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The World Wide Web (WWW) is rapidly becoming important for society as a medium for sharing
data, information and services, and there is a growing interest in tools for understanding collective
behaviors and emerging phenomena in the WWW. In this paper we focus on the problem of
searching and classifying communities in the web. Loosely speaking a community is a group
of pages related to a common interest. More formally communities have been associated in the
computer science literature with the existence of a locally dense sub-graph of the web-graph (where
web pages are nodes and hyper-links are arcs of the web-graph). The core of our contribution is
a new scalable algorithm for �nding relatively dense subgraphs in massive graphs. We apply our
algorithm on web-graphs built on three publicly available large crawls of the web (with raw sizes
up to 120M nodes and 1G arcs). The e�ectiveness of our algorithm in �nding dense subgraphs is
demonstrated experimentally by embedding arti�cial communities in the web-graph and counting
how many of these are blindly found. E�ectiveness increases with the size and density of the
communities: it is close to 100% for communities of a thirty nodes or more (even at low density).
It is still about 80% even for communities of twenty nodes with density over 50% of the arcs present.
At the lower extremes the algorithm catches 35% of dense communities made of ten nodes. We also
develop some su�cient conditions for the detection of a community under some local graph models
and not-too-restrictive hypotheses. We complete our Community Watch system by clustering the
communities found in the web-graph into homogeneous groups by topic and labeling each group
by representative keywords.
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1. INTRODUCTION
Searching for social structures in the World Wide Web has emerged as one of
the foremost research problems related to the breathtaking expansion of the World
Wide Web. Thus there is a keen academic as well as industrial interest in developing
e�cient algorithms for collecting, storing and analyzing the pattern of pages and
hyper-links that form the World Wide Web, since the pioneering work of Gibson,
Kleinberg and Raghavan [Gibson et al. 1998]. Nowadays many communities of the
real world that want to have a major impact and recognition are represented in the
Web. Thus the detection of cyber-communities, i.e. set of sites and pages sharing
a common interest, improves also our knowledge of the world in general.

1.1 Cyber-communities as dense subgraphs of the web graph
The most popular way of de�ning cyber-communities is based on the interpretation
of WWW hyperlinks as social links [Chakrabarti et al. 1999]. For example, the web
page of a conference contains an hyper-link to all of its sponsors, similarly the home-
page of a car lover contains links to all famous car manufactures. In this way, the
Web is modelled by the web graph, a directed graph in which each vertex represents
a web-page and each arc represents an hyper-link between the two corresponding
pages. Intuitively, cyber-communities correspond to dense subgraphs of the web
graph.

1.1.1 An open problem. Monika Henzinger in a recent survey on algorithmic
challenges in web search engines [Henzinger 2002] remarks that the Trawling algo-
rithm of Kumar et al. [Kumar et al. 1999b] is able to enumerate dense bipartite
graphs in the order of tens of nodes and states this open problem: �In order to more
completely capture these cyber-communities, it would be interesting to detect much
larger bipartite subgraphs, in the order of hundreds or thousands of nodes. They
do not need to be complete, but should be dense, i.e. they should contain at least
a constant fraction of the corresponding complete bipartite subgraphs. Are there
e�cient algorithms to detect them? And can these algorithms be implemented
e�ciently if only a small part of the graph �ts in main memory?�

1.1.2 Theoretical results. From a theoretical point of view, the dense k-subgraph
problem, i.e. �nding the densest subgraph with k vertices in a given graph, is
clearly NP-Hard (it is easy to see by a reduction from the max-clique problem).
Some approximation algorithms with a non constant approximation factor can be
found in the literature for example in [Han et al. 2000; Feige et al. 2001; Feige and
Langberg 2001], none of which seem to be of practical applicability. Studies about
the inherent complexity of the problem of obtaining a constant factor approximation
algorithm are reported in [Hastad 1999] and [Feige 2002].

1.1.3 Some heuristic methods. In the literature there are a few heuristic meth-
ods to extract communities from the web (or from large graphs in general). The
most important and ground breaking algorithm is due to Kumar et al. in [Kumar
et al. 1999b] where the authors aim at enumerating complete bipartite subgraphs
with very few vertices, then extend them to dense bipartite subgraphs by using local
searches (based on the HITS ranking algorithm). The technique in [Kumar et al.
1999b] is aimed at detecting small complete bipartite communities, of the order
of ten vertices, while the subsequent community expansion guided by the hub and
authority scores of the HITS algorithm (regardless of further density considera-
tions). In [Flake et al. 2002] Flake, Lawrence, Giles and Coetzee use the notion of
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maximum �ow to extract communities, but they are also limited to communities
for which an initial seed node is available. In [Gibson et al. 2005] Gibson, Kumar
and Tomkins use a new sampling method (shingling) based on the notion of min-
wise independent permutations, introduced in [Broder et al. 2000], to evaluate the
similarity of neighborhoods of vertices and then extract very large and very dense
subgraphs of the web-host graph. This technique is speci�cally aimed to detect-
ing very large and dense subgraphs, in a graph, like the web-host-graph of quite
large average degree. The authors in [Gibson et al. 2005, Section 4.2] remark that
(with a reasonable set of parameters) the shingling method is e�ective for dense
subgraphs of over 50 nodes but breaks down below 24 nodes. Thus there is room
for improvements via alternative approaches.

1.2 Our contribution
In this paper we propose two new simple characterization of dense subgraphs. From
these characterization we derive a new heuristic, which is based on a two-step �l-
tering approach. In the �rst �ltering step we estimate e�ciently the average degree
and the similarity of neighbor sets of vertices of a candidate community. This
initial �ltering is very e�cient since it is based only on degree-counting. The sec-
ond �ltering step is based on an iterative re�nement of the candidate community
aimed at removing small degree vertices (relative to the target average density),
and thus increasing the average degree of the remaining core community. We test
our algorithm on very large snapshots of the web graph (both for the global web-
graph and for some large national domains) and we give experimental evidence of
the e�ectiveness of the method. We have coupled the community extraction algo-
rithm with a clustering tool that groups the communities found into homogeneous
groups by topic and provide a useful user interface for exploring the community
data. The user interface of the Community Watch system is publicly available
at http://comwatch.iit.cnr.it. To the best of our knowledge this is the �rst
publicly available tool to visualize cyber-communities.

1.2.1 Target size. In our method the user supplies a target threshold t and the
algorithm lists all the communities found with average degree at least t. Naturally
the lower the t-value the more communities will be found and the slower the method.
In our experiments our method is still e�ective for values of t quite close to the
average degree of the web-graphs (say within a factor 2), and communities of a
few tens of nodes. Our heuristic is particularly e�cient for detecting communities
of large and medium size, while the method in [Kumar et al. 1999b] is explicitly
targeted towards communities with a small complete bipartite core-set.

1.2.2 Final applications. The detection of dense subgraphs of the web-graph
might serve as a stepping stone towards achieving several broader goals. One pos-
sible goal is to improve the performance of critical tools in the WWW infrastruc-
ture such as crawlers, indexing and ranking components of search engines. In this
case often dense subgraphs are associated with negative phenomena such as the
Tightly Knit Community (TKC) e�ect [Lempel and Moran 2000], link-farm spam-
ming [Gyöngyi and Garcia-Molina 2005], and data duplication (mirroring) [Bharat
et al. 2000]. In this paper, following [Kumar et al. 1999c] we place instead the
accent on the �positive� aspect of cyber-communities: our intent at the moment is
to provide an exploratory tool capable of extracting a synthetic description of the
current status and current trends in the social structure of the WWW.
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1.3 Visualization of the Communities
Given a single dense community it is easy by manual inspection to gain some hint as
to its general area of interest and purpose, however gaining insight on hundreds (or
thousands) of communities can become a tiresome task, therefore we have coupled
our dense-subgraph extraction algorithm with a visualization tool that helps in the
exploratory approach. This tool is based on the e�cient clustering/labelling system
described in detail in [Geraci et al. 2007]. In nutshell from each community, using
standard IR techniques, we extract a vector of representative words with weights
related to the words frequencies (word-vector). A clustering algorithm is applied
to the word-vectors and we obtain groups of communities that are homogeneous by
topic, moreover a list of representative keywords for each cluster is generated so to
guide the user to assess the intrinsic topic of each cluster of communities.

1.4 Mirrors and Link-farms
Information retrieval on the WWW is complicated by the phenomenon of �data
replication� (mirroring) and several forms of spamming (e.g. link-farms). For mir-
rors, o�-line detection of such structures using the techniques in [Bharat et al.
2000] implies pairwise comparisons of all (or most if some heuristic �ltering is used)
pairs of web-sites, which is an expensive computation. Link-farm detection implies
technique borderline with those used for community detection. In our context,
however, e�ciency and e�ectiveness of the community detection algorithm are not
really impaired by such borderline phenomena. For this reason we do not attempt
to �lter out these phenomena before applying our algorithms. Instead we envision
these steps (mirror detection and link-farm detection) as a post-processing phase in
our Community Watch system. In particular since we perform e�ciently both the
community detection and community clustering we can apply mirror and link-farm
detection separately and independently in each cluster thus retaining the overall
system scalability.

