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ABSTRACT
Web video browsing is rapidly becoming a very popular ac-
tivity in the Web scenario, causing the production of a con-
cise video content representation a real need. Currently,
static video summary techniques can be used to this aim.
Unfortunately, they require long processing time and hence
all the summaries are produced in advance without any users
customization. With an increasing number of videos and
with the large users heterogeneousness, this is a burden. In
this paper we propose VISTO, a summarization technique
that produces customized on-the-fly video storyboards. The
mechanism uses a fast clustering algorithm that selects the
most representative frames using their HSV color distribu-
tion and allows users to select the storyboard length and
the processing time. An objective and subjective evaluation
shows that the storyboards are produced with good quality
and in a time that allows on-the-fly usage.
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1. INTRODUCTION
Thanks to the advances in networking and multimedia

technologies, the presence of digital video contents in the
Web is growing at an exceptional speed; videos can be down-
loaded and played out from almost everywhere using many
different devices (e.g., cellphones, palms, laptops) and net-
working technologies (e.g., EDGE, UMTS, Wi-Fi). The
large popularity is highlighted by the enormous success of
web sites like Google-Video, YouTube and iTunes Video,
where people can upload/download videos. In such a sce-
nario, a tool for performing video browsing would be really
appreciated. This tool should provide users with a concise
video content representation, so that they would be able
to immediately have an idea of the video content, without
watching it, so they can decide whether to download/watch
the entire video or not.

Recently, the production of a concise video content rep-
resentation has been the goal of the so-called video summa-
rization techniques, which are receiving increasing attention.
In particular, two different approaches are usually followed:
one is the production of static video summary, which is a
collection of still video frames extracted from the original
video, and the other is the dynamic video skimming, which
is a collection of short video clips. In both cases, the idea
is to analyze some characteristics of the video stream (e.g.,
colors, brightness, speech, etc.) in order to find out pos-
sible aural/visual clues that would allow a semantics video
understanding.

Although static video summary does not preserve the time
evolving nature of the video and does not include any aural
information, it is the most common technique used to give a
concise and informative representation of the original video
content (providing that the selected video frames would ef-
fective present the video content). In this paper we focus on
summarization techniques that produce a collection of static
video frames (also known as video abstract or storyboard).

In literature, different static video summarization tech-
niques have been proposed [9, 18, 19, 20, 12, 8, 11, 10, 16],
most of them based on clustering techniques. In this case,
the idea is to produce the storyboard by clustering together
similar frames and by showing a limited number of frames
per cluster (in most cases, only one frame per cluster is se-
lected). With this approach, it is important to select the
features upon which frames are considered similar, and dif-



ferent criteria may be employed (e.g., colors distribution,
luminance, motion vector, etc.).

Although existing techniques produce acceptable quality
storyboards, they usually use complicated clustering algo-
rithms and thus are computationally expensive and very
time consuming. For instance, in [16] the computation of the
storyboard takes around ten times the video length. This
would require video web sites to pre-compute the video sto-
ryboard and to present it to the users as-is, without offering
them a way of customizing. In fact, it is unreasonable to
think of a user waiting for 20 minutes to have a concise
representation of a video he/she could have watched in just
two minutes. This is a burden, as customization is becom-
ing more and more important in the current Web scenario,
where users have different resources/need. For instance, a
mobile user has less bandwidth than a DSL-connected user,
and he/she might want to receive a storyboard with fewer
frames in order to save bandwidth. Conversely, a user who
is searching for a specific video scene might want a more
detailed storyboard.

The contribution of this paper is to propose VISTO (VIdeo
STOryboard), a summarization technique designed to pro-
duce customized on-the-fly storyboard. VISTO is based on
low-level video frame color features extraction (using the
HSV color space distribution) and on a new modification
of a simple and fast clustering algorithm to group together
similar video frames. The novelty of our result is that the
speed up of the computation makes the technique suitable
for Web video browsing, allowing users to customize the
outcome storyboard according to their needs. In fact, al-
though the mechanism suggests a storyboard length based
on the video characteristics, the user can select the length of
the storyboard and, thanks to the speed-up of our approach,
he/she can re-run the summarization until satisfied with the
result.

