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INTRODUCTION

The geometry of lines in 3-space has been a part of the body of classical algebraic
geometry since the pioneering work of Plücker. Interest in this branch of geometry
has been revived by several converging trends in computer science. The discipline of
computer graphics (Chapter 53) has pursued the task of rendering realistic images
by simulating the flow of light within a scene according to the laws of elementary
optical physics. In these models light moves along straight lines in 3-space and a
computational challenge is to find efficiently the intersections of a very large number
of rays with the objects comprising the scene. In robotics (Chapters 51 and 52) the
chief problem is that of moving 3D objects without collisions. Effects due to the
edges of objects have been studied as a special case of the more general problem of
representing and manipulating lines in 3-space. Computational geometry (whose
core is better termed “design and analysis of geometric algorithms”) has moved in
the nineties from the realm of planar problems to tackling directly problems that
are specifically 3D. The new and sometimes unexpected computational phenomena
generated by lines (and segments) in 3-space have emerged as a main focus of
research.

In this chapter we will survey the present state of the art on lines and ray
shooting in 3-space from the point of view of computational geometry. The empha-
sis is on provable nontrivial bounds for the time and storage used by algorithms
for solving natural problems on lines, rays, and polyhedra in 3-space. We start by
mentioning different possible choices of coordinates for lines (Section 42.1). This
is an essential initial step because different coordinates highlight different proper-
ties of the lines in their interaction with other geometric objects. Here a special
role is played by Plücker coordinates [Plu65], which represent the starting point for
many results. Then we consider how lines interact with each other (Section 42.2).
We are given a finite set of lines L that act as obstacles and we will define other
(infinite) sets of lines induced by L that capture some of the important properties
of visibility and motion problems. We show bounds on the storage required for a
complete description of such sets. Then we move a step forward by considering the
same sets of lines when the obstacles are polyhedral sets, more commonly encoun-
tered in applications. We arrive in Section 42.3 at the ray-shooting problem and
its variants (on-line, off-line, arbitrary direction, fixed direction, and shooting with
objects other than rays). Again, the obstacles are usually polyhedral objects, but
in one case we are able to report a ray-shooting result on spheres.

Section 42.4 is devoted to the problem of collision-free movements (arbitrary or
translation only) of lines among obstacles. This problem arises, for example, when
lines are used to model radiation or light beams (e.g., lasers). In Section 42.5 we
define a few notions of distance among lines, and as a consequence we have several
natural proximity problems for lines in 3-space. Finding the closest pair in a set of
lines is the most basic of such problems.
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In Section 42.6 we survey what is known about the “dominance” relation among
lines. This relation is central for many visibility problems in graphics. It is used,
for example, in the painter’s algorithm for hidden surface removal (Chapter 53).
Another direction of research has explored the relation between lines in 3-space and
their orthogonal projections. A central topic here is realizability: Given a set of
planar lines together with a relation, does there exist a corresponding set of lines
in 3-space whose dominance is consistent with the given relation?

42.1 COORDINATES OF LINES

GLOSSARY

Homogeneous coordinates: A point (x, y, z) in Cartesian coordinates has
homogeneous coordinates (x0, x1, x2, x3), where x = x1/x0, y = x2/x0, and
z = x3/x0.

Oriented lines: A line may have two distinct orientations. A line and an ori-
entation form an oriented line.

Unoriented line: A line for which an orientation is not distinguished.

(I) Canonical coordinates by pairs of planes. The intersection of two planes
with equations y = az+b and x = cz+d is a nonhorizontal line in 3-space, uniquely
defined by the four parameters (a, b, c, d). Thus these parameters can be taken as
coordinates of such lines. In fact, the space of nonhorizontal lines is homeomorphic
to R

4. Results on ray shooting among boxes and some lower bounds on stabbing
are obtained using these coordinates.

(II) Canonical coordinates by pairs of points. Given two parallel horizontal
planes, z = 1 and z = 0, the intersection points of a nonhorizontal line l with the
two planes uniquely define that line. If (x0, y0, 0) and (x1, y1, 1) are two such points
for l, then the quadruple (x0, y0, x1, y1) can be used as coordinates of l. Results on
sets of horizontal polygons are obtained using these coordinates.

Although four is the minimum number of coordinates needed to represent an un-
oriented line, such parametrizations have proved useful only in special cases. Many
interesting results have been derived using instead a five-dimensional parametriza-
tion for oriented lines, called Plücker coordinates.

(III) Plücker coordinates of lines. An oriented line in 3-space can be given
by the homogeneous coordinates of two of its points. Let l be a line in 3-space and
let a = (a0, a1, a2, a3) and b = (b0, b1, b2, b3) be two distinct points in homogeneous
coordinates on l. We can represent the line l, oriented from a to b, by the matrix

l =

(

a0 a1 a2 a3
b0 b1 b2 b3

)

, with a0, b0 > 0.