1.5 Organization of the paper
Section 2 lists previous work on �nding dense subgraphs in the web graph. Section
3 introduces the precise de�nition of community we use. Section 4 describes the
derivation of our criteria for detecting a community, and the resulting algorithm.
Section 5 gives a theoretical underpinning to the proposed algorithm by listing
su�cient conditions for its asymptotic correctness, and also some non-asymptotic
bounds in simpler models. Section 6 describes su�cient conditions for the detection
of two dense partially overlapping community. Section 7 describes the experimental
validation of the proposed algorithm. Section 8 describes the communities found on
three large snapshots of the web graph. Section 9 introduces the tool Community
Watch we have developed and used to classify the communities by content. The
preliminary work in [Dourisboure et al. 2007] includes the description of the algo-
rithm and the experiments with embedded communities. In this extended journal
paper we have developed the models and the su�cient conditions for the detections
of the communities in Section 5 and the case of dense overlapping communities in
Section 6. Moreover, in Section 8 we give an example of the application of our
classi�cation method of communities into homogeneous groups for the graph of the
domain .uk in 2005.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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2. PREVIOUS WORK
Given the hypertext nature of the WWW one can approach the problem of �nding
cyber-communities by using as main source the textual content of the web pages,
the hyperlinks structure, or both. Among the methods for �nding group of coherent
pages based only on text content we can mention [Broder et al. 1997]. Recom-
mendation systems usually collect information on social networks from a variety of
sources (not only link structure) (e.g. [Kautz et al. 1997]). Problems of a similar
nature appears in the areas of social network analysis, citation analysis and biblio-
metrics, where, however, given the relatively smaller data sets involved (relative to
the WWW), e�ciency is often not a critical issue [Newman 2003].
Since the pioneering work [Gibson et al. 1998] the prevailing trend in the Com-

puter Science community is to use mainly the link-structure as basis of the com-
putation. Previous literature on the problem of �nding cyber-communities using
link-based analysis in the web-graph can be broadly split into two large groups.
In the �rst group are methods that need an initial seed of a community to start
the process of community identi�cation. Assuming the availability of a seed for a
possible community naturally directs the computational e�ort in the region of the
web-graph closest to the seed and suggests the use of sophisticated but computa-
tional intensive techniques, usually based of max-�ow/min-cut approaches. In this
category we can list the work of [Gibson et al. 1998; Flake et al. 2000; Flake
et al. 2002; Imafuji and Kitsuregawa 2003; Ino et al. 2005]. The second group
of algorithms does not assume any seed and aims at �nding all (or most) of the
communities by exploring the whole web graph. In this category falls the work of
[Kumar et al. 1999b; 1999a; Reddy and Kitsuregawa 2001; Kumar et al. 2005;
Gibson et al. 2005].
Certain particular artifacts in the WWW called �link farms� whose purpose is to

bias search-engines pagerank-type ranking algorithms are a very particular types
of �arti�cial� cyber-communities that are traced using techniques bordering with
those used to �nd dense subgraphs in general. See for example [Wu and Davison
2005; Bianchini et al. 2005].
Abello et al. [Abello et al. 2002] propose a method based on local searches with

random restarts to escape local minima, which is quite computational intensive.
A graph representing point to point telecommunications with 53 M nodes and
170M edges is used as input. The equipment used is a multiprocessor machine of
10 200MHz processors and total 6GB RAM memory. A timing result of roughly
36 hours is reported in [Abello et al. 2002] for an experiment handling a graph
obtained by removing all nodes of degree larger than 30, thus, in e�ect, operating on
a reduced graph of 9K nodes and 320K edges. Even discounting for the di�erence
in equipment we feel that the method in [Abello et al. 2002] would not scale well
to searching for medium-density and medium-size communities in graphs as large
as those we are able to handle (up to 20M nodes and 180M edges after cleaning).
Girvan and Newman [Girvan and Newman 2002] de�ne a notion of local density
based on counting the number of shortest paths in a graph sharing a given edge.
This notion, though powerful, entails algorithm that do not scale well to the size
of the web-graph. Spectral methods described in [Capocci et al. 2004] also lack
scalability (i.e. in [Capocci et al. 2004] the method is applied to graphs from
psychological experiments with 10K nodes and 70K edges).
A system similar in spirit to that proposed in this paper is Camp�re described

in [Kumar et al. 1999c] which is based on the Trawling algorithm for �nding the
dense core, on HITS for community expansion and on an indexing structure of
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community keywords that can be queried by the user. Our system is di�erent from
Camp�re �rst of all in the algorithms used to detect communities but also in the
�nal user interface: we provide a clustering/labelling interface that is suitable to
giving a global view of the available data.

3. PRELIMINARIES
3.1 Notions and notation
A directed graph G = (V, E) consists of a set V of vertices and a set E of arcs,
where an arc is an ordered pair of vertices. The web graph is the directed graph
representing the Web: vertices are pages and arcs are hyperlinks.
Let u, v be any vertices of a directed graph G, if there exists an arc a = (u, v),

then a is an outlink of u, and an inlink of v. Moreover, v is called a successor
of u, and u a predecessor of v. For every vertex u, N+(u) denotes the set of its
successors, and N−(u) the set of its predecessors. Then, the outdegree and the
indegree of u are respectively d+(u) = |N+(u)| and d−(u) = |N−(u)|. Let X be any
subset of V , the successors and the predecessors of X are respectively de�ned by:
N+(X) =

⋃
u∈X N+(u) and N−(X) =

⋃
u∈X N−(u). Observe that X ∩N+(X) 6= ∅

is possible. A graph G = (V,E) is called a complete bipartite graph, if V can be
partitioned into two disjoint subsets X and Y , such that, for every vertex u of X,
the set of successors of u is exactly Y , i.e., ∀u ∈ X, N+(u) = Y . Consequently for
every node v ∈ Y its predecessor set is X. Finally, let Ñ(u) be the set of vertices
that share at least one successor with u: Ñ(u) = {w ∈ V | N+(u) ∩N+(w) 6= ∅}.
Two more useful de�nitions. De�ne for sets A and B the relation A 'γ B when

|A ∩ B| ≥ γ|B|, for a constant γ ∈ [0, 1]. De�ne for positive numbers a, b the
relation a ≈ε b when |a− b| ≤ ε|a|, for a constant ε ∈ [0, 1]. When the constant can
be inferred from the context the subscript is omitted.

3.2 De�nitions of Web Community
The basic argument linking the (informal) notion of web communities and the
(formal) notion of dense subgraphs is developed and justi�ed in [Kumar et al.
1999b]. It is summarized in [Kumar et al. 1999b] as follows: �Web communities
are characterized by dense directed bipartite subgraph�. Without entering in a
formal de�nition of density in [Kumar et al. 1999b] it is stated the hypothesis that:
�A random large enough and dense enough bipartite subgraph of the Web almost
surely has a core�, (i.e. a complete bipartite sub-graph of size (i, j) for some small
integer values, i and j). A standard de�nition of γ-density, as used for example
in [Gibson et al. 2005], is as follows: a γ-dense bipartite subgraph of a graph
G = (V, E) is a disjoint pair of sets of vertices, X,Y ⊆ V such that |{(x, y) ∈
E|x ∈ X ∧ y ∈ Y }| ≥ γ|X||Y |, for a real parameter γ ∈ [0 . . . 1]. Note that γ|Y | is
also a lower bound to the average out-degree of a node in X. Similarly a γ-dense
quasi-clique is a subset X ⊂ V such that |{(x, y) ∈ E|x ∈ X ∧ y ∈ X}| ≥ γ

(|X|
2

)
,

for a real parameter γ ∈ [0 . . . 1], as in [Abello et al. 2002; Feige et al. 2001]. This
notion of a core of a dense subgraph in [Kumar et al. 1999b] is consistent with the
notion of γ-density for values of γ large enough, where the notion of �almost surely�,
(i, j)-core, �large enough�, �dense enough�, must be interpreted as a function of γ.
Our formulation uni�es the notion of a γ-dense bipartite subgraph and a γ-dense
quasi-clique as a pair of not necessarily disjoint sets of vertices, X, Y ⊆ V such that
∀x ∈ X, |N+(x)∩Y | ≥ γ|Y | and ∀y ∈ Y, |N−(y)∩X| ≥ γ′|X|. For two constants γ
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and γ′ in [0, 1]. Our de�nition implies that in [Gibson et al. 2005], and conversely,
any γ-dense subgraph following [Gibson et al. 2005] contains a γ-dense subgraph
in our de�nition1.
Thus a community in the web is de�ned by two sets of pages, the set of the Y

centers of the community, i.e. pages sharing a common topic, and the set X of the
fans, i.e., pages that are interested in the topic. Typically, every fan contains a link
to most of the centers, at the same time, there are few links among centers (often
for commercial reasons) and among fans (fans may not know each other).

4. HEURISTIC FOR LARGE DENSE SUBGRAPHS EXTRACTION
4.1 Description
The de�nition of γ-dense subgraph can be used to test if a pair of sets X,Y ⊆ V is
a γ-dense subgraph (both bipartite and clique). However it cannot be used to �nd
e�ciently a γ-dense subgraph (X, Y ) embedded in G. In the following of this section
we de�ne properties of dense sub-graphs and then we will proceed by relaxing them
up to the point of having properties that can be computed directly on the input
graph G. These properties will hold exactly (with equality) for an isolated complete
bipartite graph (and clique), will hold approximately for an isolated γ-dense graph,
where the measure of approximation will be related to the parameter γ. However
at the end we need a �nal relaxation step in which we will consider the subgraphs
as embedded in G.

4.1.1 Initial intuitive outline. First of all, let us give an initial intuition of the
reason why our heuristic might work. Let G = (V, E) be a sparse directed graph,
and let (X, Y ) be a γ-dense subgraph within G. Then, let u be any vertex of X.
Since (X, Y ) is a γ-dense subgraph by de�nition we have ∀u ∈ X, N+(u) 'γ Y ,
and symmetrically ∀v ∈ Y, N−(v) 'γ′ X. For values γ > 0.5 the pigeon hole
principle ensures that any two nodes u and v of X always share a successor in Y ,
thus X ⊆ Ñ(u), and, if every vertex of Y has at least a predecessor in X, also
Y ⊆ N+(Ñ(u)). The main idea now is to estimate quickly, for every vertex u of
G, the degree of similarity of N+(u) and N+(Ñ(u)). In the case of an isolated
complete bipartite graph N+(u) = Y , and N+(Ñ(u)) = Y . For an isolated γ-dense
bipartite graph, we have N+(u) 'γ Y and N+(Ñ(u)) = Y . The conjecture is that
when the γ-dense bipartite graph is a subgraph of G, and thus we have the weaker
relationship Y ⊆ N+(Ñ(u)), the excess N+(Ñ(u))\Y is small compared to Y so to
make the comparison of the two sets still signi�cant for detecting the presence of a
dense subgraph. We will make these concepts more precise in Section 5 and derive
the main formal result of theorem 1 stating su�cient condition for the convergence
of the main function we use in detecting the presence of a dense subgraph.

4.1.2 The isolated complete case. To gain in e�ciency, instead of evaluating
the similarity of successor set, we will estimate the similarity of out-degrees by
counting. In a complete bipartite graph (X, Y ), we have that ∀u ∈ X, N+(u) = Y ,
therefore, ∀u, v ∈ X, N+(u) = N+(v). The set of vertices sharing a successor with
u is Ñ(u) = X, and moreover N+(Ñ(u)) = Y . Passing from relations among sets

1It is su�cient to eliminate nodes of X of outdegree smaller than γ|Y |, and from Y those of
indegree smaller than γ′|X|.
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to relations among cardinalities we have that: ∀u, v ∈ X, d+(u) = d+(v), and the
degree of any node coincide with the average out-degree:

d+(u) =
1

|Ñ(u)|
∑

v∈Ñ(u)

d+(v).

4.1.3 The isolated γ-dense case. In a γ-dense bipartite graph, we still have
Ñ(u) = X but now, |Y | ≥ d+(v) ≥ γ|Y | for every v ∈ X. Thus we can conclude
that

|d+(u)− 1

|Ñ(u)|
∑

v∈Ñ(u)

d+(v)| ≤ (1− γ)|Y | ≤ 1− γ

γ
d+(u).