The evaluation of VISTO is done by investigating both the
storyboard production time and the storyboard quality and
by comparing the results with other approaches like Open
Video [2], k-means[17] and DT Summary [16]. Results show
that VISTO needs less than two seconds to produce a story-
board of a 2 minutes video and 15 seconds are necessary to
compute the storyboard of a 20 minutes video. The compar-
ison shows that the VISTO clustering time is 25 times faster
than k-means and 300 times faster than DT. Furthermore,
the storyboard quality investigation (measured through a
Mean Opinion Score) shows that the storyboard quality is
comparable to the other approaches. Results of the evalua-
tion process candidates VISTO as a tool to provide on-the-
fly, customizable and concise video content representation
in the Web scenario.

The remainder of this paper is organized as follows. In
Section 2 we briefly present related work in the area of
video summarization; Our approach is presented in Section
3, while its evaluation is shown in Section 4. Conclusions
are drawn in Section 5.

2. RELATED WORK
Different approaches have been proposed in literature to

address the problem of summarizing a video stream. A first
approach relied on two phases: the idea was to first identify
all the video shots and then, for each shot, to select a key-
frame. Usually, one (the first) [18] or two (the first and
the last) [19] key frames were chosen. A drawback of this

approach is that, if the shot is dynamic, the first (or the last)
frame may not be the most representative one and hence
different approaches, like clustering techniques, have been
proposed.

In [20] authors propose a clustering algorithm to group
video frames using color histogram features. As reported in
[16], the approach does not guarantee an optimal result since
the number of clusters is pre-defined by a density thresh-
old value. [12] presents a partitioned clustering algorithm
where the key-frames that are selected are the ones closest
to each cluster centroid. In [16] an automatic clustering al-
gorithm based on Delaunay Triangulation (DT) is proposed;
here frames are described through HSV color space distri-
bution. Instead of color space distribution, [11] uses local
motion estimation to characterize the video frames and then
an algorithm based on the k-medoids clustering algorithm
is used.

Although the produced storyboards may achieve a reason-
able quality, the clustering computational time is the main
burden of these approaches. In fact, the extraction of the
video features may produce an enormous matrix (depending
on the number of frames that compose the video, i.e. the
matrix rows and on the number of features that represents
each single frame, i.e., the matrix columns). For this reason,
mathematic techniques are used in the attempt to reduce
the size of the matrix. For instance, [8] applies the Singu-
lar Value Decomposition to the matrix, while [16] uses the
Principal Component Analysis. Needless to say, this require
additional processing time. Another common approach as-
sumes that frames contain a lot of redundant information
and hence, instead of considering all the video frames, only
a subset is taken (the so-called pre-sampling approach) (e.g.,
[16]).

Our VISTO proposal does not used any mathematical
technique to reduce the video feature matrix, and the de-
cision of using the pre-sampling is left to the user. VISTO
only presents the expected storyboard time production for
different pre-sampling rates and the user will select the most
appropriate one.

3. OUR PROPOSAL
In this paper we propose VISTO, a summarization tech-

nique designed to produce on-the-fly, concise and customiz-
able VIdeo STOryboards. VISTO is based on simple and
fast clustering algorithm that groups together similar video
frames by analyzing their low-level characteristics. In par-
ticular, we propose a variation of the Furtherest Point-First
algorithm [9, 13], specifically modified for the case of video
summary production, while the low-level video frame char-
acteristics are related to the HSV color space distribution.

