y is not greater than h1

1Given two vertex vx and vy labeled with the strings x and y respec-
tively, we denote with H(vx, vy) the Hamming distance between strings
x and y. More in general, with an abuse of notation, we will indicate with

2

For the sake of the explanation we denote with G without
subscripts the motif graph G≤2d.
Let M be a motif consensus and (m1, . . . , mk) all its vari-
ants in V , let δ be the minimum distance of M to any string
in V , and let y = mi be a string at distance δ to M in V . By
the triangular inequality y is also at distance at most d + δ
from any string in (m1, . . . ,mq). Thus the set of strings
(y,m1, ..mq) will induce a clique in G and a star centered
in y in G≤d+δ .

We refine the standard definition of the (l-d) Challenge
Problem by introducing a new parameter δ that allows us
to have a spread of problem instances. When δ is relatively
small compared to d our algorithm takes advantage of this
fact and it can solve instances that are harder in terms of the
parameters l, d, t and n. Because we refine the definition of
an (l-d) Challenge Problem by introducing a new parameter
δ direct comparisons between published results of compet-
ing methods and the one we present would be inappropriate.
Our initial tests is section 5 show that (for δ = 0) indeed our
method does work over ranges of values for l, d, q, and n
for which other methods do not perform well. Future work
includes a more extensive testing and comparisons among
different methods on a common set of instances with vary-
ing values of the parameter δ.

4 Our Approach

Our algorithm takes advantage of the fact that 0 ≤ δ ≤ d,
and when δ ¿ d we are dealing with an easier instance
of the (l-d) Challenge Problem, for which we can gain in
performance.

In a nutshell our algorithm computes a covering of the
vertices of G and G≤d+δ so to make sure that each cover
set does contain the vertices of a q-clique in G and at the
same time the same cover set contains a matching star in
G≤d+δ . Finally given the candidate sets m1...,mq we com-
pute a candidate consensus string M by majority vote on
each character position (as in [18]).

According to the above model, the (l-d) Challenge Prob-
lem can be reduced to that of finding subgraphs of G con-
taining a clique. Note that, each string si ∈ S could con-
tains both a planted instance of the consensus motif M and
one or more spurious solutions; for this reason, in order to
reach the quorum q, it is not sufficient that the clique has at
least q nodes.

4.1 The Algorithm

The algorithm takes as input the set S of t DNA strings
of length n, and three parameters specifying (i) the length l

the same symbol the node of the graph and the corresponding string, when
it is clear from the context.

of the motif to be searched, (ii) the minimum number q (the
quorum) of sequences that contain the instances of M , and
(iii) the maximum number of mutations d allowed in each
instance of M . The algorithm returns, for each identified
motif, (i) the consensus string, and (ii) the coordinates in
the corresponding input string of each signal identifying an
instance of the motif. The algorithm implicitly considers
the motif graph G. For the sake of explanation, we assume
that the edge between vx and vy in G is blue if H(vx, vy) ≤
d, while it is red if H(vx, vy) ≤ 2d. Obviously, with this
assumption, a blue edge is also red.

The algorithm consists of two main phases: (i) the motif
graph clustering, and (ii) the motif identification.

In the first phase, the algorithm divides the nodes of G
into overlapping clusters, each of which is the subgraph of
G containing the set of nodes connected to the cluster seed.
In the second phase, for each cluster the algorithm checks
if the seed of the cluster -or a node linked to it with a blue
edge- is the center of a star whose size is at least equal to the
quorum. If such a star exists it represents a “valid” motif,
i.e., a consensus string with at least q instances of it, thus
the elements it contains are returned as output.

These two phases are described in detail in what follow.

Motif Graph Clustering. The algorithm maintains a list L
of all those nodes in G not linked to a cluster seed by a blue
edge. Thus, initially the list L contains all the nodes in G.
The algorithm iteratively:

1. initializes a new cluster Ck by selecting a random node
vi ∈ L as seed, and removes vi from L;

2. adds all the nodes directly connected to vi by a blue or
red edge to Ck, and updates L by removing the nodes
connected to vi by a blue edge.

