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Abstract—Controlling the differential expression of many thousands different genes at any given time is a fundamental task of

metazoan organisms and this complex orchestration is controlled by the so-called regulatory genome encoding complex regulatory

networks: several Transcription Factors bind to precise DNA regions, so to perform in a cooperative manner a specific regulation task

for nearby genes. The in silico prediction of these binding sites is still an open problem, notwithstanding continuous progress and

activity in the last two decades. In this paper, we describe a new efficient combinatorial approach to the problem of detecting sets of

cooperating binding sites in promoter sequences, given in input a database of Transcription Factor Binding Sites encoded as Position

Weight Matrices. We present CMStalker, a software tool for composite motif discovery which embodies a new approach that combines

a constraint satisfaction formulation with a parameter relaxation technique to explore efficiently the space of possible solutions.

Extensive experiments with 12 data sets and 11 state-of-the-art tools are reported, showing an average value of the correlation

coefficient of 0.54 (against a value 0.41 of the closest competitor). This improvements in output quality due to CMStalker is statistically

significant.

Index Terms—Algorithms, biology and genetics

Ç

1 INTRODUCTION

1.1 Biological Motivation

TRANSCRIPTION Factors (TF) are proteins that bind to
short specific stretches of DNA, called TFBS - Transcrip-

tion Factor Binding Sites, usually in the proximity of genes
and participate in regulating the expression of those genes
[1]. The discovery of truly functional TFBSs is an important
step in order to elucidate gene regulatory networks; this is
witnessed by more than a hundred algorithms that have
been proposed over the last two decades for the prediction
“in silico” of single TFBS (see [2] and the many references
contained therein). However, especially in eukaryotes, gene
regulation involves a cohort of cooperating TFs, which typi-
cally have binding sites located in a short span within the
genes’ promoter, as well as enhancer and silencer, regions.
The combinatorial nature of this cooperation is exploited by
a number of other algorithms for the prediction of corre-
sponding TFBS clusters, a task that is often termed as com-
posite motif (CM) (or pattern) discovery in the literature (see
[3] for one of the earliest contributions using the term
“composite pattern”). Regions containing cooperating TFBS
are also called Cis-regulatory modules (CRM for short).

1.2 Problem Formalization

In this paper we address a well-studied variant of the
composite motif discovery problem that can be informally
stated as follows: given a set of DNA sequences, typically
taken from the promoter regions of co-regulated genes, and
given descriptions of DNA binding affinities (aka simple
motifs) for allegedly cooperating TFs, predict the location
and composition of sites bound by (subsets of) those TFs
(composite motifs).

1.3 Models for Composite Motifs

Composite motifs are defined by three main features: the
type of the component TF, the order and orientation in
which the the TFBS appear in the gene’s upstream sequence,
and the relative mutual distances of the TFBS’s. Some mod-
els impose a stringent rule on the order/orientation aspects
(e.g. [4]) while other (see. [5]) do not impose a precise order-
ing. Indeed the degree to which biologically relevant CRMs
are structured or unstructured is still largely unknown [6],
[7], and it is conjectured that the TFBS order impact more
on the fine working of the CRM, rather than being a signa-
ture of CRM presence or absence [8]. In our setting we use a
model in which order is not stressed, and only TF composi-
tion and the relative TFBS distance are highlighted, though
these two factors play different roles.

1.4 Proposed Novel Algorithm Overview

We describe here CMStalker, a composite motif discovery
tool whose computational core is a combinatorial search
algorithm that explores the space state of possible solutions
by progressively relaxing some (internal) parameters. Our
algorithm can be seen as a very specialized form of con-
straint satisfaction engine with a specific strategy used to
explore the configuration space of solutions determined by
the two main parameters (quorum and window size). Our
algorithm uses the combinatorial fingerprint of the
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composite motif in the solution-generation phase, and a dis-
tance uniformity constraints in a subsequent solution-filter-
ing phase, but without any hard threshold. CMStalker also
uses a statistical filtering criterion, based on the approxima-
tion of the p-values of recurrent groups of potential TF bind-
ing sites (see Section 3), using the same approach adopted in
[9] for modules. This strategy can be appreciated in contrast
to, say, CPMmodule that employs instead a generic Frequent
Itemset Mining tool, not specifically designed for solving the
Composite Motif problem, in which the internal handling of
the constraints is rather blind to their nature.

1.5 Input Parameters

One of CMStalker’s main design goal was to bring sim-
plicity of operation to end-users. This meant ruling out
many of the so-called nuisance parameters [10], i.e., user-
defined quantities that drive the internal algorithms but
that are either perceived of little biological relevance, or
whose precise values are difficult to set in advance. As a
consequence of this objective, CMStalker only needs two
mandatory input parameters, namely a set of DNA
sequences to be searched for motif clusters and a set of
Position Weight Matrices (PWMs) describing TF-DNA
binding affinities. Such matrices are typically obtained
from known and trusted databases, such as TRANSFAC
[11] and Jaspar [12]. However, concerning this latter
point, we stress that CMStalker is also able to run third
party software packages for the de-novo motif discovery
(see [13]); these pieces of software can be employed to
“synthesize” new PWMs, to be used as an alternative to
known matrices from the public databases. PWM have
been selected as formalism for modeling the specificity of
protein-DNA interactions since it is a widely used stan-
dard [14], however, the core algorithm with minor modi-
fications would be able to use also other models for TF
binding such as HMM, or the recently proposed tran-
scription factor flexible model (TFFM) of Mathelier and
Wasserman [15].

1.6 Experiments

We evaluate CMStalker on three different benchmarks of
quite different nature: (1) the 12 datasets (fromvarious organ-
isms) considered by Klepper et al. in [16]; (2) the synthetic
dataset introduced by Xie et al. in [17] (from human, mouse
and chicken genomes); (3) the dataset of cis-regulatory
regions in early stage development of Drosophila considered
by Ivan et al. in [18]. We compare the results obtained by
CMStalker, using various performance metrics, against those
of 121 other published tools. These are the eight tools ana-
lyzed in [16] (namely CisModule [19], Cister [20], Cluster-
Buster (CB) [21], Composite Module Analyst (CMA) [22],
MCAST [23], ModuleSearcher (MS) [24], MSCAN [25] and
Stubb [26]), and moreover COMPO [9], MOPAT [27], CORE-
CLUST [28], and CPModule [29], [30]. The resulting tool/
dataset/metrics matrix is clearly “incomplete”, since no sin-
gle tool has been previously tested over all the above men-
tioned data, but nonetheless quite dense to provide a solid

ground for evaluations. Except for MOPAT and CPModule,
we only report published results, in order to avoid the risk of
sub-optimal use of some tool (e.g., wrong parameter
settings).