The characteristics of VISTO are very important in the
current Web scenario and will be more and more important
in future years. In fact, people with different devices, dif-
ferent networking access and different resources/needs may
access to we video servers. In such a scenario, a user may
be seeking for a very detailed summary with a lot of frames,
while another one may want to save bandwidth and may de-
sire a storyboard with few frames. Hence, a pre-computed
storyboard may be un-desired. Although VISTO suggests
a possible storyboard length, it allows users to customize
the storyboard by selecting the number of video frames that
composes the storyboard. Also the storyboard production
time can be customized. In fact, since this time depends on



the original video length, VISTO estimates the time neces-
sary to produce the storyboard and gives the user the pos-
sibility of requiring a video pre-sampling.

Pre-sampling is a technique largely used to reduce the
clustering time (for instance, the mechanism proposed in
[16] uses it) and is based on the idea that there are redun-
dancies among the X (e.g, 25) frames per second of the in-
put video. By using a sampling rate, the number of video
frames to analyze can be reduced. Needless to say the sam-
pling rate assumes a fundamental importance, as the larger
this sampling rate is, the shorter is the clustering time, but
the poorer results might be. For this reason, VISTO simply
estimates the time necessary for producing the storyboard
using different sampling rate and leaves to the user the de-
cision of selecting the desired sampling rate.

As shown in Figure 1, VISTO is composed of three phases:
first, the video is analyzed in order to extract the HSV color
description; second the clustering algorithm is applied to
the extracted data and third, a post-processing phase aims
at removing possible redundant or meaningless video frame
from the produced summary. In the following we present
details of these phases.

Video frame

feature extraction

Storyboard

post processing
Clustering

Customization

Figure 1: The three-steps ViSto Scheme.

3.1 Video Frame Feature Extraction
The goal of this phase is to describe each video frame and

a common way is to do it with a histogram color distribu-
tion. This technique is simple to compute and also robust to
small changes of the camera position and to camera partial
occlusion. Among the possible color spaces, we consider one
supported by the MPEG-7 standard, namely the HSV.

HSV defines the color space in terms of three components:
Hue (the dominant spectral component, that is the color in
its pure form), Saturation (the intensity of the color, rep-
resented by the quantity of white present) and Value (the
brightness of the color).

According to the MPEG7 generic color histogram descrip-
tion [15], in this paper we consider the color histogram as
composed of 256 bins. Hence, for each input frame, we ex-
tract a 256-dimension vector, which represents the 256 bin
colors histogram in the HSV color space of the given video
frame. The vector is then stored in a matrix for clustering
purpose.

3.2 Summary by Clustering
The goal of this phase is to group together similar frames

and to select a representative frame per each group, so to
produce the storyboard sequence. This is done with a clus-
tering algorithm, which works as follows: Given a set N of
elements and a way to measure distance between elements
(or similarity, in a dual approach), a k-clustering is a par-
tition of N into k sets (called clusters) such that close ele-
ments are in the same cluster, while distant elements are in
different clusters.

In particular, for storyboard production: select a clus-
tering algorithm to cluster the frames (or a subset of the
frames, if sampling is done) specifying a distance measure;

give a method to select one key-frame per cluster and place
the selected frames in the storyboard. Hence, the selection
of the clustering algorithm, of the distance function and of
the key-frame selection method is very important as it af-
fects both the quality and the efficiency.

3.2.1 The algorithm
We approach the problem of clustering video frames as that
of finding a solution to the classic k-center problem:

Given a set S of points in a metric space M endowed with
a metric distance function D, and given a desired number k

of resulting clusters, partition S into clusters C1, . . . , Ck and
determine their “centers” c1, . . . , ck ∈ S so that the radius
of the widest cluster, maxj maxp∈Cj

D(p, cj), is minimized.

In our scenario, the metric space M is <256, the set S is
the frame feature matrix F and the distance function D is
given by the Generalized Jaccard Distance (GJD) [3] defined
as follows: given two vectors with non-negative components
s = (s1, ...sh) and z = (z1, ...zh), the GJD is given by

D(s, z) = 1 −
P

i
min(si, zi)

P

i max(si, zi)
.