The procedure ends when L is empty and the overlapping
clustering of the motif graph, CG = {C1, . . . , Ck}, is re-
turned to the second phase. By exploiting the distribution
of the edges in the motif graph, we can assert that if the
cluster seed is an instance of the motif, then all the other
instances of the motif will fall in the same cluster.

The complexity of this phase is O(nk), where n is the
number of nodes in G, and k is the -a priori not known-
number of iterations. In the worst case, i.e., when the
motif graph has no edges, the computational cost of this
procedure is O(n2), but typically it is much smaller.

Motif Identification. In the clustering of the motif graph,
CG = {C1, . . . , Ck}, each Ci is a small subgraph of G
that could contain a motif. The algorithm analyzes all the
clusters of CG to verify whether they contain a valid motif
or not, and filters out those not containing a motif. Clearly,
if a minimum quorum is required, all those clusters whose
cardinality is less than the quorum q can be safely discarded.

3

Denote with C∗G the subset of CG such that a cluster
Ci ∈ C∗G ⇐⇒ |Ci| ≥ q. Informally, for each cluster in
C∗G, the algorithm extracts a candidate consensus string M ,
and removes all the signals with Hamming distance greater
than d′ from M , d′ = d + δ, δ ≥ 0; if each resulting cluster
still has cardinality greater than or equal to the quorum q,
then it is eligible to identify a valid motif, otherwise it is
discarded.

As we already mentioned, we know that if a certain clus-
ter seed is an instance of the motif all the other instances
are present in the cluster. Thus, according with the defini-
tion of (l-d)-motif, we can exploit this fact by observing that
the center of the star that identify the motif must be either
the cluster seed or a node at distance at most d′ from it. Let
Ĉ = {ĉ1, . . . , ĉk} be the subset of a cluster C containing all
the elements at distance at most d′ from the seed. For each
ĉi, let M(ĉi) the set of nodes of the clusters at distance at
most d′ from ĉi. If M(ĉi) reaches the quorum, it represents
all the instances of a valid motif. This step requires |Ĉ||C|
distance computations. Even if this is O(|C|2) in the worst
case, in practice we observed that Ĉ is quite small.

A1A2

B2 B1

B3

A3

C

Figure 1. Instance of a motif graph.

As an example, consider the motif graph represented in
Figure 1, where the consensus C has been planted together
with three variants, B1, B2, and B3; the required quorum
is 4, while δ = 0, i.e., d = d′. At the beginning, the set
L = {C, A1, A2, A3, B1, B2, B3} and every node can be
selected as seed in the clustering phase. Suppose the al-
gorithm chooses A1, creates the cluster c1 with center A1,
and removes A1 from L. Then, the algorithm inserts B1

and C in c1, being these two nodes at Hamming distance
≤ 2d from A1, and removes B1 from L (Note that C is
not removed from L since its distance from A1 is greater
than d). At the beginning of the second iteration the set
L = {C,A2, A3, B2, B3}. Again, all the nodes in L are
possible candidates to become the seed of the new cluster
c2. Now, suppose the algorithm chooses A2, removes it
from L, inserts the nodes B2 and C in c2, and removes B2

from L. In the next iteration of the clustering procedure,

the algorithm can choose between C, A3 and B3. Suppose
it selects A3 as seed of the cluster c3, inserts B3 and C in
c3, and removes B3 from L. In the next step, the only pos-
sible candidate node as seed is C. The new cluster c4 has
C as seed, and contains all the nodes of G. Once removed
C from the set L, the clustering procedure terminates and
all the nodes of the graph fall in at least one cluster. In the
second phase, the algorithm discards c1, c2 and c3, being
smaller than the quorum, identifies C as the consensus, and
removes from c3 the nodes A1, A2, A3, being at distance
greater than d from C.

It is worth nothing that, for any other choice of the cluster
centers, the consensus motif would have been also found.