1.7 Overview of Results

Extensive experiments with 12 data sets in [16] and 11 state-
of-the-art tools are reported in Section 5, showing an aver-
age value of the correlation coefficient of 0.54 (against a
value 0.41 of the closest competitor). The correlation coeffi-
cient is a standard measure that takes real values in the
range ½�1::þ 1�, with þ1 being the situation of perfect corre-
lation, �1 of perfect anti-correlation, and 0 of statistical
independence (random correlation). This improvements in
output quality due to CMStalker is statistically significant,
as measured with the Friedman aligned test. On a second
benchmark set in [17], for increasing level of induced noise,
CMStalker has qualitatively roughly the same performance
levels as the best of five other methods.

The results computed by CMStalker have quality which
is superior, more often than not, to those of the competitors
(see Section 5), especially if one considers that they have
been obtained using a single set of parameter values (i.e., no
parameter fitting on the single data sets has been done).
CMStalker can be classified as a conservative motif discovery
tool. Actually, when CMStalker does not gather sufficiently
strong evidence to report a combination of TFBS as being
potentially functional, it does not report any answers at all.
While this phenomenon in general sacrifices sensitivity, it
allowed us to adopt a search methodology based on param-
eter relaxation that we regard as one the key design choices
leading to the observed good experimental results.

The problem of detecting functional regions in DNA
sequence data is a quite challenging one, and a killer
“general” computational solutions might not exist. While
more comparisons are needed, against yet other methods
and/or using different benchmark data, we feel however
that the results obtained give comforting evidence of the
merits of the approach embodied in CMStalker in realistic
application scenarios.

1.8 CHIP-seq Variants

Chromatine immunoprecipitation experiments coupled
with next generation sequencing (CHIP-seq) [31], [32] pro-
duce data useful for the in-vivo identification of functional
TFBS in TF-specific and tissue-specific experiments. Proc-
essing CHIP-seq data, however, requires specialized algo-
rithmic techniques that are specific to this technology, in
order to be effective. In this work we do not rely on this
type of additional data, and thus we compare our perfor-
mance only with those methods that work in a setting simi-
lar to the one we adopted. The development of variants of
our algorithm that take advantage of CHIP-seq data is left
for future research.

1.9 Organization of the Paper

The rest of the paper is organized as follows: Section 2 out-
lines previous results and tools that provide the landscape
in which to place our present contribution; Section 3 intro-
duces the technical notions required in the following

1. See Table 2 in supplementary materials, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2014.2359444.
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Section 4, which describes the algorithm embodied in
CMStalker; finally, Section 5 reports experimental results.

2 COMPOSITE MOTIF MODELS AND RELATED

WORK

A (simple) motif is a model of binding sites for just a tran-
scription factor. In the following, for ease of language, we
will use the terms motif and binding sites interchangeably.
Simple motifs are often described by means of Position
Weight Matrices (see Section 3 for formal definition). Several
hundreds of experimentally determined PWMs for identify-
ing TFBS are available in databases such as TRANSFAC
[11] and Jaspar [12]. However, the highly degenerate nature
of the TFBS implies that, when scanning sequences for
PWM matches, many false positive non-functional matches
are quite likely to occur. Thus additional information and
criteria are needed to filter out false positive matches.

Composite motifs (a.k.a. combinatorial or higher-order motifs)
describe sets of simple motifs, sometimes called boxes, sepa-
rated by stretches of DNA of limited size (say, < 20 bp). The
distance constraint seems typically more important than
motif ordering; while alterations in the distances between
simple motifs usually kill transcription, a different motif
order may be simply associated with a different transcrip-
tional behavior (see [33]).

Before proceeding, we must address an important issue,
which is only apparently terminological. Given a composite
motif and a set of corresponding binding sites in different
input sequences, some authors identify the regions spanned
by those sites as Cis-Regulatory Modules (hereafter CRMs) [16],
[28], [34], [35]. This is all but a universally accepted viewpoint.
Many influencing works in the fields clearly distinguish the
two concepts of composite motif and CRM (see, e.g., [18], [36],
[37]), attaching to the latter a broader semantics.

Such broader characterization of the notion of CRMs has
to do more with functional output (i.e., the “battery of gene
they orchestrate” [18]) than with site affinities, as is the case
of composite motifs. The already mentioned paper by Su
et al. [37] even equates the notions of CRM and that of a
whole promoter. A practical consequence of this viewpoint
is that the functional regions that must be sought by compu-
tational methods are much longer than those typically
spanned by composite motif clusters (compare the 500-1,000
bp target size in [18] against the maximum 100 bp target size
of [34]). CMStalker has been designed to detect composite
motifs in the above sense rather than CRMs; hence, in this
paper, we generally avoid any reference to Cis-Regulatory
Modules. However, it is true that the detection of recurrent
motif clusters is one of the techniques adopted to locate such
functional modules. It is precisely for this reason that we
have tested CMStalker also on a dataset of Cis-Regulatory
Modules in the Drosophila genome (see Section 5).

In CMStalker we adopt the simple set model to describe
composite motifs. According to this, a higher-order motif is
just characterized by its component simple motifs, with just
a mild uniformity constraints on the total span of the region
containing the composite motif. We made this choice for
our tool to require minimal information about the motif
structure; actually, while inter-box distances are important
for the characterization of the mechanisms of functional

sites, the need for their specification clearly limits the tools
applicability when only detection is sought. However, as
we shall see in Section 4, our algorithm uses information on
the overall span of the prospective composite motifs to
enforce some regularities in the overall length of the
reported output set.

The set model is simple and yet quite a reasonable one; it
has been adopted in some of the earliest attempts to identify
clusters of binding sites in the Drosophila genome [36] and
in the muscle and liver datasets that we also consider in the
present paper [38]. More recently, the set model has been
adopted in COMPO [9] and CPModule [29], [30].

Another popular model still regards composite motifs as
sets of simple motifs, but includes ordering and distance
information on their occurrences. Structured motifs or tuple
motif models are the often used names for these cluster of site
abstractions. A pioneering work on structured motif discov-
ery is that by Marsan and Sagot [39]. One of principal merits
of this influential contribution is to highlight the power of a
direct approach to finding clusters of motifs, namely to
make it possible even for a single “subtle” motif to be cap-
tured when considered in combination with other signals
(however, see [40] for an in-depth comparison of direct
methods with algorithms based on the construction of struc-
tured motifs by simple motif combination). This model
is also very often used in researches where simple dyad
motifs (i.e., composite motifs made of just two boxes) are
sought [3], [41], [42], [43].

A third model often adopted to represent composite
motifs is the Hidden Markov Model (HMM). This is very pow-
erful and much a richer abstraction than the previous two.
Essentially, a HMM for compositemotif description is aMar-
kov chain whose states are associated to positions in the sim-
ple motifs or in the background; in each state the HMM
“emits” one of the four nucleotides according to a probability
distribution (computed either from the PWM representation
of the motif or from the background frequencies). Different
HMMs models adopt different definitions for the transition
probabilities and differ in the way they are computed. By
accurately defining these probabilities, a HMM may model
sets of unstructured motif as well as structured motifs. One
of the first attempts to use HMMs to discover clusters of
motifs is the one described in [44]. Other popular tools that
model composite motifs as HMMs include Cister [20], Clus-
ter-Buster [21], Stubb [26], and CORECLUST [28]. Among
these, Stubb is especially worth mentioning because it com-
putes the transition probabilities using expectation-maximi-
zation, without requiring any user-supplied parameters.