For γ → 1 the di�erence tends to zero. Finally assuming that for a γ-dense bipartite
subgraph of G the excesses Ñ(u) \X and N+(Ñ(u)) \ Y give a small contribution,
we can still use the above test as evidence of the presence of a dense sub-graph.
At this point we pause, we state our �rst criterion and we subject it to criticism in
order to improve it.

Criterion 1. If d+(u) and |Ñ(u)| are big enough and

d+(u) ≈ 1

|Ñ(u)|
∑

v∈Ñ(u)

d+(v),

then
(
Ñ(u), N+(Ñ(u))

)
might contain a community.

4.1.4 A critique of Criterion 1. Unfortunately, this criterion 1 cannot be used
yet in this form. One reason is that computing Ñ(u) for every vertex u of big
enough outdegree in the web graph G is not scalable. Moreover, the criterion
is not robust enough w.r.t. noise from the graph. Assume that the situation
depicted in �gure 1 occurs: u ∈ X, (X, Y ) induces a complete bipartite graph with
|Z| = |X| = |Y | = x, and each vertex of Y has one more predecessor of degree 1 in
Z. Then, Ñ(u) = X∪Z, so 1

|Ñ(u)|
∑

v∈Ñ(u) d+(v) = x+1
2 that is far from d+(u) = x,

so (X,Y ) will not be detected.

ZX Y

u

Fig. 1. A complete bipartite subgraph with |X| = |Y | = x, and some �noise� Z, with |Z| = x.
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4.1.5 Overcoming the drawbacks of Criterion 1. Because of the shortcomings
of Criterion 1 we describe a second criterion that is more complex to derive but
computationally more e�ective and robust. As before we will start with the case of
the isolated complete bipartite graph. Consider a node u ∈ X, clearly N+(u) = Y ,
and ∀y ∈ N+(u), N−(y) = X, thus ∀w ∈ N−(y), N+(w) = Y . Turning to the
cardinalities: for a node u ∈ X, ∀y ∈ N+(u), ∀w ∈ N−(y) d+(w) = |Y |. Thus also
the average value of all out-degrees for nodes in N−(y) is |Y |. In formulae: given
u ∈ X, ∀y ∈ N+(u),

1
d−(y)

∑

w∈N−(y)

d+(w) = |Y |.

Next we average over all y ∈ N+(u) by obtaining the following equation: given
u ∈ X,

1∑
y∈N+(u) d−(y)

∑

y∈N+(u)

∑

w∈N−(y)

d+(w) = |Y |.

Finally since d+(u) = |Y | we have the equality:

1∑
y∈N+(u) d−(y)

∑

y∈N+(u)

∑

w∈N−(y)

d+(w) = d+(u).

We restate the above equality in terms of a few function easier to manipulate. Let:

A(u) =
∑

y∈N+(u)

∑

w∈N−(y)

d+(w), (1)

B(u) =
∑

y∈N+(u)

d−(y), (2)

and

Err(u) = 1− A(u)
B(u)d+(u)

. (3)

The test for an isolated complete bipartite graph is equivalent to requesting that
Err(u) is zero. Next we relax the scenario and we apply the test to an isolated
γ-dense bipartite graph. Here we require that |Err(u)| is small (i.e. tends to zero)
when the graph is close to be a complete bipartite graph (i.e γ and γ′ tend to 1),
or a clique. Consider a node u ∈ X, since N+(u) 'γ Y , and for a node v ∈ Y ,
N−(v) 'γ′ X, we get the bounds:

|X||Y | ≥ B(u) ≥ γ|Y |γ′|X|,

|Y |2|X| ≥ A(u) ≥ γ2|Y |2γ′|X|.
On the other hand |Y | ≥ d+(u) ≥ γ|Y |. The error function Err(u) is upper
bounded by 1− γ2γ′. For γ → 1 and γ′ → 1 the error tends to zero.
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Thus in an approximate sense the relationship is preserved for isolated γ-dense

bipartite graphs. Clearly now we will make a further relaxation by considering the
sets N+(.) and N−(.) as referred to the overall graph G, instead of just the isolated
pair (X,Y ).

Criterion 2. If d+(u) and |Ñ(u)| are big enough and

d+(u) ≈ 1∑
y∈N+(u) d−(y)

∑

y∈N+(u)

∑

w∈N−(y)

d+(w),

then
(
Ñ(u), N+(Ñ(u))

)
might contain a community.

4.1.6 Advantages of Criterion 2. There are several advantages in using Crite-
rion 2. The �rst advantage is that the relevant summations are de�ned over sets
N+(.) and N−(.) that are encoded directly in the graphs G and GT . We will
compute Ñ(u) in the second phase only for vertices that are likely to belong to a
community. The second advantage is that the result of the inner summation can
be pre-computed stored and reused. We just need to store two tables of size n
(n = |V |), one containing the values of

∑
v∈N−(w) d+(v), the other containing the

indegrees. Thirdly, the criterion 2 is much more robust than criterion 1 to noise,
since the outdegree of every vertex of X is counted many times. For example, in
the situation depicted in �gure 1, we obtain the following result:
∀u ∈ X and w ∈ N+(u),

∑
v∈N−(w) d+(v) = x2 + 1.

Thus, ∀u ∈ X,
1∑

w∈N+(u) d−(w)

∑
w∈N+(u)

∑
v∈N−(w) d+(v) = x(x2+1)

x(x+1) ' x.
A more general analysis of the e�ects of the �noise� from the graph G is postponed
to Section 5.

4.1.7 Final re�nement step. Finally, let u be a vertex that satis�es the criterion
2, we construct explicitly the two sets Ñ(u) and N+(Ñ(u)). Then, we extract the
community (X, Y ) contained in

(
Ñ(u), N+(Ñ(u))

)
thanks to an iterative loop in

which we remove from Ñ(u) all vertices v for which N+(v)∩N+(Ñ(u)) is small, and
we remove from N+(Ñ(u)) all vertices w for which N−(w) ∩ Ñ(u) is small.

4.2 Algorithms
In �gures 2 and 3 we give the pseudo-code for our heuristic. Algo-
rithm RobustDensityEstimation detects vertices that satisfy the �ltering formula of
criterion 2, then function ExtractCommunity computes Ñ(u) and N+(Ñ(u)) and ex-
tracts the community of which u is a fan. This two algorithms are a straightforward
application of the formula in the criterion 2.

4.3 Role of the auxiliary input parameters
The input parameter t is a size parameter and indicates the lower bound target to
the average degree of the communities to be detected. We tested our method for
values as low as t = 8, meaning that we search for all communities with average
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Algorithm RobustDensityEstimation
Input: A directed graph G = (V, E), a threshold for degrees
Result: A set S of dense subgraphs detected by vertices of outdegrees > threshold
begin

Init:
forall u of G do

forall v ∈ N−(u) do
TabSum[u] ← TabSum[u] + d+(v)

end
end

Search:
forall u that is not already a fan of a community and s.t. d+(u) > threshold do

sum ← 0;
nb ← 0;
forall v ∈ N+(u) do

sum ← sum + TabSum[v];
nb ← nb + d−(v);

end
if sum/nb ' d+(u) and nb > d+(u)× threshold then

S ← S ∪ ExtractCommunity(u);
end

end
Return S;

end

Fig. 2. RobustDensityEstimation performs the main �ltering step.

Function ExtractCommunity
Input: A vertex u of a directed graph G = (V, E). Slackness parameter ε
Result: A community of which u is a fan
begin

Initialization:
forall v ∈ N+(u) do

forall w ∈ N−(v) that is not already a fan of a community do
if d+(w) > (1− ε)d+(u) then mark w as potential fan

end
end
forall potential fan v do

forall w ∈ N+(v) do
mark w as potential center;

end
end

Iterative re�nement:
repeat

Unmark potential fans of small local outdegree;
Unmark potential centers of small local indegree;

until Number of potential fans and centers have not changed signi�catively

Update global data structures:
forall potential fan v do

forall w ∈ N+(v) that is also a potential center do
TabSum[w] ← TabSum[w]− d+(v);
d−(w) ← d−(w)− 1;

end
end

Return (potential fans, potential centers);
end

Fig. 3. ExtractCommunity extracts the dense subgraph.
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degree above 8. The parameter t is needed for several reasons. The formal de�nition
of web community as a quasi-dense bipartite graph (or quasi-dense clique) has some
limit not interesting cases. For example a single edge (the graph K1,1) satis�es the
de�nition with 100% relative density but it is not interesting in a typical application.
Thus it make sense to have t ≥ 2. For an intermediate range of values, say t ∈
[2, 7], enumerative methods such as the Trawling algorithm are fast and are able to
discover greedily all the small dense bipartite graphs. Working in the range t ≥ 8
we are looking in a region not well covered by other techniques. A second reason for
using values of t not too small is due to the mutually reinforcing disruptive e�ect
of low density (as captured by the parameters γ, γ′) and of the noise induced by
the graph on a small non-isolated community. Experiments in section 7 show that
at density below 75%, for a small number of nodes: t = 10, the background noise
in the model we adopted induces always a failure of the �ltering criterion. The
second parameter is a bound on the acceptable relative error Err(u) for the node
u. In our experiments we adopted the values ε = 0.2 and ε = 0.25. Since the results
are essentially identical we concluded that the value ε = 0.2 is stable w.r.t. the
problem of �nding communities in the instances of web graph at our disposal and
we report the results for ε = 0.2 only. Using the analysis in section 4, a relative error
bound ≤ 0.2 allows to detect isolated quasi-dense communities with γ = γ′ ≥ 0.9.
This rough analysis is consistent with the synthetic experimental results in section
7 where, even in the presence of background error, we capture more than 80% of the
arti�cial communities of density above 75% and size above 20 nodes. In general we
observe that the experimental results in section 7 give us performances in terms of
density/size that are better than the worst case predictions as derived in sections 4
and 5. This is due to two reasons. The �rst reason is that failure to detect a small
error value at node u belonging to a community implies the co-occurrence of several
di�erent worst case e�ects (the e�ects due to the background-noise and those due
to the quasi-density of the community are rather weakly correlated). Moreover it is
su�cient for the criterion to hold for one of the nodes of a community to discover the
whole community. This fact explains why mid-size communities (above 30 nodes)
are detected in practice even with quite low density (below 50%) and in presence
of background noise.