By taking the determinants of the six 2× 2 submatrices of the above 2× 4 matrix
we obtain the homogeneous Plücker coordinates of the line:

p(l) = (ξ01, ξ02, ξ03, ξ12, ξ31, ξ23), with ξij = det

(

ai aj
bi bj

)

.
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The six numbers ξij are interpreted as homogeneous coordinates of a point in 5-
space. For a given line l the six numbers are unique modulo a positive multiplicative
factor, and they do not depend on the particular distinct points a and b that we have
chosen on l. We call p(l) the Plücker point of l in real projective 5-dimensional
space P

5.
We also define the Plücker hyperplane of the line l to be the hyperplane

in P
5 with vector of coefficients v(l) = (ξ23, ξ31, ξ12, ξ03, ξ02, ξ01). So the Plücker

hyperplane is:
h(l) = {p ∈ P

5 | v(l) · p = 0} .

For each Plücker hyperplane we have a positive and a negative halfspace given by
h+(l) = {p ∈ P

5 | v(l) · p ≥ 0} and h−(l) = {p ∈ P
5 | v(l) · p ≤ 0}. Not every tuple

of 6 real numbers corresponds to a line in 3-space since the Plücker coordinates
must satisfy the condition

ξ01ξ23 + ξ02ξ31 + ξ03ξ12 = 0 . (42.1.1)

The set of points in P
5 satisfying Equation 42.1.1 forms the so-called Plücker

hypersurface Π; it is also called the Klein quadric or the Grassmannian
(manifold). The converse is also true: every tuple of six real numbers satisfying
Equation 42.1.1 is the Plücker point of some line in 3-space. Given two lines l
and l′, they intersect or are parallel (i.e., they intersect at infinity) when the four
defining points are coplanar. In this case the determinant of the 4×4 matrix formed
by the 16 homogeneous coordinates of the four points is zero. In terms of Plücker
coordinates we have the following basic lemmas.

LEMMA 42.1.1

Lines l and l′ intersect or are parallel (meet at infinity) if and only if p(l) ∈ h(l′).

Note that Equation 42.1.1 states in terms of Plücker coordinates the fact that any
line always meets itself.

LEMMA 42.1.2

Let l be an oriented line and t a triangle in Cartesian 3-space with vertices (p0, p1, p2).
Let li be the oriented line through (pi, pi+1) (indices mod 3). Then l intersects t if
and only if either p(l) ∈ h+(l0)∩h+(l1)∩h+(l2) or p(l) ∈ h−(l0)∩h−(l1)∩h−(l2).

These two lemmas allow us to map combinatorial and algorithmic problems
involving lines (and polyhedral sets) in 3-space into problems involving sets of hy-
perplanes and points in projective 5-space (Plücker space). The main advantage
is that we can use the rich collection of results on the combinatorics of high di-
mensional arrangements of hyperplanes (see Chapter 30). The main drawback is
that we are using five (nonhomogeneous) parameters, instead of four which is the
minimum number necessary. This choice has a potential for increasing the time
bounds of line algorithms. We are rescued by the following theorem:

THEOREM 42.1.3 [APS93]

Given a set H of n hyperplanes in 5-dimensional space, the complexity of the cells
of the arrangement A(H) intersected by the Plücker hypersurface Π (also called the
zone of Π in A(H)) is O(n4 logn).
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Although the entire arrangement A(H) can be of complexity Θ(n5), if we are
working only with Plücker points we can limit our constructions to the zone of
Π, the complexity of which is one order of magnitude smaller. Theorem 42.1.3 is
especially useful for deriving ray-shooting results.

The list of coordinatizations discussed in this section is by no means exhaustive.
Other parametrizations are used, for example, in [Ame92] and [AAS97].

A TYPICAL EXAMPLE

A typical example of the use of Plücker coordinates in 3D problems is the result
for fast ray shooting among polyhedra (see Table 42.3.1). We triangulate the faces
of the polyhedra and extend each edge to a full line. Each such line is mapped
to a Plücker hyperplane. Lemma 42.1.2 guarantees that each cell in the resulting
arrangement of Plücker hyperplanes contains Plücker points that pass through the
same set of triangles. Thus to answer a ray-shooting query, we first locate the query
Plücker point in the arrangement, and then search the list of triangles associated
with the retrieved cell. This final step is accomplished using a binary search strategy
when the polyhedra are disjoint. Theorem 42.1.3 guarantees that we need to build
a point-location structure only for the zone of the Plücker hypersurface, thus saving
an order of magnitude over general point-location methods for arrangements (see
Sections 30.7 and 39.3).