3 TECHNICAL DEFINITIONS

In this Section we briefly define/recall the fundamental
notions used in the rest of the paper (a summary can be
found in Table 1 of supplementary materials, available
online).

Let D ¼ fa,c,g,tg be the alphabet representing the
four DNA base pairs (bp). A short word w 2 D� is called an
oligonucleotide, or simply oligo. Typically jwj � 20. Let
S � D� be a set of n DNA fragments, e.g., sequences of bps
from the promoter regions of some genes. We say that w
occurs in S 2 S if and only if w is a substring of S.
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From a computational point of view, a DNA motif (or
simply motif) is a representation of a set of oligos that
describe potential Transcription Factor binding loci. The
representation can be made according to one of a number of
models presented in the literature. Here we adopt the well-
known Position Weight Matrices.

A PWM M ¼ ðmb;jÞ, b 2 D; j ¼ 1; . . . ; k, is a 4� k real
matrix. The element mb;j gives a score for nucleotide b being
found at position j in the subset of length-k oligos that M is
meant to represent. Scores are typically computed from fre-
quency values. But how can we associate oligos to PWMs?
Different answers have been given to this question in the lit-
erature (see, for instance, [45], [46], [47]). Here we adopt per-
haps the simplest one.

Let M be a PWM and consider a word w ¼ w1w2 . . .wk

over Dk: We let score of w (w.r.t. M) denote the sum of the

scores of each nucleotides, i.e., SMðwÞ ¼
Pk

j¼1 mwj;j. The

maximum possible score given by M to any word in Dk

is clearly SM ¼
Pk

j¼1 maxb2Dmb;j. Then we say that

Mrepresents word w iff SM ðwÞ
SM
	 t, for some threshold value

t 2 0; 1ð �. In the following, we will identify motifs with their
matrix representation.

A motif M has a match (or occurrence) in S 2 S if and only
if there is a substring of S that is represented by M. We bor-
row some terminology from [9] and call discretization the
process of determining the matches of a motif in a set of
DNA sequences.

Amotif class is a set of motifs. Ideally, in CMStalker all the
motifs in a class describe potential binding sites for a single
Transcription Factor. For this reason, we often freely speak
of Transcription Factors to refer to motif classes. A factor
match in a DNA sequence is thus a match of any of the
motifs in the class associated to that factor. Note that motif
classes have the ability to represent oligos of different
lengths for the same TF, since different matrices usually
exist for the same factor that have a different number of col-
umns. Let F be the set of factors having matches in S. We
consider a one-to-one mapping between F and an arbitrary
alphabet R of jF j symbols, which we refer to R as the map-
ping alphabet.

A combinatorial group (or just group) is a collection of not
necessarily distinct TFs that have close-by matches in a suf-
ficiently large fraction of the input sequences (assuming the
number N of sequences is clearly understood, we silently
equate the fraction q 2 ð0; 1� and the absolute number of
sequences dq 
Ne). The minimum fraction allowed for a set
of TFs to be considered a combinatorial group is termed quo-
rum. The width or span of a group match in a sequence S is
the “distance” (measured in bps) between the first bps of
first and last TF match of the group in S.

In set-theoretic terms, groups are multisets. In CMStalker
they are represented as character sorted strings over the
mapping alphabet R. CMStalker’s algorithmic core (see
Section 4.3) efficiently implements special union and inter-
section operations (denoted _ and ^, respectively), defined
on maximal collections of pairs hM;ni, where M is a multi-
set and n is a positive integer. Maximality means that if P is
one such collection and hM;ni 2 P , then there is no other

h �M; �ni in P with both �M �M and �n 	 n.
The definition of _ is easy:2

Union: P _Q ¼ p 2 P [Q : p is maximal in P [Qf g;
where [ denotes union over sets. As for ^, we first define it
for collections containing just a single pair:

fhM1; n1ig ^ fhM2; n2ig
¼ hM1 \M2; n1 þ n2if gif M1\M2 6¼;[
hM1; n1if gif M1nM2 6¼;[ hM2; n2if gif M2nM1 6¼;:

Then, for arbitrary sets P1 ¼ fpð1Þi gi¼1;...;h and P2 ¼ fpð2Þj gj¼1;...;k:

Intersection: P1 ^ P2 ¼ _i;j p
ð1Þ
i

n o
^ p

ð2Þ
j

n o� �
:

Our last definition is that of Composite Motif. A CM is a
set of close-by TF matches in some input sequence. CMs
represent CMStalker’s best guess for functional TF binding
regions. Note that no quorum constraint is imposed to com-
posite motifs. Indeed, as collection of factor matches, com-
posite motifs are clearly unique objects. As we shall see in
Section 4, CMStalker builds composite motifs by extending
the matching of some combinatorial group.

4 ALGORITHM

CMStalker main operation mode, which we describe in this
paper, is composite motif discovery in a set S ¼ fS1; . . . ;
SNg � D� of DNA sequences, using a collection of PWMs.
However, CMStalker is also able to run a number of third-
party motif discovery tools, the output of which can then be
used either to directly discover putative composite motifs,
or to create a number of PWMs to be later used under the
main operation mode.

In many cases, the number of matrices available, which
describe the binding affinities of the factors involved in the
experimental protocol upstream data analysis, is much
larger than the number of such factors. This often happens

TABLE 1
A Brief Overview of the 10 TRANSCompel Sequence Sets and

the Liver and Muscle Datasets Taken Verbatim from [16]

Dataset Seqs Total
Size (bp)

Modules Module size
min,max,avg

AP1-Ets 16 14,860 17 14,99,27
AP1-NFAT 8 6,893 11 14,19,16
AP1-NFkB 7 6,532 8 18,135,53
CEBP-NFkB 8 7,308 8 44,118,84
Ebox-Ets 4 3,489 6 16,50,25
Ets-AML 5 4,053 5 13,30,19
IRF-NFkB 6 5,344 6 23,71,43
NFkB-HMGIY 6 5,393 7 10,32,13
PU1-IRF 5 4,530 5 12,14,13
Sp1-Ets 7 5,787 8 16,117,37
Liver 12 11,943 14 26,176,112
Muscle 24 20,427 24 14,294,120

Further information can be found in additional files of [16].

2. A quick recap of the standard operations on multisets used in the
definitions of _ and ^ can be found in the Supplementary
materials, available online.
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when many PWMs are loaded from an annotated database
or when the input matrices are produced by third-party
motif discovery tools. In particular, a single factor may be
described by many different matrices of possibly different
lengths. CMStalker is able to handle this latter state of
affairs, provided that the user has some additional knowl-
edge on the biological experiment.