4.4 Handling of overlapping communities
Our algorithm can capture also partially overlapping communities. This case may
happen when we have older communities that are in the process of splitting or newly
formed communities in the process of merging. However overlapping centers and
overlapping fans are treated di�erently, since the algorithm is not fully symmetric
in handling fans and centers.
Communities sharing fans. The case depicted in Figure 4(a) is that of over-

lapping fans. If the overlap X∩X ′ is large with respect to X∪X ′ then our algorithm
will just return the union of the two communities (X ∪ X ′, Y ∪ Y ′). Otherwise
when the overlap X ∩ X ′ is not large the algorithm will return two communities:
either the pairs (X, Y ) and (X ′ \X, Y ′), or the pairs (X ′, Y ′) and (X \X ′, Y ).
So we will report both the communities having their fan-sets overlapping, but the
representative fan sets will be split. The notion of large/small overlap is a complex
function of the degree threshold and other parameters of the algorithm. In either
case we do not miss any important structure of our data.
Communities sharing centers. Note that the behavior is di�erent in the case

of overlapping centers. A vertex can be a center of several communities. Thus, in
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the case depicted in Figure 4(b), if the overlap Y ∩Y ′ is big with respect to Y ∪Y ′,
then we will return the union of the two communities (X ∪X ′, Y ∪ Y ′), otherwise
we will return exactly the two overlapping communities (X, Y ) and (X ′, Y ′). In
either case we do not miss any important structure of our data. Observe that the
last loop of function ExtractCommunity removes logically from the graph all arcs
of the current community, but not the vertices. Moreover, a vertex can be fan of a
community and center of several communities. In particular it can be fan and center
for the same community, so we are able to detect dense quasi bipartite subgraphs
as well as quasi cliques.
A quantitative assessment of the properties of the �lter in the case of overlapping

communities in postponed to Section 6.

Y

X

X ′ Y ′

(a) Communities sharing fans

X

Y

Y ′ X ′

(b) Communities sharing centers

Fig. 4. Two cases of community intersection

4.5 Complexity analysis
We perform now a semi-empirical complexity analysis in the standard RAM model.
The graph G and its transpose GT are assumed to be stored in main memory in
such a way as to be able to access a node in time O(1) and links incident to it
in time O(1) per link. We need O(1) extra storage per node to store in-degree,
out-degree, a counter TabSum, and a tag bit. Algorithm RobustDensityEstimation
visits each edge at most once and performs O(1) operations for each edge, thus has
a cost O(|V | + |E|), except for the cost of invocations of the ExtractCommunity
function. Potentially the total time cost of the invocations of ExtractCommunity is
large, however experimentally the time cost grows only linearly with the number of
communities found. This behavior can be explained as follows. We measured that
less than 30% of the invocations do not result in the construction of a community
(see Table V), and that the inner re�nement loop converges on average in less than
3 iterations (see Table IV). If the number of nodes and edges of a community
found by ExtractCommunity for u is proportional by a constant to the size of the
bipartite sub-graph

(
Ñ(u), N+(Ñ(u))

)
then we are allowed to charge all operations

within invocations of ExtractCommunity to the size of the output. Under these
conditions each edge is charged on average a constant number of operations, thus
explaining the observed overall empirical complexity O(|V |+ |E|+ |Output|)).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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4.6 Scalability
The algorithm we described, including the initial cleaning steps, can be easily con-
verted to work in the streaming model, except for procedure ExtractCommunity
that seems to require the use of random access of data in core memory. Here we
want to estimate with a �back of the envelope� calculation the limits of this ap-
proach using core memory. The purpose of the calculation is to establish whether
machines are available with su�cient core memory to be able to handle the whole
web graph. Andrei Broder et al. [Broder et al. 2000] in the year 2000 estimated
the size of the indexable web graph at 200M pages and 1.5G edges (thus an average
degree about 7.5 links per page, which is consistent with the average degree 8.4 of
the WebBase data of 2001). A more recent estimate by Gulli and Signorini [Gulli
and Signorini 2005] in 2005 gives a count of 11.5G pages. The latest index-size
war ended with Google claiming an index of 25G pages. The average degree of
the webgraph has been increasing recently due to the dynamic generation of pages
with high degree, and some measurements give a count of 40.2 The initial clean-
ing phase reduces the WebBase graph by a factor 0.17 in node count and 0.059 in
the Edge count. Thus using these coe�cients the cleaned web graph might have
4.25G nodes and 59G arcs. The compression techniques in [Boldi and Vigna 2004]
for the WebBase dataset achieves an overall performance of 3.08 bits/edge. These
coe�cient applied to our cleaned web graph give a total of 22.5Gbytes to store the
graph. Storing the graph G and its transpose we need to double the storage (al-
though here some saving might be achieved), thus achieving an estimate of about
45Gbytes. Our calculation are very rough and rely on the assumption that all the
conversion factors apply linearly to the whole web-graph. Each such assumption
could be challenged, however, even if we are o� the mark by a factor 10, and the
real size is close to 450Gbytes, still we stay within feasibility. For example IBM
System Z9 sells in con�gurations up to 64 GB of RAM core memory, while an HP
9000 Superdome Server sells in con�gurations up to 2TB of RAM core memory,
although with a more expensive price tag.

5. ANALYSIS OF ROBUSTNESS IN PRESENCE OF NOISE
In this section we develop a deeper understanding of the formula used by the cri-
terion 2 to detect nodes belonging to a dense community. We perform three types
of analysis. In the �rst type of analysis we employ a simpli�ed model for the struc-
ture of the noise graph. In particular we will assume a �sparse� model for the noise,
i.e. a node in the noise component can be linked to only one of the community
nodes. Next we will analyze the same simpli�ed model in the other extreme case
of a �dense� noise graph (i.e. a node in the noise component can be linked to many
of the community nodes) In both cases we can derive fairly tight non-asymptotic
bounds for the size of the noise component that still allows detection of the a
community.
In the third case we employ a more general model taking into account all possible

contributions to the noise graph. In this case exact bounds are hard to derive, but
we can prove an asymptotic bound under some natural conditions.

2S. Vigna and P. Boldi, personal communication.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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5.1 Bounds on the level of noise: the sparse case
The sparse XYZQ model is as follows. We have four sets of nodes: X, Y, Z, Q,
where |X| = |Y | = x, |Z| = kx, and |Q| = mx. The pair (X, Y ) is a complete
bipartite graph, that is each element ξi ∈ X has x links to elements of Y . Each
element ηj ∈ Y has x in-links from elements of X. Moreover each element ξi ∈ X
has mi links to elements of Q, such that

∑
i mi = mx (so m is the average), and for

every i, mi ≤ |Q| = mx. Each element of Q has a unique in-link and no out-links.
Each element ηj ∈ Y has kj in-links from elements of Z, such that

∑
j kj = kx (so

k is the average), and for every j, kj ≤ |Z| = kx. Each element of Z has a unique
out-link and no in-links.

X Y
x x

Z Q

km

Fig. 5. The Sparse XYZQ Model. The �gure indicates the 4 node classes and the 3 edge classes.
Next to each edge class is indicated the symbol used in the paragraph to denote the corresponding
indegree and outdegree of the nodes.

Let Err(u) the relative error of formula (3) when evaluated for a given node u ∈ X.
We will �rst give an explicit formula for Err(u). Next we see several conditions
that imply |Err(u)| ≤ ε for an ε ∈ [0, 1].
Let u = xi be a node in X By an abuse of notation we indicate with mu the noise
value for u, thus d+(u) = x + mu.
We have N+(u) = Y ∪Qu where Qu ⊂ Q is the set of successors of u in Q and

|Qu| = mu. Let y be a generic element of N+(u). If y ∈ Y then N−(y) = X ∪ Zy

where Zy is the set of predecessors of y in Z, and |Zy| = ky. So d−(y) = x + ky. If
y ∈ Qu then N−(y) = u, and d−(y) = 1. Now we can evaluate:

B(u) =
∑

y∈N+(u)

D−(y) =
x∑

i=1

(x + ki) +
mu∑

j=1

1 = x2 + kx + mu

ACM Journal Name, Vol. V, No. N, Month 20YY.
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A1(y) =
∑

w∈N−(y),y∈Y

D+(w) =
x∑

i=1

(x + mi) + ky = x2 + mx + ky

A2(y) =
∑

w∈N−(y),y∈Qu

D+(w) =
∑
w=u

D+(w) = x + mu

A(u) =
∑

y∈Y

A1(y)+
∑

y∈Qu

A2(y) =
x∑

i=1

(x2+mx+ki)+
mu∑

i=1

(x+mu) = x3+mx2+kx+m2
u+mux

The relative error on node u is:

Err(u) = 1− A(u)
B(u)d+(u)

= 1− x3 + mx2 + kx + m2
u + mux

(x + mu)(x2 + kx + mu)

Case 1. Assume Z = ∅, thus k = 0. We have:

Err(u) = 1− A(u)
B(u)d+(u)

= 1− x3 + mx2 + m2
u + mux

(x + mu)(x2 + mu)

easy algebraic manipulations lead to the following statement: |Err(u)| ≤ ε if and
only if:

x2|mu −m| ≤ ε(x + mu)(x2 + mu). (4)
Since m is the average of the distributions of the values for mu, there is a node

u such that 0 ≤ mu ≤ m. When mu = 0 the condition reduces to the inequality:
m ≤ εx. When mu = m the left side of the inequality is null and the condition is
always satis�ed. In general we may observe that the left hand side of 4 is minimized
by the node u having the value mi that is the closest-to-mean. Although an a
adversary can build degree distributions in which the gap between mean value and
the closest-to-mean is close to m, when the series of mi is drawn randomly from a
smooth distribution, then we have an high probability of drawing values close to
the mean. In this case we can handle easily a large noise count mx.
Case 2. Assume Q = ∅, thus m = 0, and mu = 0 for all u. Thus

Err(u) = 1− A(u)
B(u)d+(u)

= 1− x3 + kx

x(x2 + kx)

easy algebraic manipulations lead to the following statement: |Err(u)| ≤ ε if and
only if:

k(1− (1/x)− ε) ≤ εx (5)
This inequality is satis�ed when k ≤ εx.
Case 3. Assume Q 6= ∅ and Z 6= ∅. In general we have that |Err(u)| ≤ ε if and
only if:

|x2(k + mu −m) + xk(mu − 1)| ≤ ε(x + mu)(x2 + kx + mu) (6)

If mu = 0 for some node u, we have the condition: |x(k −m) − k| ≤ ε(x2 + k).
Note that the left hand side of this inequality is minimized when m−k = k/x, thus
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the e�ect of the noise from the two sets Q and Z does cancel out when the average
noise from each set has a comparable mean value. Qualitatively, the interference of
the two error sources has a canceling e�ect.
If mu 6= 0, the leading term as a polynomial in x of the left hand side of the

above inequality is smaller than the leading term of the right hand side when
k −m + mu ≤ εx, thus we can still detect the community when the average noise
is a fraction of x, since there must exist a node u with mu ≤ m.

