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Abstract. Social networks have demonstrated in the last few years to
be a powerful and flexible concept useful to represent and analyze data
emerging from social interactions and social activities. The study of these
networks can thus provide a deeper understanding of many emergent
global phenomena. The amount of data available in the form of social
networks is growing by the day. This poses many computational chal-
lenging problems for their analysis. In fact many analysis tools suitable
to analyze small to medium sized networks are inefficient for large social
networks. The computation of the betweenness centrality index (BC) is a
well established method for network data analysis and it is also important
as subroutine in more advanced algorithms, such as the Girvan-Newman
method for graph partitioning.

In this paper we present a novel approach for the computation of the
betweenness centrality, which speeds up considerably Brandes’ algorithm
(the current state of the art) in the context of social networks. Our
approach exploits the natural sparsity of the data to algebraically (and
efficiently) determine the betweenness of those nodes forming trees (tree-
nodes) in the social network. Moreover, for the residual network, which
is often of much smaller size, we modify directly the Brandes’ algorithm
so that we can remove the nodes already processed and perform the
computation of the shortest paths only for the residual nodes. We also
give a fast sampling-based algorithm that computes an approximation of
the betweenness centrality values of the residual network while returns
the exact value for the tree-nodes. This algorithm improves in speed and
precision over current state of the art approximation methods.

Tests conducted on a sample of publicly available large networks from
the Stanford repository show that, for the exact algorithm, speed im-
provements of a factor ranging between 2 and 5 are possible on several
such graphs, when the sparsity, measured by the ratio of tree-nodes to
the total number of nodes, is in a medium range (30% to 50%). For some
large networks from the Stanford repository and for a sample of social
networks provided by Sistemi Territoriali with high sparsity (80% and
above) tests show that our algorithm, named SPVB (for Shortest Path
Vertex Betweenness), consistently runs between one and two orders of
magnitude faster than the current state of the art exact algorithm.



1 Introduction

Social networks have demonstrated in the last few years to be a powerful and
flexible concept useful to represent and analyze data emerging from social in-
teractions and social activities. The study of these networks can thus provide
a deeper understanding of many emergent social global phenomena. Moreover
such analytic tools and concepts have been successfully adopted in a vast range
of applications including communications, marketing and bioinformatics.

According to the standard paradigm of social networks, each agent/item is
associated to a node of the network and the edges between pairs of nodes repre-
sent the relationship between them. Social networks are naturally represented as
graphs, consequently graph theory and efficient graph algorithms play an impor-
tant role in social network analysis. Among the analytic tools, centrality indices
are often used to score (and rank) the nodes (or the edges) of the network to
reflect their centrality position. The intuitive idea behind this class of indices
is that a more central node is likely to be involved in many processes of the
network, thus its importance increases.

Depending on what we mean with the word “important”, different definitions
of centrality are possible [19]. For example: degree centrality highlights nodes
with a higher number of connections, closeness centrality highlights nodes eas-
ily reachable from other nodes, eigenvector centrality highlights nodes connected
with authoritative nodes and betweenness centrality (BC) highlights nodes which
are more likely to be information hubs. A complete compendium of many cen-
trality definitions, problems and measures can be found in [5]. Vertex between-
ness [1, 13] is one of the most broadly used centrality indices. The (vertex) be-
tweenness of a vertex v is defined as the sum, for each pair of nodes (s, t) in
the network, of the ratio between the number of shortest (aka geodesic) paths
from s to t passing through v and the total number of shortest paths from s
to t. The main assumption of this index is that the information flows in the
network following shortest paths. Despite the fact that this assumption could
be considered restrictive, betweenness finds a vast range of applications (e.g. in
computing lethality for biological networks [11] and in bibliometry [21]).

A very similar concept, the edge betweenness, is defined in [1] where for an
edge e, the sum is computed for each pair of nodes (s, t) of the ratio among the
number of shortest paths from s to t through the edge e over the number of all
the shortest paths from s to t. Edge betweenness has a prominent application
as a subroutine in the algorithm of Newman and Girvan [15] for community
detection of complex networks. In this paper, for sake of clarity, we discuss only
the problem of computing efficiently vertex betweenness, however with minor
modifications our approach applies to edge betweenness as well (see [7]). The
computation of the betweenness centrality index is demanding because, for a
given node v, all the shortest paths between each couple of nodes passing through
v have to be counted (even if it is not necessary to explicitly enumerate them).
This means that, in general, for fairly large networks the computation of this
index based on a direct application of its definition becomes impractical, having
complexity O(n3), for a graph with n nodes. Since the last decade the number



and size of social networks have been consistently increasing over time, efficient
algorithms have emerged to cope with this trend.

The fastest exact algorithm to date is due to Brandes [6]. It requires O(n+m)
space and O(nm) time where n is the number of nodes and m the number of
edges in the graph. For sparse graphs, where m = O(n), Brandes’ method is a
huge improvement over the naive direct method, however it is still quadratic in
n, regardless of any other special feature the input graph may have.