42.2 SETS OF LINES IN 3-SPACE

With Plücker coordinates (III) to represent oriented lines, we can use the topology
induced by the standard topology of 5-dimensional projective space P

5 on Π as
a natural topology on sets of oriented lines. Using the four-dimensional coordi-
natizations (I) or (II), we can impose the standard topology of R4 on the set of
nonhorizontal unoriented lines. Thus we can define the concepts of “neighbour-
hood,” “continuous path,” “open set,” “closed set,” “boundary,” “path-connected
component,” and so on, for the set L of lines in 3-space. The distinction between
oriented lines and unoriented lines is mainly technical and the complexity bounds
hold in either case.

FAMILIES OF LINES INDUCED BY A FINITE SET OF LINES

GLOSSARY

Semialgebraic set: The set of all points that satisfy a Boolean combination
of a finite number of algebraic constraints (equalities and inequalities) in the
Cartesian coordinates of Rd. See Chapter 38.

Path-connected component: A maximal set of lines that can be connected by
a path of lines, a continuous function from the interval [0, 1] to the space of lines.

Positively-oriented lines: Oriented lines l′1 and l′2 on the xy-plane are posi-
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tively-oriented if the triple scalar product of vectors parallel to l′1, l
′
2, and the

positive z-axis is positive.

Consistently-oriented lines: An oriented line l in 3-space is oriented consis-
tently with a 3D set L of oriented lines if the projection l′ of l onto the xy-plane
is positively-oriented with the projection of every line in L.

A finite set L of n lines in 3-space can be viewed as an obstacle to the free
movement of other lines in 3-space. Many applications lead to defining families of
lines with some special properties with respect to the fixed lines L. The resources
used by algorithms for these applications are often bounded by the “complexity”
of such families.

The boundary of a semialgebraic set in R
4 is partitioned into a finite number

of faces of dimension 0, 1, 2, and 3, each of which is also a semialgebraic set. The
number of faces on the boundary of a semialgebraic set is the complexity of that
set. The families of lines that we consider are represented in R

4 by semialgebraic
sets, with the coefficients of the corresponding algebraic constraints a function of
the given finite set of lines L.

The set Miss(L) consists of lines that do not meet any line in L. The sets
Vert(L) and Free(L) consists of lines that may be translated to infinity without
collision with lines in L. The basic complexities displayed in Table 42.2.1 are
derived from [CEG+96, Pel94b, Aga94].

TABLE 42.2.1 Complexity of families of lines defined by lines.

SET OF LINES DEFINITION COMPLEXITY

Miss(L) do not meet any line in L Θ(n4)

1 component of Miss(L) 1 path-connected component Θ(n2)

Vert(L) can be translated vertically to ∞ Θ(n3)

Free(L) can be translated to ∞ in some direction Ω(n3),O(n3 logn)

VertCO(L) above L and oriented consistently with L Θ(n2)

MEMBERSHIP TESTS

Given L, we can build a data structure during a preprocessing phase so that when
presented with a new (query) line l, we can decide efficiently whether l is in one of
the sets defined in the previous section. Such an algorithm implements a member-
ship test for a group of lines. Table 42.2.2 shows the main results.

TABLE 42.2.2 Membership tests for families of lines defined by lines.

SET OF LINES QUERY TIME PREPROC/STORAGE SOURCE

Miss(L) O(logn) O(n4+ǫ) [Pel93b, AM93]

1 component of Miss(L) O(logn) O(n2+ǫ) [Pel91]

Vert(L), VertCO(L) O(logn) O(n2+ǫ) [CEG+96]

Free(L) O(logn) O(n3+ǫ) [Pel94b]
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FAMILIES OF LINES INDUCED BY POLYHEDRA

GLOSSARY

ǫ: A positive real number, which we may choose arbitrarily close to zero for each
algorithm or data structure. A caveat is that the multiplicative constant implicit
in the big-O notation depends on ǫ and its value increases when ǫ tends to zero.

α( · ): The inverse of Ackermann’s function. α(n) grows very slowly and is at
most 4 for any practical value of n. See Section 51.4.

β( · ): β(n) = 2c
√
logn for a constant c. β(·) is a function that is smaller than any

polynomial but larger than any polylogarithmic factor. Formally we have that
for every a, b > 0, loga n ≤ β(n) ≤ nb for any n ≥ n0(a, b).

Polyhedral set P: A region of 3-space bounded by a collection of interior-disjoint
vertices, segments, and planar polygons. We denote by n the total number of
vertices, edges, and faces.

Star-shaped polyhedron: A polyhedron P for which there exists a point o ∈ P
such that for every point p ∈ P , the open segment op is contained in P .

Terrain: When the star-shaped polyhedron is unbounded and o is at infinity we
obtain a terrain, a monotone surface (cf. Section 32.1).

Horizontal polygons: Convex polygons contained in planes parallel to the xy-
plane.