GJD is proven to be a metric [3]. The k-center problem
is known to be NP-hard [5], but it can be 2-approximated
using the furthest-point-first (FPF) algorithm [9, 13].

VISTO uses the FPF algroithm enhanced with some heuris-
tics to further speed up the computation of clusters. In the
rest of this section we will first describe the basic FPF al-
gorithm, and then the successive heuristics that are used to
modify the FPF algorithm to finally obtain the clustering
algorithm used by VISTO.

Basic Algorithm.
Given the set S of n points, FPF increasingly computes

the set of centers C1 ⊂ · · · ⊂ Ck ⊆ S, where Ck is the
solution to the problem and C1 = {c1} is the starting set,
built by randomly choosing c1 in S. At a generic iteration
1 < i ≤ k, the algorithm knows the set of centers Ci−1

(computed at the previous iteration) and a mapping µ that
associates, to each point p ∈ S, its closest center µ(p) ∈
Ci−1. Iteration i consists of the following two steps:

1. Find the point p ∈ S for which the distance to its
closest center, D(p, µ(p)), is maximum; make p a new
center ci and let Ci = Ci−1 ∪ {ci}.

2. Compute the distance of ci to all points in S \Ci−1 to
update the mapping µ of points to their closest center.

After k iterations, the set of center Ck = {c1, . . . , ck} and
mapping µ define the clustering: cluster Ci is defined as
the set {p ∈ S \ Ck | µ(p) = ci}, for i = 1, . . . , k. Each
iteration can be done in time O(n), hence the overall cost of
the algorithm is O(kn). Experiments have shown that the
random choice of c1 to initialize C1 does not affect neither
the effectiveness nor the efficiency of the algorithm.

Heuristics.
Most of the computation is actually spent in computing

distances in step two of the algorithm. In [6], authors pro-
pose an improved version of FPF, called M-FPF, that ex-
ploits the triangular inequality in order to filter out useless
distance computations. M-PFP works in any metric space,
hence in any vector space.



At iteration i − 1, the algorithm associates to center cj

the set Cj of its closest points, stored in a ranked list; i.e.,
Cj is an intermediate solution. At iteration i, when a new
center ci is added, the algorithm avoids considering points
that surely do not change their closest center: scan every Cj

in decreasing order of distance from ci, and stop when, for
a point p ∈ Cj , it is the case that

D(p, cj) ≤
1

2
D(cj , ci).

By the triangular inequality, any point p that satisfies this
condition cannot be closer to ci than to cj .
Note that all distances between centers in Ci must be avail-
able; this implies an added O(k2) cost for computing and
maintaining these distances, which is anyhow dominated by
the term O(nk). The gain is that, in practice, fewer than n

points need to be scanned at step two of each iteration.
The efficiency of the algorithm is further improved by ap-

plying M-FPF not to the whole set but only to a random
sample of size

√
nk of the input points (sample size sug-

gested in [14]) and adding the other points to the cluster
of their closest centers, one by one. Observe that the sam-
ple of size O(

√
nk) is taken at random on the entire set of

frames without taking into account the consecutiveness of
the frames.

In [7], authors observed that centers computed by M-FPF
are not good candidate points to guide the completion of
clusters, hence they propose a new technique that have been
shown to produce clusters of better quality: within each
cluster Ci determine (1) the point ai furthest from ci; (2)
the point bi furthest from ai (intuitively the pair (ai, bi) is
a good approximation to a diametral pair); (3) the medoid
mi, i.e., the point in Ci that minimizes

M(x) = |D(ai, x) − D(bi, x)| + |D(ai, x) + D(bi, x)|,

over all x ∈ Ci.
Afterward, the remaining points are associated to the clos-
est medoid (instead of center) one by one, according to the
Generalized Jaccard Distance, updating ai, bi and mi when
necessary.