In this paper we propose an evolution of the Brandes’ algorithm, named
SPVB (for Shortest Path Vertex Betweenness), which exploits some widespread
topological characteristic of social networks to speed up the computation of the
betweenness centrality index. We show that for nodes in the graph that belong
to certain tree structures the beteenness value can be computed by a straight-
forward counting argument. The advantage of our approach is two-fold: on the
one hand we do not need to count shortest paths for the subset of network nodes
that have the required tree-structure, and, on the other hand, for the resid-
ual nodes we compute the shortest paths only between nodes belonging to the
residual of the original graph, thus more efficiently. Our algorithm performance
strictly depends on the number of nodes for which we can algebraically derive
the betweenness. Therefore it works well in practice for social networks since we
observed that such tree structures are quite frequent in the context of social net-
works where the number of edges of the graph is of the same order of magnitude
of the number of nodes. Note, however, that SPVB still reduces to the Brandes’
algorithm in a strict worst case scenario.

We have tested graphs with up to 500K nodes, which is a fair size for many
applications. However in some applications (e.g. web graphs, telephone calls
graphs) we face much larger graphs in the regions of millions of nodes, and
we might want to trade off speed and precision in computing the Betweenness
Centrality (BC). In this case approximating betweenness may be the strategy of
choice. Thus we combine our algebraic computation with the sampling approach
in [3] so to gain the benefits of both (see Section 6), obtaining the algorithm
ASPVB (for Approximate Shortest Path Vertex Betweenness).

We tested our algorithm on a set of 18 social graphs of Sistemi Territoriali
which is an ICT company with headquarters in Italy, specializing in Business
Intelligence applications. These graphs coming from real applications are very
large and very sparse, a property SPVB exploits to gain in efficiency. Compared
to Brandes’ method we can gain orders of magnitudes (between one and two) in
terms of computation time. We also tested SPVB on a set of 16 social graphs
from the Stanford Large Network Dataset Collection. We obtained marginal
improvements on seven cases, speed ups by a factor from 2 to 6 in six cases, and
speedups by orders of magnitude in two cases. At the best of our knowledge this
approach is novel.

The paper is organized as follows. Section 2 gives a brief survey of related
work, while section 3 gives key insights from Brandes’ methods. In section 4 we
describe our method in detail for exact computations. In Section 5 we give the



experimental results for exact computations. In Section 6 we give the approxi-
mation algorithm and the corresponding experimental results.

2 Related work

Let G = (V,E) be the graph associated to a social network, we denote as: σst
the number of shortest paths starting from the node s and ending in t, σst(v)
the cardinality of the subset of geodesic paths from s to t passing through v.
Betweenness centrality [13] measures, for a given vertex v, the fraction of all the
possible shortest paths between pairs of nodes which pass through v. Formally
betweenness centrality B(v) is defined as:

B(v) =
∑

s6=v 6=t∈V

σst(v)

σst

The practical application of centrality indices depends also on the scalabil-
ity of the algorithm designed to compute them. Early exact algorithms have a
complexity in the order of O(n3) [17], where n is the number of nodes. Thus
the computation of betweenness by this direct approach becomes impractical for
networks with just a few thousands nodes.

In 2001 Brandes [6] developed the asymptotically fastest exact algorithm
to date, that exploits a recursive formula for computing partial betweenness
indices efficiently. It requires O(n + m) space and O(nm) time where n is the
number of nodes and m the number of edges in the graph. For sparse graphs,
where m = O(n), Brandes’ method is a huge improvement over the naive direct
method, allowing to tackle graphs with tens of thousands of nodes.

Given the importance of the index, and the increasing size of networks to be
analyzed, several strategies for scaling up the computation have been pursued.
Algorithms for parallel models of computations have been developed (se e.g. [22],
[18] and [2]).

A second strategy is to resort to approximations of the betweenness [8]. In [3]
the authors describe an approximation algorithm based on adaptive sampling
which reduces the number of shortest paths computations for vertices with high
centrality. In [14] the authors present a framework that generalizes the Brandes’
approach to approximate betweenness. In [25] the authors propose a definition
of betweenness which takes into account paths up to a fixed length k.

Another important complexity reduction strategy was presented in [12] where
ego-networks are used to approximate betweenness. A ego-network is a graph
composed by a node, called ego, and by all the nodes, alters, connected to the ego.
Thus if two nodes are not directly connected, there is only a possible alternative
path which passes through the ego node. The authors have empirically shown
over random generated networks that the betweenness of a node v is strongly
correlated to that of the ego network associated to v.

In order to extend the use of betweenness centrality to a wider range of
applications, many variants of this index were proposed in the literature. For



example in [9] the betweenness definition is applied to dynamic graphs, while
in [23] geodesic paths are replaced with random walks. Modularity properties of
social networks are used in [10] to define a notion of Community Inbetweenness.
In experiments this measure is shown to weakly correlate with standard BC for
networks of high modularity.

In graphs that change dynamically or are built incrementally (e.g. in a
streaming model) algorithms have been proposed that dynamically update the
betweenness by detecting efficiently those nodes whose BC is affected by the
graph update (see [16,20]).

In this paper we propose to use specific local structures abundant in many
types of social graphs in order to speed up the exact computation of the be-
tweenness index of each node by an adaptation of the exact algorithm due to
Brandes.