5.2 Bounds on the level of the noise: the dense case
Consider the following model with sets X, Y, Z, Q, where |X| = |Y | = x, |Z| = x
and |Q| = x. The pair (X, Y ) is a complete bipartite graph, each element ξi ∈ X
has x links to elements of Y . Each element ηj ∈ Y has x in-links from elements
of X. Moreover each element ξi ∈ X has mi links to elements of Q, such that∑

i mi = mx (so m is the average). Each element νj of Q has qj in-link and no
out-links, so that

∑
j qj = qx. Obviously the two summations amount to the same

value so m = q.

X Y

QZ

k

qz

x x

Fig. 6. The Dense XYZQ Model. The �gure indicates the 4 node classes and the 3 edge classes.
Next to each edge class is indicated the symbol used in the paragraph to denote the corresponding
indegree and outdegree of the nodes.

Each element ηj ∈ Y has kj in-links from elements of Z, such that
∑

j kj = kx (so
k is the average). Each element ζi of Z has zi out-links and no in-links, so that∑

i zi = zx, and for every i, zi ≤ |Y | = x . Obviously the two summations amount
to the same value so z = k.
Let u ∈ X, thus N+(u) = Y ∪Qu where Qu ⊂ Q is the set of successors of u in Q
and |Qu| = mu. Let y be an element of N+(u). If y ∈ Y then N−(y) = X ∪ Zy

where Zy is the set of predecessors of y in Z, and |Zy| = ky. So d−(y) = x + ky. If
y ∈ Qu then N−(y) = Xy, where Xy is the set of predecessors of y in X. d−(y) = qy.

B(u) =
∑

y∈N+(u)

d−(y) =
∑

y∈N+(u),y∈Y

d−(y)+
∑

y∈N+(u),y∈Qu

d−(y) =
x∑

i=1

(x+ki)+
mu∑

j=1

qj

A1(y) =
∑

w∈N−(y),y∈Y

d+(w) =
x∑

i=1

(x + mi) +
ky∑

j=1

zj
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A2(y) =
∑

w∈N−(y),y∈Qu

d+(w) =
qy∑

i=1

(x + mi)

A(u) =
∑

y∈Y

A1(y) +
∑

y∈Qu

A2(y) =
x∑

y=1

[
x∑

i=1

(x + mi) +
ky∑

j=1

zj ] +
mu∑
y=1

qy∑

i=1

(x + mi)

simplifying:

B(u) = x2 + kx +
mu∑

j=1

qj

A(u) = x3 + mx2 +
x∑

y=1

ky∑

j=1

zj +
mu∑
y=1

qy∑

i=1

(x + mi)

Consider the sum:
∑x

y=1

∑ky

j=1 zj this corresponds to taking all elements of Y
following the lints to nodes in Z and sum up the out degree of each node in Z
as many times as the number of times the node is visited, that corresponds to its
out-degree, so we establish:

x∑
y=1

ky∑

j=1

zj =
x∑

j=1

z2
j

Under the assumption that z ≤ x and that zj ≤ x for each j we can conclude
that this summation is lower bounded by xz2 and upper bounded by x2z. Imposing
that also qj ≤ x for every j we have that the term

∑mu

j=1 qj is at most mux, and
the term

∑mu

y=1

∑qy

i=1(x + mi) ≤ mu(x2 + mx). To summarize we have:

x3 + mx2 + x2k + mu(x2 + mx) ≥ A(u) ≥ x3 + mx2 + xk2,

x2 + kx ≤ B(u) ≤ x2 + kx + mux,

and d+(u) = x + mu. The condition |Err(u)| ≤ ε is equivalent to:

|B(u)d+(u)−A(u)| ≤ εB(u)d+(u).

If B(u)d+(u) ≥ A(u) then the left hand side of the inequality is bounded from
above by choosing a lower bound for A(u) and an upper bound for B(u) thus after
simpli�cation we get:

|B(u)d+(u)−A(u)| ≤ x2(k + mu −m) + x(mu + muk + m2
u − k2).

The leading term multiplying the x2 factor is equal to the one we have in the sparse
case and similar considerations hold. In particular, if mu = 0 the above quantity
ACM Journal Name, Vol. V, No. N, Month 20YY.
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is minimized when k −m = k2/x. We still have a cancelation e�ect, although less
strong than before.
If B(u)d+(u) ≤ A(u), we bound from above the quantity A(u) − B(u)d+(u) by

upper bounding A(u) and lower bounding B(u), thus after simpli�cations we get

|A(u)−B(u)d+(u)| ≤ mx2 + mux(m− k).

The leading term of the right-hand side of the above inequality,as a polynomial in
x, mx2, is less than the leading term of εB(u)d+(u) when m ≤ εx. Thus in this
second case we need to have a low average noise m to detect the community.

5.3 An asymptotic convergence Theorem for Criterion 2
In particular we will introduce a model that captures the link structure of the pair
of sets

(
Ñ(X), N+(Ñ(X))

)
and show some su�cient conditions for which we can

prove the asymptotic convergence of Criterion 2.

5.3.1 The XYZQPRW model. Consider the pair of sets of nodes
[Ñ(X), N+(Ñ(X))]. They form a superset for the pair [Ñ(u), N+(Ñ(u))] for
all u ∈ X. We will de�ne a decomposition of this pair into seven sets so that the
calculation of Criterion 2 for every u ∈ X is in�uenced only by the nodes in those
sets. We refer the reader to �gure 7 for visual help. Let the sets X and Y form
the complete bipartite community (fans and centers). Let Z be the set of nodes
in Ñ(X) \ X that have links also to Y , let P be the set of nodes in Ñ(X) \ X
that have no links to Y . The three sets X, Z and P are mutually disjoint and
together form a partition of Ñ(X): Ñ(X) = X ∪ Z ∪ P . Let Q be the set of nodes
in N+(X) \ Y . Let R be the set of nodes in N+(Ñ(X)) \ (Y ∪ Q) that have some
links from Z. Let W be the set of nodes in N+(Ñ(X)) \ (Y ∪Q) that have no links
from Z (thus links only from P ). The four sets Y , Q and R and W are mutually
disjoint and form a partition of N+(Ñ(X)): N+(Ñ(X)) = Y ∪ Q ∪ R ∪ W . The
two sets [Ñ(X),N+(Ñ(X))] are not necessarily disjoint. Consider now all possible
12 classes of edges connecting those sets There are 8 possible non-empty classes of
links: X → Y , X → Q, Z → Y , Z → Q, Z → R, P → Q, P → R, and P → W .
The following link classes are empty: X → R because such node in R by de�nition
is a node of Q (that is a contradiction), X → W because such node in W by
de�nition is a node of Q (that is a contradiction), Z → W because such node in
W by de�nition is a node of R (that is a contradiction), and P → Y because such
node in P by de�nition is a node of Z (that is a contradiction). See �gure 7 for an
overall picture.

5.3.2 The proof of convergence.
The XYZQPRW decomposition is completely general. In order to derive useful
results we need to place restrictions to the cardinality of the sets of nodes and
edges involved however we wish to retain su�cient generality. We will assume that
the seven sets are roughly comparable in size to |X| = x. Next we will assume that,
while the class of links X → Y is of cardinality x2, all other classes have a number
of edges o(x2), or, equivalently, that the average edge density is o(x) for each other
class. Note that so far we impose rather natural conditions, in particular we do
not constraint the distribution of the edges and of the node degrees, but only their
averages. What we will show is that, even if a few nodes can produce high noise,
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Fig. 7. The XYZQPRW Model. The �gure indicates the 7 node classes and the 8 edge classes.
Next to each edge class is indicated the symbol used in the proof of Theorem 1 to denote the
corresponding indegree and outdegree of the nodes.

when the average noise is low the criterion is asymptotically correct.

Theorem 1. In the XYZQPRW model, let |X| = x, let all other sets be of
cardinality O(x), let the average edge density for the class (X, Y ) be equal to x, and
let the average density be o(x) for all other classes, then, as x → ∞, there exists
u ∈ X such that the Err(u) tends to 0.

Proof. We will need some notation. For simplicity of calculation, w.l.o.g., let
us set all cardinalities to the same value x: |X| = |Y | = |Z| = |Q| = |P | = |R| =
|W | = x, since at the end these constant factors do not in�uence the proof. Also
note that x is a bound to the indegree and outdegree of each node for any edge class.
For the edge class X → Y the outdegree of every node in X is x, the indegree of
every node in Y is x. For the edge class Z → Y , each node i in Z has outdegree ai

each node j in Y has indegree bj with
∑x

i=1 ai =
∑x

j=1 bj = bx. For the edge class
X → Q, each node i in X has outdegree ci each node j in Q has indegree dj with∑x

i=1 ci =
∑x

j=1 dj = cx. For the edge class Z → Q each node i in Z has outdegree
ei and each node j in Q has indegree fj with

∑x
i=1 ei =

∑x
j=1 fj = ex. For the edge

class P → Q, every node i in P has outdegree gi and each node j in Q has indegree
hj with

∑x
i=1 gi =

∑x
j=1 hj = hx. For the edge class Z → R every node i in Z has

outdegree ki and every node j in R has indegree lj with
∑x

i=1 ki =
∑x

j=1 lj = kx.
For the edge class P → R every node i in P has outdegree mi and every node j in
R has indegree nj with

∑x
i=1 mi =

∑x
j=1 nj = nx. For the edge class for the family

P → W every i node in P has outdegree pi and every node j in W has indegree qj

with
∑x

i=1 pi =
∑x

j=1 qj = px.
To summarize: node i in X has outdegree x+ci, node i in Z has outdegree ai+ei+ki,
node i in P has outdegree gi + mi + pi, node j in Y has indegree x + bj , node j in
Q has indegree dj + fj + hj , node j in R has indegree lj + nj , and node j in W
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has indegree qj . All quantities ci, ai, ei, ki, gi,mi, pi, bj , dj , fj , hj , lj , nj , and qj are
integers ranging from zero to x.
Let u = xi be a node in X such that ci = o(x). Since by hypothesis c = o(x) and
c is the mean value of a sum of positive terms, there must exist a value ci ≤ c =
o(x). By an abuse of notation we indicate with cu the corresponding value. Thus
d+(u) = x + cu.
Let N+(u) = Y ∪Qu where Qu ⊂ Q is the set of successors of u in Q and |Qu| = cu.
Let y be a generic element of N+(u). If y ∈ Y then N−(y) = X ∪ Zy where Zy

is the set of predecessors of y in Z, and |Zy| = by. Therefore d−(y) = x + by. If
y ∈ Qu then N−(y) = Xy ∪ Zy,∪Py, where Xy is the set of predecessors of y in
X, Zy is the set of predecessors of y in Z, Py is the set of predecessors of y in P .
Therefore d−(y) = dy + fy + hy.
The function B(u) is

B(u) =
∑

y∈N+(u)

d−(y) =
x∑

i=1

(x+bi)+
cu∑

j=1

(dj +fj +hj) = x2 +bx+
cu∑

j=1

(dj +fj +hj)

Clearly it holds that Qu ⊂ Q, therefore the summation over Qu is upper bounded by
taking all nodes in Q and taking the sums of all indegrees. This value is dx+fx+hx,
that is o(x2). So using the hypothesis we obtain that B(u) = x2 + o(x2). We split
the computation of A(u) into two parts:

A(u) =
∑

y∈Y

A1(y) +
∑

y∈Qu

A2(y)

where

A1(y) =
∑

w∈N−(y),y∈Y

d+(w) =
x∑

i=1

(x+ci)+
by∑

i=1

(ai+ei+ki) = x2+cx+
by∑

i=1

(ai+ei+ki)

and

∑

y∈Y

A1(y) =
∑

y∈Y


x2 + cx +

by∑

i=1

(ai + ei + ki)


 = x3 + cx2 +

∑

y∈Y

by∑

i=1

(ai + ei + ki)

The residual summation has this interpretation: follow all links from Y to Z and
select each node in Z as many times as its outdegree from Z, with a weight equal
to its total outdegree: so it is equal to

∑x
i=1 ai(ai +ei +ki) ≤ x2(a+e+k) = o(x3).