In this paper we introduce a new heuristic to gain time
during this process of adding points to clusters, as the re-
computation of medoids is a very time expensive task. First,
make an approximated update of medoid and diametral pairs
in the following way: if p falls inbetween the diametral
pairs and is a better medoids than the current one (i.e.,
D(p, mi) < min{D(mi, ai), D(mi, bi)} and M(p) < M(mi)),
then we update mi by setting it to be p. Otherwise, if the
new point is outside the approximate diametral pair (ai, bi)
(i.e., D(ai, bi) < max{D(p, ai), D(p, bi)}), the pair is up-
dated accordingly.

Secondly, given two points p and p′ that represent two
consecutive frames, if their distance is under an appropriate
given threshold, with high probability the two points be-
long to the same cluster. Hence, whenever D(p, p′) ≤ 0.21

we simply place p′ in the same cluster of p and proceed to
update medoids and diametral pair.

This heuristic is not guaranteed to work well for all appli-
cations, but in the case of video frames it has been shown
not to affect the quality of the result. We clustered the same

1The threshold is determinated on a statistical base looking
at distances between very similar frames.

datasets by using and not using this heuristic. We have ob-
served that the resulting clusterings show practically no dif-
ferences, while the time needed to produce the clusterings
decreases drastically.

Once the clustering is done, medoids are selected as key-
frames and subject to the post processing.

3.2.2 Suggesting the number of clusters
Although customization allows the user to freely choose

the number of frames in the storyboard, we can not exclude
the case in which the user has no idea of what such a num-
ber might be. Hence, we implemented a fast way to make
a reasonable estimate of the number of frames that better
represents the entire video. This number is always suggested
to the user and is used as a default value as the number of
clusters that VISTO will compute if there is no other in-
dication by the uses (we remind that exacly one frame per
cluster is present in the storyboard). Hence, the number of
suggested frames will be denoted by k.

We first take a sample F ′ ⊆ F of the frames of the en-
tire video, taking one out of ten consecutive frames. We
then compute the pairwise distance di of consecutive frames
f ′

i , f
′

i+1, according to GJD, for all such pair in F ′. Figure 2
shows an example of how these distances are distributed,
along time, for the video Drift Ice 6 in [1]. We observe
that there are instants of time in which the distance be-
tween consecutive frames varies considerably (correspond-
ing to peaks), while there are longer periods in which the
di’s variance is small (corresponding to very dense regions).
Usually, peaks correspond to sudden movement in the video
or to scene change, while in dense regions frames are more
similar one to the other. Hence, frames inbetween two peaks
can be considered as a bunch of similar frames and the num-
ber of peaks gives the number of such bunches of similar
frames. We suggest the number of peaks as k, the default
number of clusters (i.e., frames in the storyboard).
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Figure 2: Drift Ice 6: Pairwise distances of sampled
frames.

To estimate k we count the number of peaks using the
following procedure:

1. Order all the di’s in increasing order and, for each
value v assumed by the di’s, count how many pairwise
distance are equal to v, i.e., let t(v) = |{i | di = v}|;

2. Determine the value Γ for which the function t(v)
shows a consistent decreasing step and throw away all
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the frames that are closer than Γ to their successive;
i.e, F ′′ = {f ′

i ∈ F ′ | D(f ′

i , f
′

i+1) > Γ};

3. Consider the set F ′′ of remaining frames and count in
how many “separated” sets, according to time, they
group; i.e., partition F ′′ into an appropriate number
of sets such that if f ′

ij
and f ′

ij+1
belong to the same

set, then ij+1 − ij < T , where T is a small interval of
time (meaning the two frames are displayed one shortly
after the other).

The number of sets into which F ′′ is partitioned gives the
number of peaks. Number k of frames suggested to the user
is set to the number of peaks minus one (videos usually begin
and end with a peak).