A collection of polyhedra in 3-space may act as obstacles limiting the collision-
free movements of lines. Following the blueprint of the previous section, the com-
plexity of some interesting families of lines induced by polyhedra are displayed in
Table 42.2.3 (see [HS94, Pel94b, Aga94] and [AAKS04, GL10, Rub12]).

TABLE 42.2.3 Complexity of families of lines defined by polyhedra and spheres.

SET OF LINES DEFINITION COMPLEXITY

Miss(P ) do not meet polyhedron P Θ(n4)

Vert(P ) can be translated vertically to ∞ Ω(n3), O(n3β(n))

Free(P ) can be translated to ∞ in some direction Ω(n3)

Miss(Q),Free(Q) Q star-shaped polyhedron or a terrain Ω(n2α(n)), O(n3 logn)

Miss(U) U a set of n unit balls O(n3+ǫ)

Miss(B) B a set of n balls Ω(n3), O(n3+ǫ)

Miss(H) H a set of horizontal polygons with n edges Ω(n2), O(n4)

Similarly, we can define families of 3D segments defined by polyhedra in 3D.
The set of relatively open segments that miss P is also a semialgebraic set, known
as the 3D Visibility skeleton (see [DDP97, Dur99] and [DDP02, Zha09]). Its
combinatorial complexity is Θ(n4). The visibility skeleton induced by k possibly
intersecting convex polyhedra of total size n has Θ(n2k2) connected components
[BDD+07]. The Visibility skeleton induced by n uniformly distributed unit spheres
has linear expected complexity [DDE+03].
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OPEN PROBLEMS

1. Find an almost cubic upper bound on the complexity of the group of lines
Free(P ) for a polyhedron P .

2. Close the gap between the quadratic lower and the cubic upper bound for the
group Free(T ) induced by a terrain T (Table 42.2.3).

SETS OF STABBING LINES

GLOSSARY

Stabber: A line l that intersects every member of a collection P = {P1, ..., Pk}
of polyhedral sets. The sum of the sizes of the polyhedral sets in P is n. The set
of lines stabbing P is denoted S(P). Stabbers are also called line transversals.

Box: A parallelepiped each of whose faces is orthogonal to one of the three
Cartesian axes.

c-oriented: Convex polyhedra whose face normals come from a set of c fixed
directions.

Table 42.2.4 lists the worst-case complexity of the set S(P) and the time to
find a witness stabbing line.

TABLE 42.2.4 Complexity of the set of stabbing lines and detection time.

OBJECTS COMPLEXITY OF S(P) FIND TIME SOURCES

Convex polyhedra Ω(n3), O(n3 logn) O(n3β(n)) [PS92, Pel93a, Aga94]

k polyhedra O(n2k1+ǫ) O(n2k1+ǫ) [KRS10]

Boxes O(n2) O(n) [Ame92, Meg91]

c-oriented polyhedra O(n2) O(n2) [Pel91]

Horiz. polygons Θ(n2) O(n) [Pel91]

Note that in some cases (boxes, parallel polygons) a stabbing line can be found in
linear time, even though the best bound known for the complexity of the stabbing
set is quadratic. These results are obtained using linear programming techniques
(Chapter 50).

We can determine whether a given line l is a stabber for a preprocessed set P
of convex polyhedra in time O(log n), using data structures of size O(n2+ǫ) that
can be constructed in time O(n2+ǫ) [PS92].

For an oriented stabber l and a set O of k disjoint convex bodies in R
d, the

order of the intersection of the objects along l is called a geometric permutation
(cf. Chapter 4). A result of Cheong et al. [CGN05] shows that for k disjoint balls of
unit radius in R

3 and k > 9, there are at most two geometric permutations, while
for 3 ≤ k ≤ 9 there are at most three geometric permutations. For k disjoint balls of
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any radius in R
3 there are Θ(k2) geometric permutations [SMS00]. If the ratio of the

largest radius to the smallest radius of the spheres in the collection is a constant c,
then there are at most O(clog c) geometric permutations. For k rectangular boxes in
R

d there are at most 2d−1 geometric permutations, which is tight (see also [O’R01]).
There are at most n geometric permutations of n line segments in R

3 [BEL+05];
while for arbitrary disjoint convex sets there are O(n3 logn) geometric permutations
[RKS12].

OPEN PROBLEMS

1. Can linear programming techniques yield a linear-time algorithm for c-oriented
polyhedra?

2. The lower bound for S(P) for a set of pairwise disjoint convex polyhedra is
only Ω(n2) [PS92]. Close the gap between this and the cubic upper bound.