An approach that exploits special structures in social graphs is advocated also
a paper by Puzis et al. [24] that appeared just after the preliminary conference
version of this work [4]. In [24] R. Puzis et al. develop two algorithms for exact
BC computation. The first algorithm is advantageous when many nodes that are
structurally equivalent, that is when they have the same set of neighbors. In this
case equivalent nodes can be contracted into a single node and a quotient graph
is generated. The original Brandes’ procedure is adapted to work on the quotient
graph, while computing the BC relative to the original graph. Experiments in [24]
show a speed up from 2 to 3 in several Autonomous Systems (AS) graphs, and
from 2 to 6 in DBLP co-authors graphs. The second algorithm generates the bi-
connected components of the input graph, computes partial BC independently
for each bi-connected, and then combines the results of the single components to
produce the BC with respect to the original graph. Combining the two algorithms
it is shown a speed from 2 to 7 in the set of AS-graphs. The edges of the tree-
like structures we exploit are bi-connected components of the input graph thus,
our trees are a special case of the components considered in [24], however the
code we propose are much simpler than the algorithm in [24], while attaining
comparable speed ups in the tested as-graphs.

3 Background

In this section we give some key features of Brandes’ algorithm, since it gives a
background to our approach. This method is based on an accumulation technique
where the betweenness of a node can be computed as the sum of the contributions
of all the shortest paths starting from each node of the graph taken in turns.
Given three nodes s, t, v ∈ V , Brandes introduces the notion of pair-dependency
of s and t on v as the fraction of all the shortest paths from s to t through v
over those from s to t:

δst(v) =
σst(v)

σst

The betweenness centrality of the node v is obtained as the sum of the pair-
dependency of each pair of nodes on v. To eliminate the direct computation of



all the sums, Brandes introduces the dependency of a vertex s on v as:

δs•(v) =
∑
t∈V

δst(v) (1)

Thus the betweenness centrality B, of node v is given by summing the depen-
dencies from all source nodes:

B(v) =
∑
s∈V

δs•(v)

Observation 1 If a node v is a predecessor of w in a shortest path starting in
s, then v is a predecessor also in any other shortest path starting from s and
passing through w [6].

Arguing form the observation 1, equation 1 can be rewritten as a recursive
formula:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

(1 + δs•(w)), (2)

where Ps(w) is the set of direct predecessors of a certain node w in the short-
est paths from s to w, encoded in a BFS (Breadth First Search) rooted DAG
(Directed Acyclic Graph) form node s.

4 Our Algorithm: SPVB

Our algorithm algebraically computes the betweenness of nodes belonging to
trees in the network obtained by iteratively removing nodes of degree 1. After-
wards we apply a modification of Brandes’ algorithm [6] to compute the be-
tweenness of the nodes in the residual graph.

A first trivial observation is that nodes with a single neighbor can be only
shortest paths endpoints, thus their betweenness is equal to zero. Thus we would
like to remove these nodes from the graph. However, these nodes by their pres-
ence influence the betweenness of their (unique) neighbors. In fact, such neighbor
v works as a bridge to connect the node to the rest of the graph and all the short-
est paths to (from) this node pass through that unique neighbor. Our procedure
computes the betweenness of a node v as the sum of the contribution of all nodes
for which v is their unique direct neighbor.

Following this strategy, once the contribution of the nodes with degree 1 has
been considered in the computation of the betweenness of their neighbors, they
provide no more information, and can be virtually removed from the graph. The
removal of the nodes with degree 1 from the graph, can cause that the degree of
some other node becomes 1. Thus the previous considerations can be repeated
on a new set of degree one nodes. When we iterate, however, we need also to
record the number of nodes connected to each of the degree one nodes that were
removed from the graph. This recursive procedure allows us to algebraically
compute the betweenness of trees in the graph.



4.1 Algorithm formalization and description

We will assume the input G to be connected, in order to simplify the argument. If
G is not connected, the argument can be repeated for each connected component
separately. Let F be the set of nodes in G = (V,E) that can be removed by
iteratively delete nodes of degree 1, and their adjacent edge. We call the nodes
in F the tree-nodes. Let G′ = (V ′, E′) be the residual graph for the residuals
set of node, with V ′ = V \ F . The set F induces a forest in G, moreover the
root of each tree Ti of the forest is adjacent to a unique vertex in V ′. Each node
in F is a root to a sub-tree. Let RG(w,F ) be the set of nodes of trees in F
having w as their root-neighbor in G′. The formula for the betweenness of node
v ∈ V involves a summation over pairs of nodes s, t ∈ V . Thus we can split this
summation into sub-summations involving different types of nodes, and provide
different algorithms and formulae for each case.
Tree-nodes. Let u be a node in F , and let v1, .., vk be the children of u in the
tree Tu, and let Tvi , for i = 1, ..k, be the subtrees rooted at vi. When s and t are
in the same subtree Tvi , then there is only one shortest path connecting them
completely in Tvi and this path does not contain u, thus the contribution to B(u)
is null. When s is in some tree Tvi , and t is in the complement (V \ {u}) \ Tvi ,
then each shortest path connecting them will contain u. Thus the contribution
to the betweenness of u is given by the number of such pairs. We will compute
such number of pairs incrementally interleaved with the computation of the set
F by peeling away nodes of degree 1 from the graph. When at iteration j, we
peel away node vi we have recursively computed the value of |Tvi |, and also for
the node u the value |RG(u, Fj)| which is the sum of the sizes of trees Tvh , for
h ∈ [1, ..k], i 6= k already peeled away in previous iterations. The number of new
pairs to be added to B(u) is:

|Tvi | × (|(V \ {u}) \ Tvi | − |RG(u, Fj)|).