To test if frame sampling influences the estimate of k, we
considered our prediction method using all the frames in a
video and using only a sample of frames (one out of ten).
We tested all the 50 video in [1] and we found out that
the estimate of k is exactly the same for 47 videos, while it
differs by ±1 for the remaining three. We conclude that the
prediction method is not affected by sampling.

The prediction method (with sampling) applied to the 50
videos in [1] took on the average 0.1 seconds to estimate k

(with values spanning from 0.22 to 0.04 seconds).

3.3 Storyboard Post Processing
The goal of this phase is to post process storyboards in

order to remove possible meaningless video frames. In fact,
the clustering algorithm may select as a key-frame of a clus-
ter a frame completely black (or of another color), due to
fade-in fade-out effect or to the use of flashes (very common
in sport videos or in news video). By analyzing the HSV
of the key-frames selected by the clustering algorithm, it is
possible to avoid its presentation to the user. This investi-
gation consumes almost a negligible time, as the number of
selected frames is usually very small. After this process, the
video storyboard can be presented to the requesting user.

4. VISTO EVALUATION
VISTO is evaluated through a comparison study with

other approaches: k-means [17], the Delaunay-based tech-
nique (DT) [16] and the one used by the Open Video Project
[2].
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Figure 4: Storyboard production time: A compar-
ison between K-means and Visto with and without
sampling (Sx, with x = 5, 12, is the sample rate) [Log-
arithmic Scale].

The study is carried out with two different sets of videos:
one is taken from [1] and is a subset of short videos available
within the Open Video Project [2] (MPEG-1 encoded with
a resolution of 352x240); the second set is composed of long
entertainment and informative videos (e.g., cartoon, TV-
shows and TV-news), MPEG-1 encoded with a resolution of
352x288.

Note that we consider different types of video in order to
evaluate our approach under different conditions with re-
spect to color and motion. All the experiments have been
done using a Pentium D 3.4 GHz with 3GB RAM, with
the aim of investigating two different parameters: the time
necessary to produce the storyboard and the quality of the
produced summary.

4.1 Storyboard Time
The time necessary to produce a video summary of a

given video is an important parameter to decide whether a
mechanism can be used to produce on-the-fly summaries or
not. Therefore, we investigate time by considering different
videos with different lengths.

Figure 3 presents results obtained from analyzing six dif-
ferent videos [1], whose length spans from the 72 seconds
(A New Horizon 1) to 168 seconds (Digital Jewelry). Since
no statement is given about the time needed to build the
storyboards in the Open Video Project [2], as well as noth-
ing is said about the running time of the method on which
the project is based [4], here we compare our VISTO ap-
proach, with k-means and with DT [16].2 Note that results
are presented on a logarithmic scale, due to the consider-
able difference among the compared techniques. It can be
observed that the usage of k-means and of DT is not rea-
sonable to produce on-the-fly summaries; in fact, k-means
needs around 100 seconds to produce a summary of a 120
seconds length video, while DT needs around 1000 seconds.
Conversely, VISTO needs less than 10 seconds and hence is
well suited to produce on-the-fly summaries. Roughly, in all

2Results of DT are simply estimated using the value de-
scribed in [16], where it is reported that the mechanism re-
quires between 9 and 10 times the video length to produce
the summary.
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Figure 5: VISTO Storyboard Production Time with
and without sampling (Sx, with x = 5, 12, is the sam-
ple rate).

the tests, VISTO is 25 times faster than k-means and 300
times faster than DT.

A more general investigation on the time necessary to pro-
duce a storyboard is presented in Figure 4. We vary the
length of the given video from 5000 frames (200 seconds)
to 60000 frames (40 minutes), the length of the produced
storyboard (10,20,25 and 30 frames) and the rate of the pre-
sampling (none, 1 out of 5 and 1 out of 12) that is applied to
the video frame feature matrix. We compare k-means and
VISTO (the code of the other approaches is not available).