42.3 RAY SHOOTING

Ray shooting is an important operation in computer graphics and a primitive op-
eration useful in several geometric computations (e.g., hidden surface removal, and
detecting and computing intersections of polyhedra). The problem is defined as
follows. Given a large collection P of simple polyhedral objects, we want to know,
for a given point p and direction ~d, the first object in P intersected by the ray
defined by the pair p, ~d. A single polyhedron with many faces can be represented
without loss of generality by the collection of its faces, each treated as a separate
polygon.

ON-LINE RAY SHOOTING IN AN ARBITRARY DIRECTION

Here we consider the on-line model in which the set P is given in advance and
a data structure is produced and stored. Afterward we are given the query rays
one-by-one and the answer to one query must be produced before the next query
is asked.

Table 42.3.1 summarizes the known complexity bounds on this problem. For a
given class of objects we report the query time, the storage, and the preprocessing
time of the method with the best bound. In this table and in the following ones we
omit the big-O symbols. Again, n denotes the sum of the sizes of all the polyhedra
in P . The main references on ray shooting (Table 42.3.1) are in [Pel93b, BHO+94]
(boxes), [AM93, AM94, Pel93b, BHO+94, AS93] (polyhedra), [Pel96] (horizontal
polygons), [AAS97, MS94] (spheres), [DK85, AS96] (convex polyhedra), [ABG08]
(fat convex polyhedra), and [Kol04] (semialgebraic sets of constant complexity).

GLOSSARY

Fat horizontal polygons: Convex polygons contained in planes parallel to the
xy-plane, with a constant lower bound on the ratio of the radius of the maximum
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inscribed circle over the radius of the minimum enclosing circle.

Curtains: Polygons in 3-space bounded by one segment and by two vertical rays
from the endpoints of the segment.

Axis-oriented curtains: Curtains hanging from a segment parallel to the x- or
y-axis.

c-fat polyhedra: A convex polyhedron P in R
3 is c-fat, for 0 ≤ c ≤ 1 if, for any

ball b whose center lies in P and which does not completely contain P , we have:
vol(b ∩ P ) ≥ c · vol(b).

TABLE 42.3.1 On-line ray shooting in an arbitrary direction.

OBJECTS QUERY STORAGE PREPROCESSING

Boxes, terrains, curtains logn n2+ǫ n2+ǫ

Boxes n1+ǫ/m1/2 n ≤ m ≤ n2 m1+ǫ

Polyhedra logn n4+ǫ n4+ǫ

Polyhedra n1+ǫ/m1/4 n ≤ m ≤ n4 m1+ǫ

Fat horiz. polygons logn n2+ǫ n2+ǫ

Horiz. polygons log3 n n3+ǫ +K n3+ǫ +K logn

Spheres log4 n n3+ǫ n3+ǫ

1 convex polyhedron logn n n logn

s convex polyhedra log2 n n2+ǫs2 n2+ǫs2

c-fat convex polyhedra (n/m1/2) log2 n n1+ǫ ≤ m ≤ n2+ǫ m1+ǫ

semialgebraic sets of O(1) complexity n logn n4+ǫ n4+ǫ

When we drop the fatness assumption for horizontal polygons we obtain bounds
that depend on K, the actual complexity of the set of lines missing the edges of the
polygons (see Section 42.2).

Most of the data structures for ray shooting mentioned in Table 42.3.1 can
be made dynamic (under insertion and deletion of objects in the scene) by using
general dynamization techniques (see [Meh84, AEM92]).

ON-LINE RAY SHOOTING IN A FIXED DIRECTION

We can usually improve on the general case if the direction of the rays is fixed
a priori, while the source of the ray can lie anywhere in R

3. See Table 42.3.2;
here k is the number of vertices, edges, faces, and cells of the arrangement of the
(possibly intersecting) polyhedra. References for ray shooting in a fixed direction
(Table 42.3.2) are [Ber93, BGH94] and [BG08, KRS09].

OFF-LINE RAY SHOOTING IN AN ARBITRARY DIRECTION

In the previous section we considered the on-line situation when the answer to the
query must be generated before the next question is asked. In many situations we
do not need such strict requirements. For example, we might know all the queries
from the start and are interested in minimizing the total time needed to answer all
of the queries (the off-line situation). In this case there are simpler algorithms
that improve on the storage bounds of on-line algorithms:
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TABLE 42.3.2 On-line ray shooting in a fixed direction.

OBJECTS QUERY TIME STORAGE PREPROCESSING

Boxes logn n1+ǫ n1+ǫ

Boxes logn(log logn)2 n logn n log2 n

Axis-oriented curtains logn n logn n logn

Polyhedra log2 n n2+ǫ + k n2+ǫ + k logn

Polyhedra n1+ǫ/m1/3 n ≤ m ≤ n3 m1+ǫ

c-fat convex constant size polyhedra log2 n n log2 n n log2 n

h polyhedra log2 n nh2 log2 n nh2 log2 n

THEOREM 42.3.1

Given a polyhedral set P with n vertices, edges, and faces, and given m rays off-
line, we can answer the m ray-shooting queries in time O(m0.8n0.8+ǫ +m log2 n+
n logn logm) using O(n+m) storage.