This ensures that each pair (s,t) is counted only once. Finally observe that when
both s and t are in V ′ no shortest path between them will contain u therefore
their contribution to B(u) is zero. Since the roles of s and t are symmetrical in
the formula we need to multiply the final result by 2 in order to cont all pairs
(s, t) correctly. The pseudocode for this procedure is shown in Section 4.2. See
Figure 1 for an illustration.
Residual graph nodes. Let u be a node in V ′, we will see how to modify
Brandes’ algorithm so that executing the modified version on the residual graph
G′ (thus at a reduced computational cost), but actually computing the between-
ness of the nodes in u ∈ V ′ relative to the initial graph G. Brandes algorithm’s
inner loop works by computing from a fixed node s a BFS search DAG in the
input graph, which is a rooted DAG (rooted at s), and by applying a structural
induction from the sinks of the DAG towards the root as in formula (2).
Subcase 1. If a node x ∈ V ′ has R(x, F ) 6= ∅ the tree formed by R(x, F )
and x would be part of the BFS DAG in G having its source in V ′, however,
since we run the algorithm on the reduced graph G′, we need to account for the
contribution of the trimmed trees to the structural recursive formula (2). The
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Fig. 1. Illustration of the tree-nodes structure and possible s-t paths involving tree
nodes.

correction term for δs•(x) is equal to |RG(x, F )| since each shortest path from s
to y ∈ RG(x, F ) must contain x. Thus we obtain the new formula:

δs•(u) =
∑

w:u∈Ps(w)

σsu
σsw

(1 + δs•(w) + |RG(w,F )|))

Note that in the development of the above formula R(s, F ) does not appear.
Since no shortest path from s ∈ V ′ to any t ∈ R(s, F ) may include a node
u ∈ V ′, this subtree has zero contribution to δs•(u).
Subcase 2. Consider now a node x ∈ R(s, F ) as source for the BFS. In the
computation of δx•(u), for u ∈ V ′ each shortest path from x to t ∈ R(s, F )
cannot contain u thus gives zero contribution. For t ∈ V \R(s, F ), such shortest
path would contain a shortest path from s, thus we have δx•(u) = δs•(u) for all
x ∈ R(s, F ). In order to account for these contributions to B(u) it suffices to
multiply the contribution δs• by (1 + |R(s, F )|), obtaining:

B(u) = B(u) + δs•(u) ∗ (1 +RG(s, F )).

4.2 Algorithm pseudo-code

In the following Algorithm 1 we show the pseudo-code for SPVB (Shortest-paths
vertex betweenness) preprocessing, handling degree 1 nodes. For simplicity we



assume G to be connected. For a disconnected graph G, the algorithm should
be applied to each connected component separately. For a node v of degree 1 at
a certain stage of the iteration, the vector p records the number of nodes in a
subtree rooted at v (excluding the root). For any other node u, vector p records
the sum of the sizes of subtrees rooted at children of that node that have been
deleted in previous iterations.

SPVB:
Data: undirected unweighted graph G=(V,E)
Result: the graph’s node betweenness B[v] for all v ∈ V
B[v] = 0, v ∈ V ; p[v] = 0, v ∈ V ; i = 0;
Gi = G; deg1 = {v ∈ V i|deg(v) = 1};
repeat

v ← deg1;
u ∈ V i.(v, u) ∈ Ei;
B[u] = B[u] + 2(n− p[v]− p[u]− 2)(p[v] + 1);
remove v from deg1;
p[u] = p[u] + p[v] + 1;
i+ +;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u→ deg1 ; /* deg(u) is computed on the new graph

Gi */

until deg1 = ∅ ;

if |V i| > 1 then
Brandes modified(Gi, p, B)

end
Algorithm 1: Shortest-paths vertex betweenness

The modification of Brandes’ algorithm does not change its asymptotic complex-
ity, which however must be evaluated on the residual graph with n′ = |V | − |F |
nodes and m′ = |E| − |F | edges, thus with a time complexity O(n′m′). The
complexity of the first part of SPVB is constant for each node in F , except
for the operations needed to dynamically modify the graph Gi in Algorithm 1
and maintain the set of degree-1 nodes. With standard dynamic dictionary data
structure we have an overhead of O(log n) for each update operation.

5 Experiments

In order to evaluate the performance of our algorithm we run a set of experiments
using both a collection of 18 graphs provided by Sistemi Territoriali (SisTer),
which is an Italian ICT company involved in the field of data analysis for Busi-
ness Intelligence and a collection of graphs downloaded from the Stanford Large
Network Dataset Collection3. Since both SPVB and Brandes’ compute the exact

3 http://snap.stanford.edu/data/



Brandes modified:
Data: directed graph G = (V,E),
for each v:
the number of tree-nodes connected to v: p[v],
the partial betweenness computed for v: B[v]
Result: the graph’s node betweenness B[v]
for s ∈ V do

S = empty stack;
P[w]= empty list,w ∈ V ;
σ[t] = 0, t ∈ V ;σ[s] = 1;
d[t] = −1, t ∈ V i ; d[s] =0;
Q= empty queue;
enqueue s→ Q;
while Q not empty do

dequeue v ← Q;
push v → S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v → P [w];

end

end

end
δ[v] = 0, v ∈ V ;
// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w← S;
for v ∈ P[w] do

δ[v] = δ[v] + σ[v]
σ[w]

(δ[w] + p[w] + 1);

end
if w 6= s then

B[w] = B[w] + δ[w]× (p[s] + 1)
end

end

end
Algorithm 2: Modified Brandes’ algorithm



value of betweenness, we tested the correctness of the implementation by com-
paring the two output vectors. Here we report only on the the running time of
the two algorithms. For our experiments we used a standard PC endowed with
a 2.5 GHz Intel Core 2, 8Gb of RAM and Linux 2.6.37 operating system. The
two algorithms were implemented in Java. In order to avoid possible biases in
the running time evaluation due to the particular CPU architecture, we decided
to implement the algorithm as a mono-processor sequential program.