Since also cx2 is o(x3) we have that the �rst part of the formula for A(u) is x3+o(x3).
Compute:

A2(y) =
∑

w∈N−(y),y∈Qu

d+(w) =
∑

w∈Xy

d+(w) +
∑

w∈Zy

d+(w) +
∑

w∈Py

d+(w) =
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=

∑

w∈Xy

(x + cw) +
∑

w∈Zy

(aw + ew + kw) +
∑

w∈Py

(gw + mw + pw)

and

∑

y∈Qu

A2(y) ≤
∑

y∈Q

A2(y) =

=
∑

y∈Q

∑

w∈Xy

(x + cw) +
∑

y∈Q

∑

w∈Zy

(aw + ew + kw) +
∑

y∈Q

∑

w∈Py

(gw + mw + pw)

The �rst summation has this interpretation: follow all links from Q to X, so each
node of X is visited ci times, and pick any node with weight x + ci, so it is equal
to

∑x
i=1 ci(x + ci) ≤ 2cx2 = o(x3). The second summation has this interpretation:

follow all links from Q to Z picking node i ei times, with weight equal to the total
outdegree of the node, so it is equal to

∑x
i=1 ei(ai +ei +ki) ≤ x2(a+e+k) = o(x3).

The third summation has this interpretation: follow all links from Q to P picking
node i gi times, with weight equal to the total outdegree of the node, so it is equal
to

∑x
i=1 gi(gi + mi + pi) ≤ x2(g + m + p) = o(x3). Thus the second part of the

formula for A(u) is o(x3), and overall A(u) = x3 + o(x3).
Plugging in the computed values in the error function, since cu = o(x) we obtain
that Err(u) → 0, when x →∞. The proof follows (almost) identically if we assume
the size of all sets to be O(x) rather than exactly x.

6. ANALYZING OVERLAPPING COMMUNITIES
6.1 Analysis of communities with overlapping centers
Here we de�ne the following a simple model for overlapping communities, the
(X, Y, V,W,K) model, in order to estimate the e�ect of this con�guration on the
function Err(u) for u ∈ X. We assume X and V disjoint, ant that |X| = x,
|V | = v to be the two fan sets. We assume Y ∪ K and W ∪ K to be the two
sets of centers, with intersection K. |Y | = y, |W | = w, |K| = k. To simplify the
calculations we assume full density (i.e. all edges present), no other error sources
present and that sets of fans and centers have the same cardinality, therefore we
have the relationships:y + k = x and w + k = v.
Let u ∈ X, the set N+(u) = Y ∪K. Let h ∈ N+(u), If h ∈ Y , then N−(h) = X,
thus d−(h) = x. If h ∈ K then N−(h) = X ∪ V , thus d−(h) = x + v.

B(u) =
∑

h∈N+(u)

d−(h) = yx + k(x + v)

A1(h) =
∑

w∈N−(h),h∈Y

d+(w) = x2

A2(h) =
∑

w∈N−(h),h∈K

d+(w) = x2 + v2

A(u) =
∑

h∈Y

A1(h) +
∑

h∈K

A2(h) = yx2 + k(x2 + v2)
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Err(u) = 1− A(u)
B(u)d+(u)

= 1− yx2 + k(x2 + v2)
x(yx + k(x + v))

=
kv(x− v)
x3 + kvx

We have that Err(u) ≤ ε when
kv(x− v) ≤ ε(x3 + kvx)

that is:
k(1− (u/x)− ε) ≤ ε(x/u)x.

w.l.o.g. we can assume that x ≥ u, thus (x/u) = α > 1, and (u/x) = 1/α ≤ 1.
Since h(1− 1/α− ε) ≤ h(1− 1/α), the above inequality is implied by

k(1− 1/α) ≤ εαx.

that is:

k ≤ εx

(
α

1− 1/α

)

The function α
1−1/α for α > 1 diverges for α → 1 and α →∞. It is always positive

with a unique minimum at α = 2, of value 4. Thus, the condition Err(u) ≤ ε is
implied by k ≤ 4εx. Since always k ≤ x we have that for ε = 0.25 the condition is
always satis�ed. We conclude that in this �pure� case large overlaps on the set of
centers can be handled fairly well by criterion 2.
Consider a scenario in which the community (X, Y ∪K) is a legitimate one, while
the community (V, W ∪K) is a spam community set up with the purpose of covering
up a link farm. For a value of ε = 0.25 we may discover �rst either community
(depending on the order in which the nodes are processed). However, a second pass
of the algorithm will detect also the second community.

K

Y

WV

X

w

y

k

k

v=k+w

x=y+k

Fig. 8. The XYVWK Model for dense subgraphs sharing centers.

6.2 Analysis of communities with overlapping fans
We have sets (X,Y, V, W, K) with sets of centers Y and W , with |Y | = y and
|W | = w. The set of fans for Y is the set X ∪ K and the set of fans for W is
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V ∪K, so it holds x + k = y and v + k = w. Let u ∈ X, N+(u) = Y , for h ∈ Y ,
N−(h) = X ∪H, d−(h) = y.
So

B(u) =
∑

h∈N+(u)

d−(h) = y2

A1(h) =
∑

w∈N−(h),h∈Y

d+(w) = xy + k(y + w)

A(u) =
∑

h∈Y

A1(h) = y(xy + k(y + w))

Err(u) = 1− A(u)
B(u)d+(u)

= 1− y(xy + k(y + w))
y3

= −kw

y2

Thus |Err(u)| ≤ ε when kw ≤ εy2. Thus the test fails when when both the overlap
set K is large and the second community has a set of centers V larger than Y .
However in this case, by a symmetric argument for a node u ∈ V it will hold that
|Err(u)| ≤ ε when ky ≤ εw2. The worst case for the two inequalities derived is
when y = w since they both converge to k ≤ εy.
Ir remains to consider now the case when |Y | = |V |, i.e. y = w, and apply the test
to a node u ∈ K. For u ∈ K, N+(u) = Y ∪W . If y ∈ Y , N−(y) = X ∪ H and
D−(y) = x + h = y. If y ∈ W , N−(y) = V ∪H and D−(y) = v + h = y.

B(u) =
∑

h∈N+(u)

d−(h) = y2 + w2

A1(h) =
∑

w∈N−(h),h∈Y

d+(w) = xy + k(y + w)

A2(h) =
∑

w∈N−(h),h∈W

d+(w) = vw + k(y + w)

A(u) =
∑

h∈Y

A1(h) +
∑

h∈W

A2(h) = y[xy + k(y + w)] + w[vw + k(y + w)]

Err(u) = 1− A(u)
B(u)d+(u)

= 1− y3 + w3 + 2kyw

(y + w)(y2 + w2)

Now, using the extra condition y = w, we get that |Err(u)| ≤ ε when k ≥ y(1−2ε).
Note that when y = w, for ε = 1/3, the two ranges obtained (i.e. k ≤ εy and

k ≥ y(1− 2ε)) cover all possible values for k, thus we can always detect one of the
three dense bipartite communities. Again, multiple passes allows to �nd them all.
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Fig. 9. The XYVWK Model for dense subgraphs sharing fans.

7. TESTING EFFECTIVENESS
By construction algorithms RobustDensityEstimation and ExtractCommunity re-
turn a list of dense subgraphs (where size and density are controlled by the param-
eters t and ε). Using standard terminology in Information Retrieval we can say
that full precision is guaranteed by default. In this section we estimate the recall
properties of the proposed method. This task is complex since we have no e�cient
alternative method for obtaining a guaranteed ground truth. Therefore we proceed
as follows. We add some links in the graph representing the Italian domain of the
year 2004, so to create new dense subgraphs. Afterwards, we observe how many
of these new �communities� are detected by the algorithm that is run blindly with
respect to the arti�cially embedded community. The number of edges added is of
the order of only 50,000 and it is likely that the nature of a graph with 100M edges
is not a�ected.
In the �rst experiment, about detecting bipartite communities, we introduce 480

dense bipartite subgraphs. More precisely we introduce 10 bipartite subgraphs for
each of the 48 categories representing all possible combinations of number of fans,
number of centers, and density over a number of fans is chosen in {10, 20, 40, 80};
number of centers chosen in {10, 20, 40, 80}; and density randomly chosen in the
ranges [0.25, 0.5] (low), [0.5, 0.75] (medium), and [0.75, 1] (high).
Moreover, the fans and centers of every new community are chosen so that they

don't intersect any community found in the original graph nor any other new com-
munity. The following table (Table I) shows how many added communities are
found in average over 53 experiments. For every one of the 48 types, the maximum
recall number is 10.
In the second experiment, about detecting quasi-cliques , we introduce ten quasi-

cliques for each of 12 classes representing all possible combinations over: number
of pages in {10, 20, 30, 40}, and density randomly chosen in the ranges [0.25, 0.5],
[0.5, 0.75], and [0.75, 1]. The following table (Table II) shows how many such quasi-
cliques are found in average over 70 experiments. Again the maximum recall number
per entry is 10.
The cleaned .it 2004 graph used for the test has an average degree roughly 6 (see

Section 8). A small bipartite graph of 10-by-10 nodes or a small clique of 10 nodes
at 50% density has an average degree of 5. The breakdown of the degree-counting
heuristic for these low thresholds is easily explained with the fact that these small
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#
C
en
te
rs 80 0 5.2 9.6 10 1.2 8.4 9.7 10 5.7 8.6 9.5 9.8

40 0 5.4 9.5 9.9 0.7 8 9.7 9.9 5.4 8.6 9.7 9.8
20 0 2.7 5.4 6 0.9 7.9 9.6 9.9 4.6 8.4 9.6 9.9
10 0 0 0 0 0.1 0.8 1.9 3.2 3.3 6.5 9 9.7

10 20 40 80 10 20 40 80 10 20 40 80
# of Fans # of Fans # of Fans

Low density Med. density High density

Table I. Number of added bipartite communities found with threshold=8 depending on number
of fans, centers, and density.