One of the most interesting applications of this result is the current asymptotically
fastest algorithm for detecting whether two nonconvex polyhedra in 3-space inter-
sect, and to compute their intersection. See Table 42.3.3; here k is the size of the
intersection.

TABLE 42.3.3 Detection and computation of intersection among polyhedra.

OBJECTS DETECTION COMPUTATION SOURCES

Polyhedra n1.6+ǫ n1.6+ǫ + k log2 n [Pel93b]

Terrains n4/3+ǫ n4/3+ǫ + k1/3n1+ǫ + k log2 n [CEGS94, Pel94b]

For a set of convex polyhedra in 3D with a total of n vertices, the number h of
intersecting pairs of polyhedra can be computed in time O(n1.6+ǫ+h) [ABHP+02].
Given s convex polyhedra of total complexity n, we can pre-process them in linear
time and storage so that any pair of them can be tested for intersection in time
O(log n) per pair [BL15]. Lower bounds on off-line ray-shooting and intersection
problems in 3D are difficult to prove. It has been shown in [Eri95] that many such
problems are at least as hard as Hopcroft’s incidence problem in the appropriate
ambient space (see Chapter 41).

RAY-SHOOTING IN SIMPLICIAL COMPLEXES

If we have a subdivision of the free space R
3 \ P into a simplicial complex we

can answer ray-shooting queries by locating the tetrahedron containing the source
of the ray and tracing the ray in the complex at cost O(1) for each visited face
of the complex. There are scenes P for which any simplicial complex has some
line meeting Ω(n) faces of the complex. The average time for tracing a ray in
a simplicial complex is proportional to the sum of the areas of all faces in the
complex. It is possible to find a complex of total surface area within a constant
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multiplicative factor of the minimum, with O(n3 logn) simplices in time O(n3 logn)
for general P . For P a point set or a single polyhedron O(n2 logn) time suffices
(see [AAS95, AF99, CD99]). These results are obtained via a generalization of
Eppstein’s method for two-dimensional Minimum Weighted Steiner Triangulation
(2D-MWST) of a point set [Epp94]. In the 3D context the weight is the surface
area of the 2D faces of the complex. Starting from the set P of polyhedral obstacles
in R

3, an oct-tree-based decomposition of R3 is produced which is “balanced” and
“smooth.” It is then proved, via a charging argument, that the sum of the surface
areas of all the boxes in the decomposition is within a constant factor of the surface
area of any Minimum Surface Steiner Simplicial Complex compatible with P . From
the oct-tree the final complex is derived within just a constant factor increase in
the total surface.

EXTENSIONS AND ALTERNATIVE METHODS

Some ray-shooting results of Agarwal and Matoušek are obtained from the obser-
vation that a ray is traced by a family of segments ρ(t), where one endpoint is the
ray source and the second endpoint lies on the ray at distance t from the source.
Using parametric search techniques Agarwal and Matoušek compute the first value
of t for which ρ(t) intersects P , and thus answer the ray-shooting query.

An interesting extension of the concept of shooting rays against obstacles is
obtained by shooting triangles and more generally simplices. We consider a family
of simplices s(t), indexed by real parameter t ∈ R

+, where t is the volume of
the simplex s(t), such that the simplices form a chain of inclusions: t1 ≤ t2 ⇒
s(t1) ⊂ s(t2), Intuitively we grow a simplex until it first meets one of the obstacles.
Surprisingly, when the obstacles are general polyhedra, shooting simplices is not
harder than shooting rays.

THEOREM 42.3.2 [Pel94a]

Given a set of polyhedra P with n edges we can preprocess it in time O(m1+ǫ) into
a data structure of size m, such that the following queries can be answered in time
O(n1+ǫ/m1/4): Given a simplex s, does s avoid P? Given a family of simplices
s(t) as above, which is the first value of t∗ for which s(t∗) intersects P?

When the polyhedra are convex and c-fat, fixed simplex intersection queries can
be answered in time O((n/m1/3) logn) [ABG08] with O(m1+ǫ) storage. Thus by
applying parametric search to this data structure one can also solve the shooting
simplices problem within the same time/storage bound for this class of polyhe-
dra. Computing the interaction between beams and polyhedral objects is a central
problem in radio-therapy and radio-surgery (see e.g. [SAL93, For99, CHX00]).

Other popular methods for solving ray-shooting problems are based binary
space partitions, kD-trees, solid modeling schemes, etc. These methods, although
important in practice, are usually not fully analyzable a priori using algorithmic
analysis. In [ABCC06] Aronov et al. propose techniques that give a posteriori
estimates of the cost of ray shooting.