SisTer Collection. In Table 1 we report the graph id, the number of nodes and
edges in the SisTer collection and the percentage of tree-nodes in each graph.
Note that a very large percentage of the nodes can be dealt with algebraically
by SPVB and the residual graph, on which we ran a modified Brandes’, is quite
small relative to the original size.

Graph ID Node # Edge # Tree nodes (%)

G1 233,377 238,741 86 %
G2 14,991 14,990 99 %
G3 15,044 15,101 85 %
G4 16,723 16,760 84 %
G5 16,732 16,769 84 %
G6 169,059 169,080 99 %
G7 16,968 17,026 84 %
G8 3,214 3,423 95 %
G9 3,507 3,620 96 %
G10 3,507 3,620 96 %
G11 3,519 3,632 96 %
G12 44,550 46,519 77 %
G13 46,331 46,331 99 %
G14 47,784 48,461 84 %
G15 5,023 5,049 93 %
G16 52,143 53,603 85 %
G17 8,856 10,087 89 %
G18 506,900 587,529 80 %

Table 1. SisTer Collection. For each graph it is listed the number of nodes, the number
of edges, and the percentage of tree-nodes. The graphs need not be connected.

Figure 2 compares the running time of our and Brandes’ algorithms. On
the x-axis we report the graph id, while on the y-axis we report in logarithmic
scale the running time expressed in seconds. From Figure 2 it is possible to
observe that SPVB is always more than one order of magnitude faster than the
procedure of Brandes, sometimes even two orders of magnitude faster. For graph
G1, with 233,377 nodes, for example, we were able to finish the computation
within one hour while Brandes’ needs approximately two days. For graph G6,
with 169,059 nodes, we could complete in about 1 minute, compared to two days
for Brandes. A notable result is shown also for graph G18 which is our biggest
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Fig. 2. A comparison of the running time of our algorithm SPVB (left) and Brandes’
(right) on 18 sparse large graphs. The ordinate axis report running time in seconds
and is in logarithmic scale. Data for Brandes on graph 18 is missing due to time-out

in this collection. In this case SPVB required approximately 2,4 days to finish
while Brandes’ could not terminate in one month (data not shown).
Stanford Collection. We have selected a subset of graphs from the Stanford
collection, using the following criteria. First the graphs have been ranked by
number of nodes and we have selected representative graphs from as many cat-
egories as possible (Social networks, Communication Networks, Citation net-
works, Collaboration networks, Web graphs, Internet peer-to-peer networks, and
Autonomous systems graphs). We have excluded graphs that because of their
size would take more than one week of computing time. In Table (2) we have
listed these graphs, their size in number of nodes and edges, and the percentage
of tree-nodes, which is the most important parameter influencing the perfor-
mance of our method. Each input graph was considered undirected. We decided
a cut-off time of seven days. In order to measure the convergence of the two
methods we collected also the partial output of the two algorithms every 24
hours of execution. In Table 3 the running time, expressed in seconds, of the two
methods is shown, and the speed up factor. As it is expected the speed up factor
is strongly correlated to the fraction of the tree-nodes in the graph. We notice a
speed-up factor ranging from 2 to almost 6 when the ratio of tree-nodes to the
total number of nodes is in the range 30% to 50%.
Two large test graphs are quite noticeable. Graph Email-EuAll has a percentage
of 80% of tree-nodes which is a value closer to those found in the SisTer collection,
thus the speed up measured is at least 27 (since we stopped Brandes’ after one



Graph name Node # Edge # Tree nodes (%)

ca-GrQc 5,242 28,980 21%
as20000102 6,474 13,233 36%
ca-HepTh 9,877 51,971 20%
ca-HepPh 12,008 237,010 11%
ca-AstroPh 18,772 396,160 6%
ca-CondMat 23,133 186,936 9%
as-caida20071112 26,389 106,762 38%
cit-HepTh 27,770 352,807 5%
cit-HepPh 34,546 421,578 4%
p2p-Gnutella31 62,586 147,892 46%
soc-epinion1 75,879 508,837 51%
soc-sign-Slashdot090221 82,144 549,202 36%
soc-Slashdot0922 82,168 948,464 2%
soc-sign-epinions 131,828 841,372 51%
Email-EuAll 265,214 420,045 80%
web-NotreDame 325,729 1,497,134 51%

Table 2. Selected graphs from the Stanford Collection. For each graph it is listed the
number of nodes, the number of edges, and the percentage of tree-nodes, which is the
most important parameter affecting the time performance.