Once again, due to the large difference between the results
of the two approaches, the storyboard production time is
presented on a logarithmic scale. With no surprise, the sto-
ryboard production time depends on its length (the longer
the storyboard is, the longer is the computational time) and
on the pre-sampling rate (the higher the sampling rate is,
the shorter is the computational time). This applies to both
approaches. Results confirm that k-means requires a pro-
duction time that causes the method to be unsuitable for
on-the-fly video summarization: with no doubts, 178 sec-
onds to summarize a 200 seconds video is too much, not
to mention the 36 minutes (2165 seconds) required to sum-
marize a 40 minutes video (60000 frames). Only with a
pre-sampling of 1 out of 12, k-means can be used for short
videos (18 seconds required for a 200 seconds video), but
not for longer video (183 seconds required for a 40 minutes
video). To better understand the VISTO behavior, Figure 5
presents a detailed close-up of Figure 4. The VISTO story-
board production time with no sampling is reasonable only
for videos whose length is up to 15000 frames (10 minutes).
In fact, it is not thinkable to let the user wait for more than
20-25 seconds. For longer videos, a sampling of 1 out of 5
frames produces a waiting time no longer than 20/25 sec-
onds for videos up to 35000 frames (23 minutes). For video
larger than 35000 frames, a pre-sampling of 1 out of 12 frame
should be considered.

Since the pre-sampling rate might affect the storyboard
quality, we let the user select whether to apply a sampling
or not. Figure 6 shows the VISTO interface, where a user, in
addition to the storyboard length, can also select the quality
of the storyboard based on the time he/she is willing to wait.
See, http://visto.iit.cnr.it.

Figure 6: VISTO: Length and quality of the story-
board can be easily customized.
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Figure 7: Mean Opinion Score of different story-
board of short videos.

4.2 Storyboard Quality
The time necessary to produce a video storyboard is an

important issue, but the quality of the produced storyboard
is even more important. In fact, bad quality storyboards
(i.e., storyboards that do not well represent the video con-
tent) are useless, no matter if they are generated in an in-
stant. For this reason, in the following we investigate the
quality of the video summaries produced by VISTO.

The storyboard quality evaluation is carried out by com-
paring the VISTO results with the one of the Open Video
Project, the DT and the k-means, while using the data set
of [1]. A further comparison between VISTO and k-means
is done using a set of long videos (up to 40 minutes).

Quality evaluation is investigated through a Mean Opin-
ion Score (MOS) test; in particular, we ask a group of 20
people with different background (faculty, Ph.D. students,
grad students, researchers) to evaluate the produced sum-
maries. The procedure was the following: we first show
them the video and then the summary, asking whether the
summary was a good representation of the original video.

The quality of the video summary was scored on a scale
1 to 5 (1=bad, 2=poor, 3=fair, 4=good, 5=excellent) and
people were not aware of the mechanism used to produce the



Open Video Summary (10 frames)

DT Summary (6 frames)

Our Visto summary (6 frames)

Our Visto summary (10 frames)

K-means summary (11 frames)

Our Visto summary (11 frames)

Figure 8: A new Horizon: storyboard comparison.

Our Visto  summary (9 frames)

K-means summary (9 frames)

Figure 9: Exotic Terrane: K-means and VISTO com-
parison.

video summary. The length of the produced summary was
set in order to match the other approaches (i.e., if the Open
Video summary was of 5 frames, the length of the VISTO
summary was set to 5 frames, too).

Figure 7 reports results obtained from evaluating short
videos obtained from [1]: A new Horizon 1 (72 seconds
long), Ocean floor Legacy 8 (127 seconds long), Drift ice
8 (144 seconds long), The voyage of the Lee 15 (90 seconds
long), Exotic Terrane 1 (117 seconds long), Hurricane Force
3 (92 seconds long) and Digital Jewelery (168 seconds long).
With the exception of Digital Jewelery for the DT method
and A new Horizon for Open Video, these methods achieve
poor results. VISTO achieves the best score for Hurricane
Force 3, Exotic Terrain 1 and The voyage of the Lee 15.
With respect to the remaining videos, VISTO and k-means
achieve comparable results.