OPEN PROBLEMS

1. Find time and storage bounds for ray-shooting among general polyhedra that
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are sensitive to the actual complexity of a group of lines (as opposed to the
worst-case bound on such a complexity).

2. For a collection of s convex polyhedra there is a wide gap in storage and
preprocessing requirements for ray-shooting between the special case s = 1
and the case for general s. It would be interesting to obtain a bound that
depends smoothly on s.

3. No lower bound on time or storage required for ray shooting is known.

42.4 MOVING LINES AMONG OBSTACLES

ARBITRARY MOTIONS

So far we have treated lines as static objects. In this section we consider moving
lines. A laser beam in manufacturing or a radiation beam in radiation therapy can
be modeled as lines in 3-space moving among obstacles. The main computational
problem is to decide whether a source line l1 can be moved continuously until it
coincides with a target line l2 while avoiding a set of obstacles P . We consider the
following situation where the set of obstacles P is given in advance and preprocessed
to obtain a data structure. When the query lines l1 and l2 are given the answer is
produced before a new query is accepted. We have the results shown in Table 42.4.1,
where K is the complexity of the set of lines missing the edges of a set of horizontal
polygons (cf. Section 42.2). The result on moving lines among polyhedral obstacles
is extended in [Kol05] to moving a line segment, with the same complexity.

TABLE 42.4.1 On-line collision-free movement of lines among obstacles.

OBJECTS QUERY TIME STORAGE PREPROC SOURCES

Polyhedra logn n4+ǫ n4+ǫ [Pel93b]

Horiz. polygons log3 n n3+ǫ +K n3+ǫ +K logn [Pel96]

OPEN PROBLEMS

It is not known how to trade-off storage and query time, or whether better bounds
can be obtained in an off-line situation.

TRANSLATIONS

We now restrict the type of motion and consider only translations of lines. The
first result is negative: there are sets of lines which cannot be split by any collision-
free translation. There exists a set L of 9 lines such that, for all directions v and
all subsets L1 ⊂ L, L1 cannot be translated continuously in direction v without
collisions with L \ L1 [SS93]. Positive results are displayed in Table 42.4.2.
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GLOSSARY

Towering property: Two sets of lines L1 and L2 are said to satisfy the towering
property if we can translate simultaneously all lines in L1 in the vertical direction
without any collision with any lines in L2.

Separation property: Two sets of lines satisfy the separation property if they
satisfy the towering property in some direction (not necessarily vertical).

TABLE 42.4.2 Separating lines by translations.

PROPERTY TIME TO CHECK PROPERTY SOURCES

Towering O(n4/3+ǫ) [CEG+96]

Separation O(n3/2+ǫ) [Pel94b]

42.5 CLOSEST PAIR OF LINES

GLOSSARY

Distance between lines: The Euclidean distance between two lines l1 and l2
in 3-space is the length of the shortest segment with one endpoint on l1 and the
other on l2.

Vertical distance between lines (segments): The length of the shortest verti-
cal segment with one endpoint on line l1 (resp. segment s1) and one endpoint on
line l2 (resp. segment s2). If no vertical segment joins two lines (resp. segments)
the vertical distance is undefined.

TABLE 42.5.1 Closest and farthest pair of lines and segments.

PROBLEM OBJECTS TIME SOURCES

Smallest distance lines O(n8/5+ǫ) [CEGS93]

Smallest vertical distance lines, segments O(n8/5+ǫ) [Pel94a]

Largest vertical distance lines, segments O(n4/3+ǫ) [Pel94a]

Note that when some of the lines/segments are co-planar on a vertical plane, the
problem of finding the smallest/largest vertical distance among them degenerates to
a simpler distance problem relative to a planar arrangements of lines (or segments).
Any centrally symmetric convex polyhedron C in 3D defines a metric. If C has
constant combinatorial complexity, then the complexity of the Voronoi diagram of
n lines in 3-space is O(n2α(n) log n) [CKS+98]. For Euclidean distance the best
bound is O(n3+ǫ).
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OPEN PROBLEM

1. Finding an algorithm with subquadratic time complexity for the smallest
distance among segments (and more generally, among polyhedra) is a notable
open question.

2. Close the gap between the complexity of Voronoi diagrams of lines induced
by polyhedral metrics and the Euclidean metric.

42.6 DOMINANCE RELATION AND WEAVINGS

GLOSSARY

Dominance relation: Given a finite set L of nonvertical disjoint lines in R
3,

define a dominance relation ≺ among lines in L as follows: l1 ≺ l2 if l2 lies above
l1, i.e., if, on the vertical line intersecting l1 and l2, the intersection with l1 has
a smaller z-coordinate than does the intersection with l2.