#
Pa

ge
s 40 9.6 9.8 9.7

30 8.5 9.4 9.3
20 3.6 7.6 8.3
10 0 0.1 3.5

Low Med High
Density

Table II. Number of added quasi-clique communities found with threshold=8 depending on num-
ber of pages and density.

and sparse communities are e�ectively hard to distinguish from the background
graph by simple degree counting.
The analysis in Section 5, and in particular Theorem 1, give some su�cient con-
ditions for the detection of a community using Criterion 2, under certain not too
restrictive hypotheses. In applying this theory to the experimental results, one has
to keep in mind two caveats. First of all, Criterion 2 is computed for each single
node u and involves only sets of nodes �reachable� from u, while the analysis in Sec-
tion 5 is based on the ensamble of nodes reachable from a set of nodes X. Secondly,
a theoretical explanation for the non-detectability of a community by criterion 2
must take into account only nodes reachable form a single node u, and must control
all the error sources (i.e. density and noise) simultaneously, and is thus harder to
derive. For this reasons in most cases we do not �nd a comprehensive single-feature
discriminant between detected and non-detected communities. However, in certain
cases something can be noticed. An examination of the small communities embed-
ded using the XYZQPRW model reveals, for example, that the size of the sets P
and W , relative to X and Y , is often a critical parameter. For roughly 80% of the
small found communities, |P |+ |W | is of the same order of |X| (within a factor 5),
while this is true only only for 50% of the small not-found communities. The set Q
is usually a small set. The size of the sets Z and R is less critical for these samples:
we �nd small communities even when Z and R are order of magnitude larger than
X and Y .

8. LARGE COMMUNITIES IN THE WEB
In this section we apply our algorithm to the task of extracting and classifying real
large communities in the web.
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8.1 Data set
For our experiments we have used data from The Stanford WebBase project [Cho
and Garcia-Molina 2000] and data from the WebGraph project [Boldi and
Vigna 2004; Boldi et al. 2004]. Raw data is publicly available at
http://law.dsi.unimi.it/. More precisely we apply our algorithm on three
graphs: the graph that represents a snapshot of the Web of the year 2001 (118M
pages and 1G links); the graph that represents a snapshot of the Italian domain of
the year 2004 (41M pages and 1.15G links); the graph that represents a snapshot
of the United Kingdom domain of the year 2005 (39M pages and 0.9G links).
Since we are searching communities by the study of social links, we �rst remove

all nepotistic links, i.e., links between two pages that belong to the same domain
(this is a standard cleaning step used also in [Kumar et al. 1999b]). Once these links
are removed, we remove also all isolated pages, i.e., pages with both outdegree and
indegree equal to zero. Observe that we don't remove anything else from the graph,
for example we don't need to remove small outdegree pages and large indegree pages,
as it is usually done for e�ciency reasons, since our algorithm handles these cases
e�ciently and correctly. We obtain the reduced data sets shows in Table III.

Web 2001 20.1M pages 59.4M links av deg 3
.it 2004 17.3M pages 104.5M links av deg 6
.uk 2005 16.3M pages 183.3M links av deg 11

Table III. The reduced data sets. Number of nodes, edges and average degree.

The cleaning phase is completely independent of the two additional parameters
of the community �nding algorithm (i.e, t and ε). In the cleaning phase we do
remove nepotistic links (a property of the input web graph, not dependent of any
parameter), and we remove nodes of indegree and outdegree degree zero after the
removal of nepotistic links (again independent of t). Because of this, the clean
graph that serves as input to the community �nding algorithm, and also as a model
of background noise in the synthetic experiments, is independent of the auxiliary
parameters t and ε.

8.2 Communities extraction
Figure 10 presents the results obtained with the three graphs presented before. The
y axe shows how many communities are found, and the x axe represents the value
of the parameter threshold. Moreover communities are partitioned by density into
four categories (shown in grey-scale) corresponding to density intervals: [1,0.75],
]0.75, 0.5], ]0.5, 0.25], ]0.25, 0.00].
Table IV reports the time needed for the experiments with an Intel Pentium IV

3.2 Ghz single processor computer using 3.5 GB RAM memory. The data sets,
although large, were in a cleverly compressed format and could be stored in main
memory. The column �# loops� shows the average number of iterative re�nement
done for each community in Algorithm ExtractCommunity. Depending on the fan
out degree threshold, time ranges from a few minutes to just above two hours for
the most intensive computation. In Table V we report, for di�erent values of the
threshold t and di�erent data sets, the number of times the �lter based on Criterion
2 indicates the possible presence of a community but the subsequent invocation of
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(a) Web 2001 (b) Italy 2004 (c) United Kingdom 2005

Fig. 10. Number of communities found by Algorithm RobustDensityEstimation
as a function of the degree threshold. The gray scale denotes a partition of the
communities by density.

the routine ExtractCommunity fails to �nd one. In other words, this is the false-
positive count of the output of the �rst �lter phase. Also we give the percentage of
the false-positive count over the total number of positive indication (each resulting
in an invocation of ExtractCommunity). For decreasing values of t the number of
false positives increases in absolute terms but decreases in percentage. For example,
at value t = 10 more than 92% of the times the indication of the �lter is correct
and a legitimate community is found, thus the computational cost is charged to the
output. Only in at most 8% of the times a positive indication from the �lter does
not result in the discovery of a community, thus in this case the computational cost
cannot be charged on the output. Note that this false-positive rate of the �rst stage
does not impact much on the algorithm's e�ciency nor on the e�ectiveness. The
false positives of the �rst stage are caught anyhow by the second stage.
Interestingly in Table VI it is shown the coverage of the communities with respect

to the nodes of su�ciently high degree. In two national domains the percentage of
nodes covered by a community is above 90% for national domains, and just below
60% for the web graph (of 2001). Table VII shows the distribution of size and
density of communities found. The web 2001 data set seems richer in communities
with few fans (range [10-25]) and poorer in communities with many fans (range
≥ 100) and this might explain the lower coverage.
Table VII shows how many communities are found with the threshold equal to

10, in the three data sets in function of number of fans, centers, and density. Low,
medium and high densities are respectively the ranges [0.25, 0.5], [0.5, 0.75], and
[0.75, 1].

9. VISUALIZATION OF COMMUNITIES
The compressed data structure in [Boldi and Vigna 2004] storing the web graph
does not hold any information about the textual content of the pages. Therefore,
once the list of url's of fans and centers for each community has been created, a
non-recursive crawl of the WWW focussed on this list of url's has been performed
in order to recover textual data from communities.
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Web 2001 Italy 2004 Uk 2005

Th
r. # # Time # # Time # # Timecom. loops com. loops com. loops

10 5686 2.7 2h12m 1099 2.7 30m 4220 2.5 1h10m
15 2412 2.8 1h03m 452 2.8 17m 2024 2.6 38m
20 1103 2.8 31m 248 2.8 10m 1204 2.7 27m
25 616 2.6 19m 153 2.8 7m 767 2.7 20m

Table IV. Some measurements of performance: Number of communities found,
average number of cleaning loops per community, and total computing time.

Web 2001 Italy 2004 Uk 2005
Thresh. Num. perc. Num. perc. Num. perc.

10 364 6% 34 3% 377 8%
15 135 5% 24 5% 331 14%
20 246 18% 24 9% 526 30%
25 148 19% 4 3% 323 30%

Table V. Absolute number and percentage of calls to ExtractCommunity that do not return a
community as output.

Web 2001 Italy 2004 Uk 2005

Th
r. # # in % # # in % # # in %Total Com. Total Com. Total Com.

10 984 290 581 828 59 3 331 358 3 031 723 91 4 085 309 3 744 159 92
15 550 206 286 629 52 2 225 414 2 009 107 90 3 476 321 3 172 338 91
20 354 971 164 501 46 1 761 160 642 960 37 2 923 794 2 752 726 94
25 244 751 105 500 43 487 866 284 218 58 2 652 204 2 503 226 94

Table VI. Coverage of communities found in the web graphs. The leftmost column
shows the threshold value. For each data set, the �rst column is the number of pages
with d+ > t, and the second and third columns are the number and percentage of
pages that have been found to be a fan of some community.

What we want is to obtain an approximate description of the community topics.
The intuition is that the topic of a community is well described by its centers. As
good summary of the content of a center page we extract the text contained in the
title tag of the page. We treat fan pages in a di�erent way. The full content of the
page is probably not interesting because a fan page can contain di�erent topics, or
might even be part of di�erent communities. We extract only the anchor text of the
link to a center page because it is a good textual description of the edge from the
fan to a center in the community graph. For each community we build a weighted
set of words getting all extracted words from centers and fans. The weight of each
word takes into account if a word cames from a center and/or a fan and if it is
repeated. All the words in a stop word list are removed. We build a �at clustering
of the communities. For clustering we use the furthest-point-�rst (FPF) algorithm
described in [Geraci et al. 2007]. As a metric we adopt the Generalized Jaccard
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Web 2001 - 5686 communities found at t=10

#
Ce

nt
er
s ≥ 100 92 21 49 24 5 8 7 2 8 6 1 11

[50, 100[ 185 35 48 38 11 26 9 7 16 11 9 22
[25, 50[ 247 54 136 52 28 89 17 6 52 13 14 100
[10, 25[ 167 68 437 13 29 217 1 20 163 17 23 347
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Density Density Density Density
[10, 25[ [25, 50[ [50, 100[ ≥ 100

# of Fans
Italy 2004 - 1099 communities found at t=10

#
Ce

nt
er
s ≥ 100 17 3 11 3 1 5 2 2 0 2 1 12

[50, 100[ 32 2 14 14 2 4 5 1 2 3 4 15
[25, 50[ 28 15 33 10 2 18 5 7 16 19 11 69
[10, 25[ 14 5 42 1 3 26 1 2 34 5 11 247
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United Kingdom 2005 - 4220 communities found at t=10