4.2 Improve clustering speed

The most time consuming part of the presented algo-
rithm is the clustering procedure, and in particular the com-
parisons to determine if a node is part or not of a new cre-
ated cluster. In fact, once a signal (corresponding to a ver-
tex vi of the motif graph) is selected to be the seed of a new
cluster, it has to be compared with all the other signals in
G, so to find out the adjacent nodes. According to differ-
ent graph topologies, this procedure could be quadratic in
the worst case. In order to drastically reduce the number
of distance computations, we reformulate the problem as a
“range query search” one, i.e., given a query string s and a
set of signals, return all the signals at distance at most 2d
from s.

We create a hash table where each node vx ∈ G, la-
beled with the nucleotide sequence x, has hash key h(vx) =
{|A ∈ x|, |C ∈ x|, |G ∈ x|, |T ∈ x|}. All the nodes with
the same hash key fall in the same bucket. We observe that:

1
2
L1(h(vi), h(vj)) ≤ H(vi, vj) (1)

where L1 is the 1-norm distance of vectors. Given the
above lower bound, the search procedure is trivial. The hash
key k of the query signal is compared, using the L1 norm,
with all the keys of the hash table and all the elements in
those buckets for which the distance with k is greater than
4d can be safely ignored, thus reducing the number of dis-
tance computations. The effectiveness of this optimization
depends on the value of distance d and the length l of the
signals. In fact, both the Hamming distance and the L1

norm are bounded in the range [0, l]. Thus, if d ≥ l/4,
this procedure does not save distance computations. On the
other hand, the larger is the value of d the smaller is the
number of clusters (and searches) to be done.

4

5 Experiments

In order to evaluate the proposed algorithm, we run three
different sets of experiments, trying to stress the (l-d) Chal-
lenge Problem from different points of view. Note that our
method is always able to find the implanted solution, there-
fore the only parameter of performance to consider is the
running time.

The results reported in Tables 1–3 are in terms of the
elapsed time for finding the solution, highlighting the time
needed for the clustering phase. The clustering and total
time have been obtained on an 3.2 GHz Intel Pentium D
dual-core workstation with 3.2 GB RAM running Linux
kernel 2.6.18.2-34. The code has been implemented in
Python 2.4 We also report the E(l, d), i.e., the expected
number of spurious solutions of that class in the background
sequence.

In the experiments performed, each of the t sequences
of length n has been generated independently from the oth-
ers using a uniform random distribution. The l-length motif
consensus M (corresponding to δ = 0) and q − 1 muta-
tions of M , generated by mutating M in exactly d random
positions, are implanted in q randomly selected sequences.

The first set of experiments (Table 1) aims at assessing
the performance of the algorithm for “critical” assignments
of the parameters l and d. For fixed values of n, t and q,
we say that the assignment of l and d is critical when, given
a certain value of l, the parameter d is the largest value for
which E(l, d) < 10. Critical pairs are important since for
larger number of allowed errors, the number of spurious so-
lutions is such that the search time is dominated by the time
for identifying and reporting all the spurious solutions.

In particular, we fixed t = 20, n = 600, q = 20, and run
our algorithm with the (l-d) values proposed by Davila et al.
in [6], i.e., (13-4), (13-5), (17-5), (17-6), (19-6), (19-7), (21-
7), and (21-8). Furthermore, we tested our algorithm with
more challenging values of (l-d), considering quite longer
motifs and beyond the classical threshold of a number of
mutation d < 1/3l: (15-5), (23-9) and (25-10). The re-
sults show that our method has a very slow increase, since
it weakly depends on the values of l and d. Even harder
cases, such that (25,10), (23,9) and (21,8), are solved in just
about twenty minutes.

The second set of experiments (Table 2) analyzes the al-
gorithm behavior when the quorum threshold is lowered. In
particular, similarly to the experiments proposed in [11], we
fixed l = 15, d = 4, t = 20, n = 600, and reduced the quo-
rum q from 20 to 13. Actually, we further stress the quorum,
lowering it till 11. The results reported in Table 2 show that
our algorithm is able to find the solution without any time
penalty even with only 11 embedded instances.