Weaving: A weaving is a pair (L′,≺′) where L′ is a set of lines on the plane
and ≺′ is an anti-symmetric nonreflexive binary relation ≺′⊂ L′ ×L′ among the
lines in L′.

Realizable: A weaving is realizable if there exists a set of lines L in 3-space such
that L′ is the projection of L and ≺′ is the image of the dominance relation ≺
for L.

Elementary cycle: A cycle in the dominance relation such that the projections
of the lines in the cycle bound a cell of the arrangement of projected lines.

Perfect: A weaving (L′,≺′) is perfect if each line l alternates below and above
the other lines in the order they cross l (see Figure 42.6.1a).

Bipartite weaving: Two families of segments in 3-space such that, when pro-
jecting on the xy-plane, each segment does not meet segments from its own
family and meets all the segments from the other family in the same order. (A
bipartite weaving of size 4× 4 is shown in Figure 42.6.1b.)

Perfect bipartite weaving: Every segment alternates above and below the
segments of the other family (see Figure 42.6.1b).

FIGURE 42.6.1

(a) A perfect weaving;

(b) a perfect bipartite weaving. a b
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The dominance relation is possibly cyclic, that is, there may be three lines
such that l1 ≺ l2 ≺ l3 ≺ l1. Some results in [CEG+92, PPW93, BOS94, Sol98]
[HPS01, BDP05, ABGM08, AS15] related to dominance are the following:

1. How fast can we generate a consistent linear extension if the relation ≺ is
acyclic? O(n4/3+ǫ) time is sufficient for the case of lines. This result has
been extended to the case of segments and of polyhedra. If an ordering is
given as input, it is possible to verify that it is a linear extension of ≺ in time
O(n4/3+ǫ).

2. How many elementary cycles in the dominance relation can n lines define? In
the case of bipartite weavings, the dominance relation has O(n3/2) elementary
cycles and there is a family of bipartite weavings attaining the lower bound
Ω(n4/3). For general weavings there is a construction attaining Ω(n3/2).

3. If we cut the segments to eliminate cycles, how many “cuts” are necessary to
eliminate all cycles? From the previous result we have that sometimes Ω(n4/3)
cuts are necessary since a single cut can eliminate only one elementary cycle.
In order to eliminates all cycles (including the nonelementary ones) in any
weaving, O(n3/2polylog(n)) cuts are always sufficient.

4. How fast can we find those cuts? There are algorithms to find cuts in bipartite
weavings in time O(n9/5 logn), and in time O(n11/6+ǫ) for general weavings.
In a general weaving, calling µ is the minimum number of cuts, there is an
algorithm to cut all cycles in time O(n4/3+ǫµ1/3) that produces O(n1+ǫµ1/3)
cuts. Finding the minimum number µ of cuts is a NP-complete problem, and
there is a polynomial-time approximation algorithm producing a set of cuts
of size within a factor O(log µ log logµ) of the optimal.

5. The fraction of realizable weavings over all possible weavings of n lines tends
to 0 exponentially as n tends to ∞. This result holds also when we generalize
lines into semi-algebraic curves defined coordinate-wise by polynomials of
constant degree.

6. A perfect weaving of n ≥ 4 lines is not realizable.

7. Perfect bipartite weavings are realizable if and only if one of the families has
fewer than four segments.

42.7 SOURCES AND RELATED MATERIAL

FURTHER READING

Books and Surveys.

[Som51, HP52, Jes69]: Extensive book-length treatments of the geometry of lines
in space.

[Sto89, Sto91]: Algorithmic aspects of computing in projective spaces.

[BR79, Shi78]: Uses of the geometry of lines in robotics. For uses in graphics see
[FVFH90].
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[Ber93] [PS09, Chapter 7]: A detailed description of many ray-shooting results.

[Spe92, Dur99, Hav00]: Pointers to the vast related literature on pragmatic aspects
of ray shooting.

[Goa10]: a survey on line transversals for sets of balls.
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Chapter 39: Point location
Chapter 41: Range searching
Chapter 43: Geometric intersection
Chapter 51: Algorithmic motion planning
Chapter 53: Computer graphics

REFERENCES

[AAKS04] P.K. Agarwal, B. Aronov, V. Koltun, and M. Sharir. On lines avoiding unit balls

in three dimensions. Discrete Comput. Geom., 34:231–250, 2005.

[AAS95] P.K. Agarwal, B. Aronov, and S. Suri. Stabbing triangulations by lines in 3D. In

Proc. 11th Sympos. Comput. Geom., pages 267–276, ACM Press, 1995.

[AAS97] P.K. Agarwal, B. Aronov, and M. Sharir. Computing envelopes in four dimensions

with applications. SIAM J. Computing, 26:1714–1732, 1997.
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