Graph name Node # Brandes (s) SPVB (s) Ratio

ca-GrQc 5,242 35 s 24 s 1.45
as20000102 6,474 141 s 54 s 2.65
ca-HepTh 9,877 230 s 148 s 1.55
ca-HepPh 12,008 703 s 563 s 1.24
ca-AstroPh 18,772 2,703 s 2,447 s 1.10
ca-CondMat 23,133 3,288 s 2,718 s 1.21
as-caida20071112 26,389 6,740 s 2,014 s 3.34
cit-HepTh 27,770 8,875 s 8,227 s 1.07
cit-HepPh 34,546 16,765 s 15,636 s 1.07
p2p-Gnutella31 62,586 74,096 s 15,573 s 4.76
soc-Epinion1 75,879 145,350 s 25,771 s 5.64
soc-sign-Slashdot090221 82,140 199,773 s 64,905 s 3.07
soc-Slashdot0902 82,168 199,544 s 190,536 s 1.04
soc-sign-epinions 131,828 564,343s 96,738 s 5.83
Email-EuAll 265,214 > 7 days 22,057 s > 27
web-NotreDame 325,729 - ≈ 9 days ≈ 8

Table 3. Running time (in seconds)of the two methods over selected Stanford Collec-
tion graphs, and their ratio (speed up factor).



week). That value is between one and two orders of magnitude, consistently with
those measured in the SisTer collection.
For the web-NotreDame graph, which is the largest graph in our sample of the
Stanford collection, we estimate the convergence properties of the two algorithms
as follows. SPVB has been run to completion (in about 9 days) in order to have
the exact target solution vector. Also at fixed intervals each day we recorded
the intermediate values of the betweenness vectors for both algorithms. For each
vertex we compute the ratio of the intermediate value over the target value
(setting 0/0 to value 1), and then we average over all the vertices. This measure
is strongly biased by the fact that for leaves (nodes with degree 1) both Brandes
and SPVB assign at initialization the correct value 0, thus in this case precision is
attained by default. To avoid this bias we repeat the measurement by averaging
only over those nodes with final value of betweenness greater than zero (see
Figure 3). From Figure 3 we can appreciate that the average convergence rate
is almost linear in both case, but the curve for SPVB has a much higher slope.
After 7 days our algorithm reached about 75% of the target, against 10% of
Brandes’, by a linear extrapolation we can thus predict a speed up factor of
about 8.

Fig. 3. Evolution in time of the average (over the vertices) ratio of the partial between-
ness values over the final betweenness value. In the averaging leaves are excluded.

6 Approximating Betweenness Centrality

In this section we show how we can combine our algebraic approach to computing
BC with the approximation scheme in [3], which is based on adaptive sampling.



First of all we notice that it is not possible in general to choose a random sample
size for each data set that ensures a uniform relative error ε at each node. In [3] it
is shown that with high probability, we can approximate the betweeenness B[v]
of a node v in a graph of n nodes, up to a factor 1/ε, with a number s of randomly
chosen source nodes (from here referred as pivots), where s = s(B[v], n, ε). Since
s depends also on the valueB[v] we cannot hope to have a uniform approximation
factor bound over all the nodes in the graph. For this reason, we select an uniform
sample size function having as input only the number of nodes and we measure
the resulting mean relative error in each experiment. Thus we select a fixed value
s =
√
n, and we measure empirically the mean relative error against the exact

value4. The BC value of tree-nodes is known exactly and their contribution to
the BC value of other nodes can be attributed to the root of the tree, therefore we
restrict the sampling on the nodes in the residual graph. Also the shortest path
computations are done in the residual graph. Note however that the expansion
factor used to estimate the BC is referred to the size of the original graph. The
pseudocode of the combined approach is shown in Algorithms 3, 4, and 5.

6.1 Approximate Algorithm Pseudo Code

In the following Algorithm 3 we show the pseudo-code for ASPVB (Approximate
Shortest-paths vertex betweenness) preprocessing. For the sake of clarity we
consider G to be connected. For disconnected graphs the same procedure should
be applied to each component.

The algorithm takes as input an undirected graph G = (V,E) and returns the
approximate betweenness value for each node of the graph. Since the algebraic
computation is the same of the exact algorithm, for nodes whose betweenness is
algebraically computed the returned value is exact.

In Algorithm 4 we show our approximate algorithm for the residual graph.
We compute the betweenness of the nodes in each path starting from a generic
node s as if we were considering the path in the whole graph (see lines 1 and 2 in
Algorithm 4). This is because we need to consider the contribution of the node
within the whole graph when computing its approximate value. We maintain
update an auxiliary structure (see line 3 in Algorithm 4) with the weight of each
node in the shortest path from s for all the nodes connected to the residual graph
through s. This value will be used in case of exact computation (see line 1 in
Algorithm 5) to return the exact value of each node. As in [3], the computation
of the approximate betweenness is the sum of the contributions due to the pivots
times

√
n.

6.2 Experimental results on approximating betweenness

In Tables 4 and 5 we report quality (measured by the mean relative error)
vs. time measurements over ten runs of our approximation algorithm and the

4 For nodes whose BC exact value is zero, the partial BC contribution for any source
is also zero, thus the sampling procedure will estimate the correct value, zero.