The third set of experiment (Table 3) explores the influ-
ence of the parameter n, the length of the t input sequences.

In particular, we fixed l = 15, d = 4, t = 20, q = 20,
and increased the sequence length n from 600 to 4000 in
steps of 200. The algorithm is a bit slower than some ex-
isting methods, since it solves the case n = 2000 within
1 hour and 31 minutes, but it exhibits a quite slow rate of
increase. It is worth noting that it is able to tackle strings
up to n = 4000 in a very reasonable time (5 hours and 40
minutes), for such a large instance.

Overall, the results reported here show that the proposed
algorithm is robust and efficient when the main parameters,
l, d, q, n, are scaled up, even to very challenging values.

(l-d) Clustering Total Time E(l,d)
(13-4) 218.565s 10m 54.993s 5.2
(13-5) 66.360s 23m 24.288s -
(15-5) 246.836s 13m 8.953s 2.84
(17-5) 582.865s 12m 37.531s 2 x 10−15

(17-6) 271.120s 15m 33.498s 0.88
(19-6) 666.16s 15m 6.781s 9 x 10−16

(19-7) 356.264s 17m 59.123s 0.17
(21-7) 704.394s 16m 59.336s 2.5 x 10−16

(21-8) 377.834s 19m 28.869s 0.02
(23-9) 450.470s 21m 41.841s 0.002

(25-10) 532.093s 22m 47.773s 0.0002

Table 1. Results in terms of elapsed seconds,
for t=20, n=600, q=20, varying (l-d). E(l,d) is
the expected number of spurious solutions of
that class in the background sequence.

q Clustering Total Time E(l,d,q)
20 513.224s 10m 23.691s 2.17 x 10−15

19 496.896s 10m 10.422s 6.65 x 10−13

18 515.843s 10m 22.107s 9.65 x 10−11

17 513.126s 10m 20.099s 8.86 x 10−9

16 541.970s 10m 45.284s 5.76 x 10−7

15 515.600s 10m 24.787s 2.82 x 10−5

14 528.670s 10m 33.624s 1.07 x 10−3

13 494.069s 10m 7.126s 0.033
12 533.175s 10m 39.192s 0.82
11 534.171s 10m 40.492s 16.7

Table 2. Results in terms of elapsed seconds,
for t=20, n=600, l=15, d=4, varying q. E(l,d,q)
is the expected number of spurious solutions
of that class in the background sequence.

5

n Clustering Total Time n Clustering Total Time
600 538.481s 11m 37.985s 2400 4141.475s 129m 24.437s
800 788.146s 18m 1.316s 2600 4744.862s 151m 47.749s

1000 1128.770s 26m 39.276s 2800 5339.982s 165m 11.531s
1200 1439.996s 35m 41.334s 3000 6296.115s 203m 23.263s
1400 1846.050s 48m 15.665s 3200 6992.294 228m 10.964s
1600 2246.456s 60m 21.614s 3400 7785.070 255m 7.502s
1800 2847.454s 77m 9.381s 3600 8330.551 277m 48.584s
2000 3200.224s 91m 51.200s 3800 9317.619 314m 53.355s
2200 3778.337s 110m 23.630s 4000 9909.280 342m 43.407s

Table 3. Results in terms of elapsed seconds, for t=20, l=15, d=4, q=20, varying n.

6 Conclusions

The planted (l-d) Challenge Problem is a purely com-
binatorial problem that, while abstracting from many de-
tails of the motif finding problem for biological sequences,
captures the core combinatorial hardness of motif finding.
What constitutes a challenging size of the problem has
evolved with time. However most algorithms are able to
scale well only when one of the relevant parameters of the
problem is varied. We have shown a promising new algo-
rithm that performs well when all of the relevant parameters
of the problems are varied. Application and testing of the
proposed algorithm to biological data is work in progress.

Funding

Funding for this research has been partially supported by
Italian Registry of “.it” ccTLD and by the EU funded 7FP
Virtual Physiological Human Network of Excellence (VPH
NoE) (contract number 223920).