1) The user knows number and identities of the TFs
involved. In this case s/he may submit to CMStalker
different input files with different sets of matrices,
each one describing affinities for a single TF.

2) The user only knows the presumed number of TFs
involved, but either does not knows their detailed
identities or, even if s/he does, s/he is not able to
provide clean sets of PWMs for each.

If none of the above applies, CMStalker will treat any
input matrix (or matrix synthesized by an external tool) as
describing a distinct factor.

Overall, CMStalker’s main operation mode amounts to
the following five steps, which we describe in details in the
rest of this section.

1) PWM clustering (optional), to organize the matrices
in groups (factors) of close-by PWMs;

2) Discretization, to detect factor matches in the input
sequences;

3) Group finding, which is the crucial combinatorial
group detection step;

4) Group filtering, for the screening of groups according
to various filtering criteria;

5) Composite motif prediction, to form the putative com-
posite motifs out of groups.

4.1 PWM Clustering

This step is performed if (and only if) case 2) above applies,
i.e., if the user provides the number of relevant TFs together
with one “undistinguished” set of matrices (i.e., a single
input PWM file). Note that in case 1) the “clustering” is
implicitly performed by the user by submitting to
CMStalker multiple input PWM files.

To perform the clustering, CMStalker first builds a
weighted adjacency graph whose nodes are the matrices
and edges the pairs ðM1;M2Þ such that the similarity
between M1 and M2 is above a given threshold. Currently,
CMStalker uses pairwise normalized correlation [48].

Then, CMStalker executes a single-linkage partitioning
step of the graph vertices, which essentially reduces to a
variation of Kruskal’s algorithm for the construction of a
maximum cost spanning forest. More precisely, let Nm be
the number of matrices and let NF be the number of TFs;
then CMStalker performs at most minfjEj; Nm �NFg steps
of Kruskal’s algorithm, where E is the set of edges in the
similarity graph. The returned clusters are the graphs
induced by the vertices in distinct trees of the forest. Finally,
CMStalker identifies the dense cores in each set of the parti-
tion, via pseudo-cliques enumeration [49], returning them
as the computed clusters.

4.2 Discretization

Even with the most accurate PWM description of a motif,
the problem of determining the “true” motif matches in the

input sequences is all but a trivial task. Actually, whatever
the algorithm adopted, there is always the problem of set-
ting some threshold s to separate matches from non-
matches, a choice that may have a dramatic impact on the
tool’s performance. In general, low thresholds improve sen-
sitivity while high thresholds may improve the rate of posi-
tive predicted values (PPVs). The strategy adopted in
CMStalker is to moderately privilege sensitivity during dis-
cretization, with the hope to increase the positive predicted
rate thanks to the combinatorial effect of close-by matches.
We turned this general goal into precise threshold values by
taking TF representation issues as well as computational
efficiency concerns into account.

We observe that, when different “accurate” matrices are
known to describe functional loci for a single TF, it is none-
theless very likely that, for any particular site, some of them
do dot produce high scores. Moreover, many matrices
almost unavoidably imply a lot of matches, which in turn
have a strong impact on the computational cost of our algo-
rithm (and not only ours), as we will point out in Section 4.6.
For the above reasons, we allow for the adoption of more
than one threshold value; in particular, in our experiments
we start with the quite high 0.7 value adopted by TAMO3

for TFs represented by five or more matrices and decrease it
gradually to the minimum value of 0.5 for motifs repre-
sented by one matrix. The latter allows us to possibly catch
weak signals without paying too much in terms of computa-
tional cost.

All the experiments of Section 5 were performed using
fixed threshold values. These can be varied in the configura-
tion file (which means they are essentially hidden to the typ-
ical user), and what one can reasonably expect is that
different thresholds on different datasets may return very
different results. The average good quality of CMStalker’s
predictions, across different datasets, suggests that the
above criterion (rather than the particular threshold values
adopted) has indeed some merits.

4.3 Group Finding

The previous two steps result in a set of motif classes (fac-
tors) and a set of factors matches, which are the “input” to
the group finding step. To this end, CMStalker uses a simple
search strategy, with the aim of trading computation time
for accuracy: it progressively relaxes two internal parame-
ters until each motif class is possibly included in at least one
group. These parameters are the maximum allowed combi-
natorial group width and the minimum quorum for combi-
natorial groups and can be set in the configuration file.

Formally, let fW1; . . . ;Wrg be a set of window sizes
and let q1; . . . ; qsf g be a set of quorum values, with W1 <
W2 < 
 
 
 < Wr and 1 	 q1 > q2 > 
 
 
 > qs > 0. For a
given window size value W and sequence Si, we say that a
multiset m over R is feasible iff each factor of m corresponds
to a match in Si and the span of all the matches in Si is
bounded byW .

Intuitively, for each pair W; q, CMStalker computes all
maximal feasible groups with respect to window size W
and quorum q (i.e., that have matches in at least dq 
Ne

3. Our software uses TAMO [50] for “low-level” motif representa-
tion and manipulation.
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sequences). If all letters of R are included in the found
groups, CMStalker stops. Otherwise, CMStalker relaxes, in
alternate order, one of the constraints on width (considering
a larger value) and quorum (smaller value).

Algorithm 4.3 describes the group finding step in details.
Note that, thanks to the properties of the _ and ^ operators,
the pairs hM;ni included in GN are maximal, with n satisfy-
ing the last fixed quorum value. Clearly, even with the
weakest parameter values (i.e., widest window and smallest
quorum), some factors may not be represented in G. This is
not necessarily a problem, since the user may have provided
PWMs for irrelevant factors.

1: W  W1 and q q1
2: for i ¼ 1; . . . ; N do
3: Compute the maximal multisets M

ðiÞ
1 ; . . . ;MðiÞ

ni
that are

feasible forW and Si

4: Pi  fhMðiÞ
1 ; 1i; . . . ; hMðiÞ

ni
; 1ig

5: end for
6: G1  P1

7: for i ¼ 2; . . . ; N do
8: Gi  Gi�1 ^ Pi

9: end for
10: From GN discard all pairs hM;ni such that n < dq 
Ne
11: if multisets in GN include all the letters of R or W ¼Wr

and q ¼ qs then
12: G fM : hM;ni 2 GNg
13: return G
14: else
15: RelaxW or q (or both)
16: Jump to step 2
17: end if

In current CMStalker implementation, the relaxation step
(step 15) involves the window size and the quorum value in
an alternate order. Note that a verbatim implementation of
Algorithm 4.3 might be quite inefficient. For instance, when
relaxing the quorum value, step 3 needs not be computed.
On the other hand, the pairwise intersections in step 8 can
be performed quite efficiently thanks to the character sorted
string representation of multisets of factors.