#
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s ≥ 100 24 5 18 17 4 15 10 3 14 11 5 51

[50, 100[ 63 23 55 14 21 34 19 11 42 24 22 81
[25, 50[ 76 23 151 28 18 159 16 7 68 51 22 273
[10, 25[ 43 30 299 7 8 266 8 11 159 34 44 705
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Table VII. Distribution of the detected communities depending on number of fans,
centers, and density, for t = 10.

distance (a weighted form of the standard Jaccard distance).
For each cluster we wish to discover the discriminating words (In future referred

as keywords). This is a task akin to feature selection in text/web information
retrieval. For this purpose for each word in the cluster we sum the score (according
to the GJD scores) of all its occurrences in the cluster and select a set of words
having highest global score. We refer to this as a the �local keyword selection�
since it is done independently for each cluster. We perform also a �global keyword
selection� based on maximizing the information gain [Cover and Thomas 1991] of
the keywords sets. If a keyword appears in two or more cluster the information
gain is used to establish for which of them the keyword is more discriminant. For
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a term t and cluster c, information gain is de�ned as:

IG(t, c) =
∑

a∈{t,t̄}

∑

b∈{c,c̄}
P (a, b) log

P (a, b)
P (a)P (b)

,

where the probabilities P (., .) and P (.) are relative to the random choice of a com-
munity. Intuitively, IG measures the amount of information that one variable
contains on the other; when t and c are independent, IG(t, c) = 0. The IG formula
is the sum of four component: two of them represent the �positive correlation� be-
tween the variables, while the other represent the �negative correlation� between
the variables. In our case, we use IG to select, for each cluster, keywords that are
representative of the cluster. This means that we are interested only to the positive
correlation from the IG formula therefore we drop the factor denoting negative
correlation, yielding the modi�ed version:

IGm(c, t) = P (t, c) log
P (t, c)

P (t)P (c)
+ P (t̄, c̄) log

P (t̄, c̄)
P (t̄)P (c̄)

.

This paper focusses on the algorithmic principles and testing of a fast and e�ective
heuristic for detecting large-to-medium size dense subgraphs in the web graph. The
examples of clusters reported in this section are to be considered as anecdotical
evidence of the capabilities of the Community Watch System.
In Table VIII we show clusters of communities, ranked by cumulative edge count,

found by the Community Watch tool in the data-set UK2005 among those com-
munities detected with threshold t = 25 (767 communities). Further �ltering of
communities with too few centers reduces the number of items (communities) to
636. The full listing can be inspected by using the Community Watch web interface
publicly available at http://comwatch.iit.cnr.it. The �Category� labels are as-
signed manually, after visual inspection of each cluster. This procedure requires a
very reasonable human e�ort (a few man/hours), and, although it entails a degree
of subjective judgement, it is su�cient for a static analysis. Some more dynamic
applications might bene�t from an automation of this classi�cation step via super-
vised learning techniques and/or the use of computational linguistics techniques
(e.g. WordNet http://wordnet.princeton.edu/).

The homogeneity score has been assigned as follows. Using the extracted group
key-words and a more in depth examination of a few communities in the group we
have assigned (manually) a category to the group. Afterwards the communities in
the group have been examined manually one-by-one to determine the consistency
with the assigned category. The top twenty groups ranked by number of edges are
listed in table VIII. Homogeneity is very high or high in 16 out of 20 of the top
20 groups, Medium in 3 out of 20, and Low in just 1 out of 20. Groups in position
from 21 to 34 contain groups having a number of edges roughly between 300,000
and 100,000 each, and in general are less homogeneous than the top 20, in particular
when they contain a single community that is responsible for most of the edges for
that group. Groups ranked from 35 to 62 show a variety of homogeneity scores,
including some communities with a tenuous characterization (most likely spam), as
well as quite well characterized groups (e.g. adult content).
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Telephones Accessories (0.29) Ericsson (0.17) 10 VH 1629 156562 14363477Phone (0.61)
Cars Car (0.16) Services (0.26) 89 VH 9859 129842 10541928Shops (1.0)

Antiques Antiques (0.60) Search (0.07) 6 H 1163 13314 2885138Selling (0.06)
Kitchens Cookers (0.30) Kitchens (0.61) 13 H 637 48310 2144454Sinks (0.30)
Tourism Accommodation Bookings (0.09) 37 VH 3047 37259 2003979Hotels (1.0)
Tourism Cheap (0.25) Holidays (1.0) 30 VH 2028 22250 1708089Villas (0.18)
Tourism Holiday (0.54) Hotel (1.0) 26 H 1126 34663 1446023Scotland (0.42)

Electronics Appliance (0.27) Electrical (0.27) 7 VH 812 25345 1363772Vacuum (0.24)
News Cheshire (0.77) News (1.0) 23 H 991 37574 1344061Sport (0.38)

Telephones Mobile (0.84) Motorola (0.25) 17 VH 1346 7631 1327239Nokia (0.81)
Finances Insurance (0.94) Loans (1.0) 26 M(1) 1040 34774 908505Mortgages (0.76)
Shopping Courses (0.12) Resources (0.07) 27 VH(2) 2054 13050 787445Sales (0.10)
Shopping Club (0.37) Property (1.0) 17 M(3) 640 20749 714797Services (0.50)
Municipal Council (0.97) Document (1.0) 25 H 1492 16227 580206Services (0.53)
Computers Computers (0.90) Hardware (0.33) 5 H 321 11374 526754Software (0.33)
Shopping Action (0.62) Clothes (0.76) 13 L 427 15931 523166Frames (0.58)
Car/Travel Car (1.0) Hire (0.27) 34 H 2870 7269 471016London (0.16)
Finances Credit (0.61) Loans (1.0) 20 H 2481 6537 453715Mortgages (0.44)
Shopping Category (0.62) Shopping (1.0) 12 H 519 8833 346646Store (0.60)
Shopping Reviews (0.29) Services (0.36) 7 M 292 7229 334350Updated (0.30)

Table VIII. List of the top 20 groups of communities ranked by total number of edges. For
each group of communities we display, a general category, keywords with highest weight for the
group, the number of communities in each group. The homogeneity of the communities w.r.t the
general category, the cumulative number of centers, fans and edges for each group. Homogeneity
is classi�ed in: Very High (VH) when above 90% of the communities are consistent with the
category, High (H) when between above 80%, Medium (M) when above 60% and Low (L) when
below 60%. Notes: (1) including a community on gambling; (2) generic shopping and services;
(3) includes a single very large community selling �owers, gifts, properties,etc.. Data set uk2005
with t = 25 of 767 communities. Filtering: centers in [10,..,max], fan degree in [10,..,max], target
number of clusters = 80. Resulting in 636 communities organized in 62 groups.

9.1 A Large scale analysis of the uk2005 data set
The data has been analyzed using the following semiautomatic methodology. From
the data set uk2005 using threshold 25 and �ltering as in Table VIII we have ex-
tracted 636 communities. Using Community Watch these have been clustered into
62 homogeneous thematic groups labeled by keywords as described above. Manually
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Rank Category Large comm. Disperse com. Total
1 General Shopping 13.805.821 3.476.787 17.282.608
2 Telephony 14.094.717 529.164 14.623.881
3 Tourism 2.775.043 1.245.229 4.020.272
4 Antiques 2.502.150 382.988 2.885.138
5 News 1.180.855 814.551 1.995.406
6 Youth Interests 1.375.605 350.365 1.725.970
7 Generic Portals 974.344 - 974.344
8 Financial Services - 957.270 957.270
9 Training 492.128 - 492.128
10 Computers 490.410 - 490.410
11 Local Government - 340.078 340.078
12 Adult Contents - 89.356 89.356

Table IX. Classi�cation of large and disperse communities by category ranked by number of links.
Dataset and �ltering as in Table VIII

we have tested the consistency of the single communities with the thematic group,
eliminating those communities not well represented by the chosen keywords. Com-
munities that have more than 100.000 edges have been listed as Large Communities.
Communities smaller than 100.000 edges but included in thematic groups with at
least 100.000 edges have been listed as Disperse Communities. Thematic groups
with less than 100.000 edges have been discarded (except for the Adult Content
ones). Afterwards the surviving thematic groups have been associated manually
to 12 categories: general Shopping, Telephony, Tourism, Antiques, news, Youth
Interests, Generic Portals, Financial Services, Training, Computers, Local Govern-
ment, Adult Content. These categories were not decided a-priory but emerged from
the analysis of the data as the most representative ones. In table IX it is shown
the aggregation of communities found in the uk2005 data set into categories and a
ranking of the categories by total number of edges.

9.2 State of the art in the classi�cation of web pages and web sites
Collecting together similar web pages based on their textual content (eventually
augmented with anchor text) has been done before [Haveliwala et al. 2000] and
one of the main objective has been the detection of near duplicates [Broder et al.
1997]. These methods are unsupervised and could detect unifying semantic themes
only in some cases. The supervised classi�cation of web sites and web pages has
been proposed using several classical classi�cation methods and several features
[Lindemann and Littig 2007], [Fang et al. 2006]. Structural properties (e.g. the
link structure) is becoming important in such studies [Glover et al. 2002] [Amitay
et al. 2003]. An interesting classi�cation mixed methodology is in [Stamou et al.
2006] where the training data is provided implicitly by using hand made directories.
The techniques listed above can handle single sites and small group of pages

(in supervised mode) detecting high level functionalities among a set of categories
de�ned at training time. Other techniques could handle large collections of un-
structured pages (in unsupervised mode) but the type of inference that could be
made were rather week. Our technique falls in between these two extremes. It is
unsupervised thus need no initial training, is able to deal with large portions of
the web graph and is able to extract high level functional/topical information. Our
process of data aggregation produces information that can be validated manually
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in the �nal phase with little e�ort. We believe that our technique can be valuable
for assessing long term macroscopic thematic changes rather than assessing single
web site content.

10. CONCLUSIONS AND FUTURE WORK
In this paper we tackle the problem of �nding dense sub-graphs of the web-graph.
We propose an e�cient heuristic method that is shown experimentally to be able to
discover about 80% of communities having about 20 fans/centers, even at medium
density (above 50%). The e�ectiveness increases and approaches 100% for larger
and denser communities. For communities of less than 20 fans/centers (say 10 fans
and 10 centers) our algorithm is still able to detect a sizable fraction of the commu-
nities present (about 35%) whenever these are at least 75% dense. Our method is
e�ective for a medium range of community size/density which is not well detected
by the current technology. One can cover the whole spectrum of communities by
applying �rst our method to detect large and medium size communities, then, on
the residual graph, the Trawling algorithm to �nd the smaller communities left.
The e�ciency of the Trawling algorithm is likely to be boosted by its application
to a residual graph puri�ed of larger communities that tend to be re-discovered
several times.
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