References

[1] Malin C Andersen, Pr G Engstrm, Stuart Lithwick, David Arenil-
las, Per Eriksson, Boris Lenhard, Wyeth W Wasserman, and Jacob
Odeberg. In silico detection of sequence variations modifying tran-
scriptional regulation. PLoS Comput Biol, 4(1):e5, 01 2008.

[2] Sudha Balla, Jaime Davila, and Sanguthevar Rajasekaran. On the
challenging instances of the planted motif problem. Technical Re-
port BECAT/CSE-TR-07-2, Booth Engineering Center for Advanced
Technology (BECAT.), 2007.

[3] Christina Boucher, Daniel G. Brown, and Paul Church. A graph clus-
tering approach to weak motif recognition. In Raffaele Giancarlo and
Sridhar Hannenhalli, editors, WABI, volume 4645 of Lecture Notes
in Computer Science, pages 149–160. Springer, 2007.

[4] Jeremy Buhler and Martin Tompa. Finding motifs using random pro-
jections. In Journal of Computational Biology, pages 69–76, 2001.

[5] Modan Das and Ho K. Dai. A survey of dna motif finding algorithms.
BMC Bioinformatics, 8(Suppl 7), 2007.

[6] Jaime Davila, Sudha Balla, and Sanguthevar Rajasekaran. Fast and
practical algorithms for planted (l, d) motif search. IEEE/ACM Trans.
Comput. Biol. Bioinformatics, 4(4):544–552, 2007.

[7] M. Haussler and J. Nicolas. Motif discovery on promoter sequences.
Technical Report 5714, INRIA, October 2005.

[8] Dustin Holloway, Mark Kon, and Charles DeLisi. In silico regulatory
analysis for exploring human disease progression. Biology Direct,
3(1):24, 2008.

[9] U Keich and PA Pevzner. Finding motifs in the twilight zone. Bioin-
formatics, 18(10):1374–81, 2002.

[10] Kjetil Klepper, Geir Sandve, Osman Abul, Jostein Johansen, and
Finn Drablos. Assessment of composite motif discovery methods.
BMC Bioinformatics, 9(1), 2008.

[11] Shoudan Liang. cwinnower algorithm for finding fuzzy dna motifs.
In CSB ’03: Proceedings of the IEEE Computer Society Conference
on Bioinformatics, page 260, Washington, DC, USA, 2003. IEEE
Computer Society.

[12] Laurent Marsan and Marie-France Sagot. Extracting structured mo-
tifs using a suffix tree—algorithms and application to promoter con-
sensus identification. In RECOMB ’00: Proceedings of the fourth
annual international conference on Computational molecular biol-
ogy, pages 210–219, New York, NY, USA, 2000. ACM.

[13] Giulio Pavesi, Giancarlo Mauri, and Graziano Pesole. In silico rep-
resentation and discovery of transcription factor binding sites. Brief-
ings in Bioinformatics, 5(3):217–236, 2004.

[14] PA Pevzner and SH Sze. Combinatorial approaches to finding subtle
signals in dna sequences. Proc Int Conf Intell Syst Mol Biol, 8:269–
78, 2000.

[15] S. Rajasekaran, S. Balla, and C.-H. Huang. Exact algorithms
for planted motif problems. Journal of Computational Biology,
12(8):1117–1128, 2005.

[16] Geir Sandve, Osman Abul, Vegard Walseng, and Finn Drablos. Im-
proved benchmarks for computational motif discovery. BMC Bioin-
formatics, 8(1):193, 2007.

[17] Geir Sandve and Finn Drablos. A survey of motif discovery methods
in an integrated framework. Biology Direct, 1:11, 2006.

[18] Sing-Hoi Sze, Songjian Lu, and Jianer Chen. Integrating sample-
driven and pattern-driven approaches in motif finding. In Algorithms
in Bioinformatics, 4th International Workshop, WABI, pages 438–
449, 2004.

[19] Martin Tompa et Al. Assessing computational tools for the dis-
covery of transcription factor binding sites. Nature Biotechnology,
23(1):137–144, January 2005.

6