4.4 Group Filtering

The filtering stage aims at picking groups that: (1) are strong
enough from a conservation point of view; (2) further
exhibit a regularity in terms of span of the matches; (3) sat-
isfy a simple statistic criterion.

1) “Group filtering”: This phase aims at eliminating
those groups that are not “strong enough”. As out-
lined in Section 4.2, a weak TF match may be
allowed, due to possibly low thresholds for poorly
represented TFs. At the group level, though, we
impose stronger requirements, with the aims of both
improving PPVs and possibly limiting the number
of candidates, which highly affects the cost of the
group finding step (see Section 4.6). For this purpose,
a threshold value t is again specified in the
CMStalker configuration and use to discard those
group matches that exhibit less than t � 100 percent
of conserved bps over all TF matches of the group.
Here conserved simply means that the particular bp

it’s the one that scores the highest in the correspond-
ing PWM column. Also the value of this parameter
was kept constant in all the experiments performed.

2) “P-value filtering”. CMStalker computes the p-value
of each combinatorial group according to the method-
ology adopted in [9] for the modules, and discards
those groups with p-value higher than a user specified
threshold (which defaults to the “usual” value 0.05).

3) “Group clustering”. This step is performed only
under the ZOOPS (Zero or One Occurrence per
Sequence) model of motif distribution, which is the
default in CMStalker (the alternative model is usu-
ally termed ANR, which stands for “Any Number of
Repetitions”). For each remaining maximal group,
CMStalker performs a clustering of all its matches
with respect to the widths of the matches them-
selves. For each sequence where the group occurs, it
then returns the match whose width is closest to
the most recurring group width. Note that each
sequence may still contain more than one group, but
not of the same “type” (i.e., factor composition).

The choice of this clustering step is motivated by
the observation that there is a wide literature on the
so called structured motifs (see, e.g., [51]) where the
order of the TF matches and the inner spacings
between the single motifs play a crucial role. We do
not use any of these pieces of information, but sim-
ply note that, if the spacings are fixed, then the width
of the composite motif is fixed (or exhibits small
oscillations) as well. Hence, this information might
be captured by a clustering strategy.

4.5 Composite Motif Prediction

For any “surviving” group g in G, CMStalker first retrieves
its actual matches from the input sequences; then tries to
merge overlapping or close-by groups of matches provided
that the resulting span of the factor matches does not violate
the window constraint. These merged groups are the candi-
date composite motifs being predicted. However, under the
ZOOPS model, only one composite motif is returned,
namely the one that contains more factor matches.

Note that it is precisely this step that makes composite
motifs unique objects, in the sense that they do not have to
satisfy (after merging) any quorum constraints.

4.6 Computational Complexity

The cost of the bare CMStalker algorithm is dominated by
the module finding step or, more precisely, by the combina-
torial group finding sub-process. It is easy to see that this
can be exponential in the length of the longest group g
(regarded as a string over R) in any of the initial sets Mi’s,
simply because g may have an exponential number of maxi-
mal subgroups that satisfy also the quorum constraint. In
turn, the length of g may be of the order of module width
and hence of sequence length.

The above worst-case cost can indeed be achieved, espe-
cially if one gives many PWMs in input to CMStalker (say,
all the PWMs available in the TRANSFAC database), that
are very likely to incur in a huge number of (non functional)
factor matches. One possibility to keep running time under
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control is to bound the cardinality of the groups and/or the
number of matches in each sequence. For this reason, there
are two additional parameters that control these complexity
related quantities, which are stored in the configuration file.
We shall say more on this in Section 5, where we show the
actual running times obtained on input the “synthetic
benchmark” (that we used for size scalability reasons).

At the other extreme, there is the situation where we only
have few TFs and look for sites where all of them bind (as
for the TRANSCompel datasets of Section 5). In this case the
cost of the sub-process is linear in the number of sequences.

If clustering is required the overall cost is also bounded
from below by a quadratic function of the number of input
PWMs, since the algorithm computes all the possible distan-
ces among pairs of matrices. This cost indeed dominates the
computation time on the TRANSCompel datasets.

5 EXPERIMENTS

In this section we present the results obtained in experi-
ments performed on three different benchmark datasets,
each described in one of the subsequent sections. We first
describe the parameter set up for CMStalker, and the func-
tions used to measure the algorithms’ output quality. Next
we describe in details the three mentioned benchmarks,
which we refer to briefly as the COMPOSITE, XIE, and
REDFLY benchmarks, respectively.

5.1 CMStalker’s Setup

All the experiments were performed with a almost fixed
parameter configuration, which we describe in this section.
The overall good experimental results obtained suggest that
such standard setup can guarantee good performances
across very different datasets. All the parameters are set in
the configuration file only, which essentially means that
they are hidden from the typical end user.

� The threshold parameter were fixed as reported in
Section 4.2.

� The p-value adopted in the filtering stage
(Section 4.4) was 0.05. However, in case of the
TRANSCompel data, where we were just looking for
pairs of motifs corresponding to exactly two differ-
ent TFs, then we simply did not perform any p-value
filtering (i.e., set p-value ¼ 1). This reflects our view-
point about the merits of statistical parameters in
motif finding, namely that they might render evident
“relative” rather than “absolute” quality of potential
binding locations. Here we have just one candidate
motif, which is returned provided that it is strong
enough by combinatorial evidence.

� the two crucial “optimization” parameters, namely
quorum q and window size W (Section 4.3), were
fixed as follows: q ¼ f0:9; 0:8; 0:7; 0:6:; 0:5:; 0:4; 0:3;
0:2; 0:1g, W ¼ f50; 75; 100; 125; 150g. However, for
the REDFLY dataset we used different values of W ,
to conform to the experimental setting of [18] (see
Section 5.5).

� To limit the possibly exponential growth in running
times (see Section 4.6), we included two additional
parameters upper bounding: (1) the number of hits

returned by the discretization stage in any input
sequence, and (2) the cardinality of the combinatorial
groups (see also [9]). We call these MAXHITS and
MAXGROUP, respectively. MAXGROUP was kept
fixed to 8 in all the experiments: this is usually suffi-
cient to model the clusters of functional TFBSs that
occur in practice. Bounding the number of hits in
any input sequence seems to be more delicate.
Recall that we set a low value for the threshold
parameter, with the aim at not loosing weak sig-
nals. However, doing so may produce a large
number of hits that severely impact on the compu-
tational cost (Section 4.6). This does not happen in
the COMPOSITE benchmark, but it is definitely
the case for a number of datasets in the other two
benchmarks. To set MAXHITS in general, we per-
formed a study using the XIE benchmark, which
allows a better control of the input parameters (in
particular, the number of PWMs). Fig. 1 shows the
observed running times for different datasets (with
varying number of input PWMs) of the XIE bench-
mark. The exponential nature of the running time
as a function of the number of hits (confirming the
worst-case theoretical analysis and the impact of
an accurate/inaccurate choice of the input PWM)
suggested us to set MAXHITS ¼ 20 for XIE and (at
least initially also) for REDFLY datasets. However,
in an attempt to catch more results, we then set
MAXHITS ¼ 30 for the latter but payed (on input
some hard datasets) a high computation cost, with
runs that lasted several days.