Figure 8 presents the summaries of the A new Horizon
1 video, where Open Video, K-means and VISTO achieve
comparable results. As the MOS reported, it is possible
to note that the output of the three storyboards achieve a
comparable quality.

Figure 9 presents the summaries generated by VISTO and
k-means for the video Exotic Terrane 1. The video is a
documentary that shows a mountain landscape with some
animals. Although some frames are the same in both sum-
maries, VISTO shows a view from the sky and a frame with
the video title (last two frames).

Figure 10 reports the MOS results obtained from evaluat-
ing long videos: The Simpsons (20 minutes long), TV-News
(30 minutes long), tv-show Lost (40 minutes long) and talk-
show (15 minutes long). Due to the length of these videos,
we produce two different storyboards: one with 15 frames
and the other with 30 frames.

Results are comparable for Lost and for TV-News and
different for The Simpsons (k-means achieves better results)
and for talk-show (VISTO achieves better results). These
two latter cases are detailed in Figure 11 and in Figure 12,
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Figure 11: The Simpsons: VISTO vs k-means.

where the difference is quite clear. In particular, it is in-
teresting to observe that the summaries of Figure 11 are
completely different, although related to the same video.
This can be explained considering the nature of the video
taken into consideration: first, just a very small number of
frames (15) composes the the storyboard of a video contain-
ing a much larger number of frames (30,000); second, in this
video, many frames have the same background color and
show a yellow character, resulting in high color similarity
of frames. Observe that the VISTO summary is composed
by frames that show significance color differences. On the
other side, the summary of Figure 12 shows how some of the
key-frames selected by k-means are very similar one to the
other, while VISTO gives a more comprehensive overview of
the people participating to the talk show.

4.3 Summary of Results
The evaluation of VISTO showed that the storyboard pro-

duction time is 25 time faster than k-means and 300 times
faster than DT. With respect to the quality, the achieved
MOS is comparable. This result is supported by the the-
oretical observtion that the FPF algorithm is an efficient
algorithm that computes a solution to the k-center (a good
formalization of the clustering problem) that is a factor two
away from the optimum. This close-to-the-optimum solu-
tion is further improved by the heuristics. Hence, the great
speed up of VISTO does not compromise the storyboard
quality, proposing VISTO as a mechanism to perform cus-
tomized on-the-fly video summaries.

5. CONCLUSIONS
In this paper we presented VISTO, a mechanism designed

to produce customized on-the-fly video storyboards. VISTO
is provided with a fast clustering algorithm that groups the
video frame according to the extracted HSV color space dis-
tribution, and allows user to customize the produced out-
put specifying the number of pictures the storyboard has



VISTO K-means

Figure 12: Talk-show: VISTO vs k-means.

to have and the time he/she is willing to wait for having
the summary. The approach has been evaluated using two
different sets of video: one composed of short videos (less
than 3 minutes) and one composed of long videos of differ-
ent categories (cartoon, tv-shows, tv-news, talk-show). The
evaluation investigated two fundamental metrics for a sum-
marization scheme: the time necessary to produce the story-
board and its quality. A comparison analysis with other ap-
proaches showed that VISTO is much faster: 25 faster than
k-means and 300 times faster than DT. A Mean Opinion
Score using a group of 20 people has been carried out to in-
vestigate the quality of the produced storyboard. Although
in most cases VISTO achieved the best score, it can be said
that the quality of the storyboard produced by VISTO and
k-means is comparable.

Based on the evaluation results, VISTO can be used to
offer a customized on-the-fly video storyboard. We are cur-
rently working on giving more customization options to the
users, allowing him/her to exclude some frames (e.g, exclude
all the darkest pictures) or to include just some others (e.g.,
include only pictures with a lot of blue).
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