ASPVB:
Data: unweighted graph G=(V,E)
Result: the graph’s node approximate betweenness cB [v] for all v ∈ V
cB [v] = 0, v ∈ V ;
c0[v] = 0, v ∈ V ; /* c0[v] stores the algebraic computation of the

degree one nodes */

p[v] = 0, v ∈ V ; i = 0;
Gi = G;
deg1 = {v ∈ V i|deg(v) = 1};
repeat

v ← deg1;
u ∈ V i.(v, u) ∈ Ei;
c0[u] = c0[u] + 2(n− p[v]− p[u]− 2)(p[v] + 1);
remove v from deg1;
p[u] = p[u] + p[v] + 1;
i+ +;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u→ deg1 ; /* deg(u) is computed on the new graph

Gi */

until deg1 = ∅ ;

if |V i| > 1 then
ComputeApproximateBetweenness(Gi, p, cB [v], c0[v], |V |)

end
else

cB [v] = c0[v]
end

Algorithm 3: Approximate shortest-paths vertex betweenness



ComputeApproximateBetweenness:
Data: directed graph G = (V,E),
for each v:
the number of tree-nodes connected to v: p[v],
the accumulator for the approximate betweennessv: AB[v],
the betweenness algebraically computed so far v: c0[v],
the number of nodes in the original graph n
Result: the graph’s node approximate betweenness AB[v]
pivot number = 0;
ABs[v] = 0, v ∈ V
max = sqrt(n)
if max > |V | then

max = |V |
end
while pivot number < max do

pivot number + +
pivot = choose(n ∈ V )
s = pivot
S = empty stack;
P[w]= empty list, w ∈ V ;
σ[t] = 0, t ∈ V ;σ[s] = 1;
d[t] = −1, t ∈ V i ; d[s] =0;
Q= empty queue;
enqueue s→ Q;
while Q not empty do

dequeue v ← Q;
push v → S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v → P [w];

end

end

end
δ[v] = 0, v ∈ V ;
// S returns vertices in order of non-increasing distance from s
while S not empty do

pop w← S;
1 δ[w] = δ[w] + p[w]

for v ∈ P[w] do

2 δ[v] = δ[v] + σ[v]
σ[w]

(δ[w] + 1)

if w 6= s then
AB[w] = AB[w] + δ[w]

3 ABs[w] = AB[w] + (δ[w] ∗ p[w])
end

end

end

end
ApproximateValue(AB,ABs, c0, n,max, |V |)

Algorithm 4: Modified Brandes’ algorithm



ApproximateValue:
Data: for each v:
Approximate betweenness AB,
the betweenness value depending on nodes not in the residual graph ABs,
the algebraic betweenness computation c0,
the number of nodes in the original graph, n
the number of pivot, max
the number of nodes in the residual graph, nr
Result: the graph’s node approximate betweenness AB[v]
i=0;

1 if max = nr then
for i < n do

AB[i] = AB[i] +ABs[i] + C0[i]
end

else
for i < n do

if AB[i] 6= 0 then
AB[i] = AB[i] ∗ n

max

else
AB[i] = c0[i]

end

end

end
Algorithm 5: Rescaling of the results.

MRE Approx Time Approx
Graph name Node # ASPVB Brandes Ratio ASPVB (s) Brandes (s) Ratio

ca-GrQc 5,242 0.260 0.374 1.43 5.359 11.475 2.12
as20000102 6,474 0.394 0.427 1.08 5.709 8.058 1.41
ca-HepTh 9,877 0.329 0.457 1.38 13.479 23.322 1.73
ca-HepPh 12,008 0.353 0.472 1.34 29.881 48.448 1.62
ca-AstroPh 18,772 0.413 0.548 1.32 83.516 100.566 1.20
ca-CondMat 23,133 0.341 0.458 1.34 89.589 90.286 1.01
as-caida20071112 26,389 0.435 0.454 1.04 74.025 126.258 1.70
cit-HepTh 27,770 0.729 0.742 1.01 209.085 211.766 1.01
cit-HepPh 34,546 0.724 0.246 0.34 330.874 347.646 1.05
p2p-Gnutella31 62,586 0.362 0.537 1.48 392.815 892.982 2.27
soc-Epinion1 75,879 0.398 0.466 1.17 650.055 1,586.527 2.44
soc-sign-Slashdot090221 82,140 0.566 0.595 1.05 1,154.123 2,111.585 1.82
soc-Slashdot0902 82,168 0.616 0.604 0.98 2,003.166 2,081.609 1.03
soc-sign-epinions 131,828 0.566 0.595 1.05 1,154.123 2,111.585 1.83
Email-EuAll 265,214 0.072 0.067 0.93 868.456 25,704.993 29.59
web-NotreDame 325,729 0.671 0.539 0.80 14,364.103 51,372.872 3.57

Table 4. Running time (in seconds) of the two approximate methods over selected
Stanford Collection graphs, their mean relative error and their ratio (speed up factor).
Each value is the mean of 10 runs with different random samples.