5.2 Measures Used to Assess the Tool’s Output
Quality at the Nucleotide Level

Each composite motif prediction algorithm will output a set
of TF labels and a set of corresponding TFBS (intervals on the
input sequences) which, together, form the algorithm’s pre-
diction of themost likely compositemotif for the given input.
The use of benchmarks as input allows us to measure the
quality of each algorithm’s output in terms of a measure of
similarity between the true solution and the reported predic-
tion. Among the well known methodological frameworks

Fig. 1. Running times of CMStalker for XIE datasets with a variable
number of PWMs. The graph highlights the exponential rise of the run
time function starting at MAXHITS ¼ 30.
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for this task we follow that of Burset and Guigo [52] and
Tompa et al. [2], whichwe outline here below.

For each nucleotide in the input sequences we can label it
with one element from the binary domain fPositive;
Negativeg, where Positive (abbr. P ) indicates that the nucle-
otide belongs to a TFBS in the algorithm’s prediction, and
Negative (abbr. N) indicates that the nucleotide does not
belong to a TFBS in the algorithm’s prediction. Each predic-
tion can be either True (abbr. T ) or False (abbr. F ) thus we
can group (and count) the nucleotides into four classes
according to the prediction label, and to the fact that it corre-
sponds to reality or not.

a) nTP is the number of nucleotide labeled Positive,
that are really part of a TFBS.

b) nFP is the number of nucleotide labeled Positive,
that are not really part of a TFBS.

c) nTN is the number of nucleotide labeled Negative,
that are not really part of a TFBS.

d) nFN is the number of nucleotide labeled Negative,
that are really part of a TFBS.

Clearly we have high similarity between prediction and reality

when nTP and nTN are large numbers relative to nFP and

nFN . In order to capture this intuition several synthetic indices

have can be devised. Denote with nPr the number of nucleoti-

des in predicted TFBS, we have: nPr ¼ nTP þ nFP . Denote

with nGs the number of nucleotides in real TFBS (also called

the “golden standard”), we have: nGs ¼ nTP þ nFN . A basic

measure is Sensitivity4 (abbr. Sn) defined as the ratio between

the number of true predictions of nucleotides in TFBS over the

number of nucleotides in real TFBS:

Sn ¼ nTP

nGs
¼ nTP

nTP þ nFN
: (1)

A second basic measure is Precision5 (abbr. Pr) defined as
the ratio between the number of true predictions of nucleoti-
des in TFBS over the total number of nucleotides in
predicted TFBS:

Pr ¼ nTP

nPr
¼ nTP

nTP þ nFP
: (2)

It has been noticed, however, that certain pairs of measures
are antagonistic, in the sense that it is easy to devise rela-
tively trivial algorithmic strategies to inflate one at the
expense of the other.6 For this reason other functions have
been proposed which often can be seen as “mean” values of
the antagonistic pairs. For example in information retrieval
it is often used the F1 measure that is the harmonic mean of
the precision and the sensitivity measures.

Burset and Guigo [52] introduced the correlation coefficient
(abbr. CC) specifically with the aim of having one such bal-
anced measure in the area of gene structure prediction, by
using all four values nTP; nFP; nTN and nFN . The correla-
tion coefficient has an easy statistical interpretation as a cor-
relation between two random variables:

CC ¼
nTP 
 nTN � nFN 
 nFP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnTP þ nFNÞðnTN þ nFP ÞðnTP þ nFP ÞðnTN þ nFNÞp :

A second balanced measure has been proposed by Pevzner
and Sze [53], called the Performance Coefficient (abbr. PC) and
defined as:

PC ¼ nTP

nTP þ nFN þ nFP
: (3)

Tompa et al. [2] report also theAverage Site Performance (abbr.
ASP), the arithmeticmean of precision and sensitivity:

ASP ¼ Snþ Pr

2
: (4)

In our experiments we will use CC as the main performance
measure of accuracy, and the others as ancillary measures.

Ivan et al. [18] propose the following evaluation
scheme for evaluating CRM prediction tools. For each
data set the mean value of the length m of the true CRM
in the input sequences is pre-computed and given to the
prediction tools as an additional parameter. The predic-
tion tools are required to output a prediction in which the
predicted CRM in each sequence is of length m. In this
framework, summing the contributions over the full set
of sequences, we have forced the constraint nGs ¼ nPr,
thus several measures define above become redundant
and, in this context it becomes safe to use just the PPV
value as a measure of accuracy.

This type of analysis is termed “at nucleotide level” since
the initial step is a classification of the nucleotides into four
groups. A similar type of analysis can be carried out also at
the motif level, when we provide the corresponding classifi-
cation of the predicted TF (see the supplementary materials,
available online, for an in-depth discussion).

5.3 COMPOSITE Benchmark

5.3.1 COMPOSITE Datasets

The first benchmark was presented in [16]. It is composed of
12 datasets from various organisms. This benchmark is
composed of three subgroups:

a) Ten data sets from TRANSCompel in [16]. Each data
set contains a module made up of two TF with two
binding sites, for different TFs from the following
set: AP1, Ets, NFAT, NFkB, CEBP, Ebox, AML, IRF,
HMGIY, PU1, and Sp1. Any dataset is named after
the two component TFs: AP1-Ets, AP1-NFAT, AP1-
NFkB, CEBP-NFkB, Ebox-Ets, Ets-NFkB, NFkB-
HMGIY, PU1-IRF, and Sp1-Ets. In [16], all the matri-
ces corresponding to the same TF were grouped to
form an “equivalence set”, and treated as if they
were one.

b) One data set from [54] on liver specific transcription;
this data set includes modules with up to nine bind-
ing sites of four different TFs.

c) One data set from [55] on muscle specific transcrip-
tion. Modules are composed of a number of TFs
ranging between eight sites and five.

4. Sensitivity is also called “recall”.
5. Precision is also called PPV (positive predicted value).
6. Note that, taken separately, precision and sensitivity use only two

of the four values defined above, which makes it easier to increase one
of them by relatively trivial means.
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We report in Table 1 basic statistics on the length and number

of sequences, and on number and length of the composite

modules. Further information can be found in additional

files of [16].

5.3.2 Experimental Set Up

On the COMPOSITE data set we performed the most accu-
rate analysis of CMStalker’s behaviour (with respect to the
other two benchmarks considered), especially thanks to
the results already available in [16], which we will refer in
the following as to the assessment paper. We were able to
compare CMStalker against the eight tools considered in
the assessment paper (CisModule [19], Cister [20], Cluster-
Buster [21], Composite Module Analyst [22], MCAST [23],
ModuleSearcher [24], MSCAN [25] and Stubb [26]), as well
as three other more recent tools, namely COMPO, devel-
oped by the same research group that performed the assess-
ment [9], MOPAT [27], and CPModule [29].

Statistics for the tools already evaluated in [16] were
downloaded from the authors’ site. Regarding COMPO, we
computed the statistics for liver-specific and muscle-specific
datasets starting from the prediction files made available by
the authors at the address http://tare.medisin.

ntnu.no/compo/. For the TRANSCompel data, we
directly used the results provided at the same address. Pre-
dictions for MOPAT and CPModule were obtained as
described in the supplementary materials, available online.

5.3.3 Results at the Nucleotide Level

The first set of experiments involves only CMStalker over
the TRANSCompel datasets. For each dataset we performed
two runs, one with matrices already separated by TF (i.e.,
giving CMStalker two PWM input files), and one with
mixed matrices. In this second case we pass to CMStalker
only the information on the number of TFs involved (just
two). As Fig. 2 shows, the results obtained are essentially
identical, indeed suggesting that the clustering phase was
able to “recognize” the true motif classes. The fact that
sometimes the “mixed PWMs” runs may produce better
results (e.g., for the AP1-Ets and NFkB-HMGIY datasets of
TRANSCompel) is not a contradiction. Actually, in such
cases the clustering stage may have removed some matrices
that produced spurious (non functional) matches. Of course,
also the opposite situation could occur on different datasets.

In the second set of experiments we compared CMStalker
(fed with just one single PWM file) against the 11 competitor
algorithms on the whole collection of 12 COMPOSITE data-
sets by measuring the Correlation Coefficient. The results
are shown in Fig. 3 and in Table 4 of the supplementary
materials, available online.In terms of ranking, CMStalker
ranks first in eight cases while Cluster-Buster, Module-
Searcher, Mopat, and CPModule are first in one case for
each method. CMStalker has a higher average nCC value of
all the methods testes on this data set.

We conclude that, though CMStalker does not beat all
other competing methods on all the data sets, still in terms
of ranking and average nCC values has a far superior per-
formance to all of them in this extensive experiment. How-
ever to make our statement more robust we perform also a
statistical analysis, which at the best of our knowledge has
not been done yet in this context.

5.3.4 Statistical Significance

In the attempt to assess the statistical significance of these
results, we first performed a Friedman aligned non-
parametric test using the overall methodology detailed in
[56]) that involved CMStalker and 11 other tools.7

First we test the null hypothesis that all the considered
algorithms behave similarly, and hence that the average
ranks over the all data sets are essentially the same. This can
be safely rejected, with a p-value about 8:9 
 10�9.

Next we performed a post hoc test associated to the
Friedman statistics, by considering CMStalker as the new
proposedmethods to be compared against the other 11 tools.
Here the null hypothesis is that CMStalker has no better
performance that each of the other tested methods and that
the observed differences are caused by chance.

Table 2 shows the p-values of the 11 (Friedman aligned)
comparisons, adjusted according to the Benjamini and
Hochberg procedure [57] (also known as False Discovery
Rate, FDR). This methodology takes into account possible
type-I errors in the whole set of comparisons [56]. For all of
the competing algorithm the null hypothesis can be safely
rejected at a threshold well below 0.05. The best competitor
is COMPO, against which the null hypothesis can be
rejected with a p-value around 0:00005. All the other meth-
ods fall behind by several orders of magnitude.

5.3.5 Comparison of CMStalker and COMPO

In this Section we provide further results to compare
CMStalker and COMPO on the COMPOSITE benchmark, in
order to gain additional insights.

Fig. 4 shows the results obtained on a wider sets of statis-
tics on the COMPOSITE datasets, separating liver and mus-
cle from the TRANSCompel’s data. For the latter, the results
shown in Fig. 4 combine the results obtained on the single
datasets (i.e., counting the total numbers of positive, posi-
tive predicted, negative, and negative predicted nucleotides
over the all datasets). Regarding liver and muscle, we point
out that we have reported the statistics most favorable to
COMPO among those obtained from the three different

Fig. 2. nCC results for CMStalker on the TRANSCompel datasets, with
separated (left/blue) or mixed (right/red) PWMs.

7. We excluded CORECLUST because of the limited availability of
homogeneous data for the comparisons.

LEONCINI ET AL.: CMSTALKER: A COMBINATORIAL TOOL FOR COMPOSITE MOTIF DISCOVERY 1131



prediction files provided by the authors. CMStalker has
slightly better performance than COMPO on muscle data
on all three balanced measures (PC, ASP and CC), worse
performance on Liver data, and better performance on
TRANSCompel’s data. In supplementary materials, avail-
able online, we report the precise numerical values used to

Fig. 3. Nucleotide level Correlation Coefficient values obtained by 12 tools on the whole collection of COMPOSITE datasets (negative values
treated as 0).

TABLE 2
Adjusted p-Values for Post Hoc Comparisons of CMStalker

against Other 11 Tools: MS = ModuleSearcher,
CB = ClusterBuster, CMA = Composite Module Analyst,

CP=CPModule, and CM = CisModule

COMPO
5
10�5

MS
5
10�12

CB
2
10�12

CMA
5
10�16

MSCAN
10�16

CP
2
10�24

MCAST MOPAT Cister Stubb CM
9
10�31 3
10�36 5
10�51 6
10�53 4
10�103 Fig. 4. Further nucleotide level comparisons between CMStalker and

COMPO.
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draw the figures presented in this section, as well as the
results obtained on additional TRANSCompel datasets, in
which the “true” matrices corresponding to the TFs
involved have been mixed with other (not relevant) PWMs.

5.3.6 Comparison of CMStalker and Coreclust

We compared CMStalker against CORECLUST [28] on the
liver-specific dataset, which is the only one for which
compatible data are available. It turns out that both meth-
ods are characterized by exactly the same nCC value,
namely 0.56 [58].

5.4 XIE Benchmark

5.4.1 XIE Dataset

The second benchmark is that constructed by Xie et al. [17],
which is composed of 22 genomic sequences sampled from
upstream regions of 22 randomly chosen genes in the
mouse, chicken and human genomes, and of 516 TFs from
TRANSFAC. The 22 genomic sequences are of same length
(1,000 bps). For 20 sequences, binding loci for transcription
factors Oct4, Sox2 and FoxD3 have been inserted within a
region of at most 164 bps, with inter-distances among TFBS
sampled from a Poisson distribution of expected value 10.
The order of the TF is preserved in each of the 20 sequences.
For two sequences no insertion has been done.

We downloaded the whole benchmark from the compan-
ion site of [29], [30], which also included various other files:
(1) one file with the correct positions and composition of the
inserted modules (the answer file); (2) a file with a set of 516
TRANSFAC matrices corresponding to vertebrate TFs;
(3) four collections composed of 10 PWM files each. Any file
in the first collection stores 10 matrices, namely the ones cor-
responding to the TF loci inserted in the genomic sequences
together with seven “noisy” PWMs. The noisy matrices
have been sampled from the above mentioned set of 516
TRANSFAC matrices. The other collections are character-
ized by an increasing amount of noisy matrices (17/20, 27/
30, and 37/40, respectively).