MRE Approx Time Approx
Graph name Node # ASPVB Brandes Ratio ASPVB (s) Brandes (s) Ratio

G8 3,214 0.166 0.272 1.63 0.669 2.073 3.09
G9 3,507 0.222 0.251 1.13 0.715 2.260 3.16
G10 3,507 0.250 0.236 0.94 0.687 2.161 3.14
G11 3,519 0.271 0.236 0.87 0.690 2.033 2.94
G15 5,023 0.075 0.347 4.63 0.912 3.750 4.11
G17 8,856 0.168 0.402 2.39 2.802 9.517 3.39
G2 14,991 0.000 0.023 - - 13.988 -
G3 15,044 0.022 0.229 10.4 4.151 12.863 3.09
G4 16,723 0.017 0.159 9.30 3.607 14.440 4.00
G5 16,732 0.019 0.159 8.36 3.704 14.554 3.92
G7 16,968 0.028 0.158 5.64 5.104 14.736 2.88
G12 44,550 0.050 0.323 6.46 17.007 99.715 5.86
G13 46,331 0.070 0.016 0.22 5.377 130.774 24.32
G14 47,784 0.028 0.231 8.25 20.658 108.105 5.23
G16 52,143 0.035 0.235 6.71 22.431 131.889 5.87
G6 169,059 0.120 0.001 120.00 57.238 2,156.538 37.67
G1 233,377 0.049 0.264 5.38 338.383 2,461.949 7.27
G18 506,900 0.166 0.366 2.20 4,849.750 160,623.840 33.12

Table 5. Running time (in seconds) of the two approximate methods over selected
Sister Collection graphs, their mean relative error and their ratio (speed up factor).
Each value is the mean of 10 runs with different random samples. For G2 the sample
size is the residual graph size, thus the computation is exact.



original scheme in [3], where both algorithms are executed with the same number
of samples.

We notice that almost always on the graphs from the Stanford repository
our combined approximations scheme gains against [3] in quality (reducing the
mean relative error), even with a low percentage of tree-nodes. We also gain in
speed by a factor between 3.5 and 1.7 for graphs with a large percentage of tree-
nodes. The speedup factor is not as high as in the exact case since the uniform
sampling size (same number of sources) eliminates one of the gain factors we
have in the exact case. For the Sister Collection, due to the very high sparsity
we gain substantially in speed (by a factor 3 or larger), and the error is reduced
(often by an order of magnitude) in 14 tests over 18. In two cases, G6 and G13,
the speed up effect is large, but the quality measure is worse. This is due to the
fact that the sample size is smaller but close to the the residual graph size, thus
the final scaling factor introduces a small bias. However in such cases the exact
algorithm of Section 4, should be run, as there is no time gain in resorting to
the approximated version.

7 Conclusions

Brandes’ algorithm for computing betweenness centrality in a graph is a key
breakthrough beyond the naive cubic method that computes explicitly the short-
est paths in a graph. However, it is not able to exploit possible additional locally
sparse features of the input graph to speed up further the computation on large
graphs. In this work we show that combining exact algebraic determination of
betweenness centrality for some tree-like sub-graphs of the input graph, with a
modified Brands’ procedure on the residual graph we can gain orders of mag-
nitudes (between one and two) in terms of computation time for very sparse
graphs, and a good factor from 2 to 5, in moderately sparse graphs. Also in the
approximate setting combining the algebraic technique with an adaptive sam-
pling our experiments show gains in speed and/or precision over state of the art
approximate algorithms. At the best of our knowledge this approach is novel.
Among the graphs tested in this paper, we did not find a significant number of
tree-nodes only in author collaboration graphs and citation graphs, while for the
other categories we found a significant number of tree-nodes. We thus conjec-
ture that this feature is common enough in a range of social networks so to make
the application of our method an interesting option when exact or approximate
betweenness is to be computed.

As future work we plan to explore further this approach by determining
other classes of subgraphs (besides trees) in which we can gain by the direct
algebraic determination of the betweenness. Moreover the impact of our approach
combined with other approximation schemes will be investigated.



8 Acknowledgments

This research is partially supported by the project BINet “Nuova Piattaforma
di Business Intelligence Basata sulle Reti Sociali” funded by Regione Toscana
POR CReO 2007-2013 Programme.

References

1. J. M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71, Sticht-
ing Mathematisch Centrum, 2e Boerhaavestraat 49 Amsterdam, October 1971.

2. D.A. Bader and K. Madduri. Parallel algorithms for evaluating centrality indices
in real-world networks. In Parallel Processing, 2006. ICPP 2006. International
Conference on, pages 539 –550, aug. 2006.

3. David Bader, Shiva Kintali, Kamesh Madduri, and Milena Mihail. Approximating
betweenness centrality. In Anthony Bonato and Fan Chung, editors, Algorithms
and Models for the Web-Graph, volume 4863 of Lecture Notes in Computer Science,
pages 124–137. Springer Berlin / Heidelberg, 2007.

4. M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres. Fast exact computation of
betweenness centrality in social networks. In Proceedings of the 2012 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2012), Istambul, Turkey, 26-29 August 2012.

5. Stephen P. Borgatti. Centrality and network flow. Social Networks, 27(1):55 – 71,
2005.

6. Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathe-
matical Sociology, 25(2):163–177, 2001.

7. Ulrik Brandes. On variants of shortest-path betweenness centrality and their
generic computation. SOCIAL NETWORKS, 30(2), 2008.

8. Ulrik Brandes and Christian Pich. Centrality estimation in large networks. I. J.
Bifurcation and Chaos, 17(7):2303–2318, 2007.

9. Tami Carpenter, George Karakosta, and David Shallcross. Practical issues and
algorithms for analyzing terrorist networks, 2002. Invited paper at WMC 2002.

10. Shu Yan Chan, Ian X. Y. Leung, and Pietro Liò. Fast centrality approximation in
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