5.4.2 Experimental Set Up

We compared CMStalker on this dataset against the results
reported in [29], [30], that have been obtained by five differ-
ent tools, namely the already mentioned Cister, Cluster-
Buster, ModuleSearcher, and COMPO, as well as CPModule
itself [29], [30].

Fig. 5 shows the nucleotide level CC statistics for
CMStalker and the tools already evaluated in [29], [30] as a
function of the number of PWMs given in input.
CMStalker’s good results can be better appreciated when
considering the fact that (differently from the other tools
and, in particular, CPModule) it did not use any prior
knowledge of the module’s size (the proximity constraint of
[29], [30]). As for the COMPOSITE benchmark, CMStalker
simply used parameter relaxation in order to detect both
size and quorum of the prospective combinatorial groups.
We observe that CMStalker is roughly equivalent to the best
performing methods in the range from 16 to 216 matrices.
Afterwards there is a natural decay as the signal to noise
ratio decreases. From this perspective, the behavior of
Compo seems quite odd, as pointed out also in [30]. In the

supplementary material, available online, we also report a
zooming of the figures in the range from 10 to 40 PWMs.

5.5 REDFLY Benchmark

5.5.1 REDFLY Dataset

The third benchmark contains a number of cis-regulatory
regions which are provably functionally active during the
blastoderm development stage of Drosophila. The bench-
mark is available as supplementary material, available
online, of the paper [18], which we will frequently refer for
both the experimental setting and the result comparisons. It
is composed of 53 potentially relevant PWMs and of 33 data-
sets (collections of sequences), with a number of sequences
per dataset ranging from a minimum of 4 to a maximum of
77 and summing to a total of 719 sequences, for approxi-
mately 5.7 Mbps. Each sequence of a given dataset includes
a single CRM, whose length is typically different from those
of other sequences in the same dataset. However, the exper-
imental setting in [18] requires that any CRM discovery soft-
ware being evaluated returns, for each sequence in a
dataset, a single region of fixed length. This value is com-
puted as the average real CRM length in that dataset and it
is passed as a parameter to the prediction algorithm. Such
average values range from 442 to 1,248 bps.

The average lengths of the regulatory regions of the RED-
FLY dataset are significantly greater than those of the com-
posite motifs typically detected by our software, and by
most tools designed for the detection of clusters of binding
sites considered in this paper. This feature makes it the less
favorable to CMStalker (see also Section 2). We made no
attempt to adapt CMStalker to this state of affairs since we
wanted to understand whether CMStalker “as is” can be
suitably employed for the detection of regulatory elements
spanning from few tens to a thousand bps. We ran
CMStalker with the same set of parameters already adopted
in the previously described experiments. However, to con-
form to the experimental setting of [18], we set the final win-
dow size parameter, for a given dataset, to the average CRM
value for that dataset, by enlarging (or shrinking) the actual
output. To avoid incurring in very high computation times,
the values of MAXGROUP and MAXHITS parameters were
set as described in Section 5.1.

In [18] he results obtained by three different tools on this
benchmark (the already mentioned Stubb, as well as D2Z-
set and CSam, described in the same paper [18]) are
reported, against which we compare CMStalker. The results

Fig. 5. Nucleotide level CC results on the XIE benchmark.
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obtained are by no means definitive. CMStalker can be
regarded as quite “conservative” a motif discovery soft-
ware; in many cases (30 over 33), according to its internal
logic, CMStalker does not gather sufficient evidence for
reporting a cluster of sites as a potential motif, and hence
remains silent. In three cases the search was instead success-
ful and the performance competitive against the other tools
on the PPV metrics.

5.5.2 Experimental Set Up

We performed two sets of experiments, varying the
MAXHITS parameter (Section 5.1). In the first set, with
MAXHITS ¼ 20 (and set all the other parameters to
default values, with the exception of window size, for the
reasons explained above), CMStalker returned just one
answer, for the mapping1.cardiac.mesoderm dataset. We
then set MAXHITS ¼ 308 and got two additional answers.
Table 4 shows the results obtained and the corresponding
values reported in [18].

Note that Table 4 reports the values of the PPV statistics,
rather than Sensitivity, as in [18]. Actually, according to the
evaluation protocol of [18], the two measures coincide. In
our case, though, even when CMStalker reports some
answers for a given dataset, it does not claim a CRM for all
the sequences in that dataset. Hence sensitivity and PPV
coincide in our case only if they are computed with respect
to the true positive bps in the sequences for which
CMStalker returned an answers. This means that the true
CMStalker sensitivity can be much lower. However PPV
seems a much better statistics for the purpose of establish-
ing the usefulness of CMStalker for CMR discovery. The
values of PPV, and the corresponding P-values, reported in
Fig. 4 for CMStalker have been computed using the evalua-
tion script available for download as supplementary mate-
rial, available online, of [18].

6 DISCUSSION

In this paper we have presented CMStalker, a novel tool for
Composite Module detection whose algorithmic core is based
on purely combinatorial ideas. Using well-known benchmark
data, of quite different nature, our software proved to be com-
petitive against a number of state-of-the-art other tools.

We are aware that more comparisons are required, how-
ever, we think that some interesting findings have emerged
from this work, all related to the power of simple motif com-
binations. First of all, that the good results exhibited by

CMStalker have been obtained without using any sophisti-
cated statistical filtering criteria; the combination of “right”
simple sites were often strong enough to emerge from a
huge pool of candidate motif clusters. Secondly, that the
conceptually simple CMStalker architecture, based on a
two-stage approach to composite motif finding (i.e., first
detect simple motifs, then combine them to form clusters of
prospective functional motifs) proved to be competitive
against other, more sophisticated approaches (see also [40]).
In the third place, that progressive lowering the thresholds
that defines in silico the DNA occupancy by a transcription
factor, is a winning strategy that can be automated and thus
be transparent to the user.

Giving the good results obtained, we are encouraged to
carry further activities on CMStalker, including the ones
listed below.

- Perform further comparisons, including other tools
as well as other experimental frameworks (e.g., those
considered in [28] and [29]), not only with the goal of
better estimating CMStalker’s value, but also with
the aim at understanding its limitations, e.g., why it
fails on input specific datasets, and how to possibly
overcome them.

- Perform experiments where the input to CMStalker
is produced by third-party motif finding tools.
Clearly, whether or not good results can be achieved
here will largely depend on the quality of the exter-
nal tools performance. However, our hope here is to
exploit CMStalker’s ability to filter out false positives
to achieve at least good PPVs.

- Improve the currently limited CMStalker’s ability to
predict whole regulatory regions, i.e., improving the
Sensitivity of the algorithm on “CRM discovery data-
sets” while preventing a dramatic decrease of PPVs.
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