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ABSTRACT
Tandem repetitions within protein amino acid sequences of-
ten correspond to regular secondary structures and form
multi-repeat 3D assemblies of varied size and function. De-
veloping internal repetitions is one of the evolutionary mech-
anisms that proteins employ to adapt their structure and
function under evolutionary pressure. While there is keen
interest in understanding such phenomena, detection of re-
peating structures based only on sequence analysis is con-
sidered an arduous task, since structure and function is of-
ten preserved even under considerable sequence divergence.
In this paper we present PTRStalker, a new algorithm for
ab-initio detection of very fuzzy tandem repeats in protein
amino acid sequences. In the reported results we show that
by feeding PTRStalker with amino acid sequences from the
UniProtKB/Swiss-Prot database we detect novel tandemly
repeated structures not captured by other state-of-the-art
tools.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval; J.3 [LIFE AND MED-
ICAL SCIENCES]: Biology and genetics

General Terms
Algorithms

Keywords
Tandem repeats, amino acid tandem repeats, protein se-
quence analysis, repetitive structures

1. INTRODUCTION
In a seminal paper of 2001 M.A. Andrade and co-authors [1]
observe that repetitive subsequences that appear tandemly
often form integrated assemblies when viewed in their three-
dimensional corresponding conformation, as they often con-
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fer multiple binding opportunities and play a structural role
in the protein. Moreover, tandemly repeated structures con-
stitute a different class from domains and motifs that appear
singly in each protein (while they can be repeated across
families of protein). M.A. Andrade and co-authors also re-
mark that repeats in protein sequences are usually hard to
detect because of their relatively (on average) short length
and because of their considerable -inherent- sequence diver-
gence.

A study of 1999 by Marcotte et al. [17] indicate that inter-
nal subsequence repetitions in proteins primary structure are
quite widespread, they have been noticed in about 14% of
all the known proteins, with eukaryotic proteins being three
times more as likely to have internal repeats than prokary-
otic ones. The distribution of TRs in protein families and
the mechanisms of protein TR formations are discussed in
detail in [4].

From a theoretical point of view almost any approach that
works for a 4-characters alphabet (DNA) could also be ap-
plied to the 20-characters amino acid alphabet and indeed
some methods are developed for ”generic”biological sequences
(e.g. [6]). In practice, there are differences between protein
sequences and DNA sequence, and the way they can be an-
alyzed. Protein sequences tend to be shorter (at most of
the order of 104 amino acids) than DNA sequences (often of
the order of 106 nucleotides and more). In proteins assign-
ing a score to an amino acid substitution is important, and
finally repetitions in amino acid sequences tend to be very
divergent, since the same structural role can be maintained
even with little sequence conservation. Also, empirically,
we observe that the tools for detecting (tandem) repeats for
DNA and for proteins constitute two rather distinct fam-
ilies, often employing completely different characterization
and algorithmic approaches.

In [24] we presented TRStalker, an algorithm designed, de-
veloped and tuned to detect fuzzy tandem repeats in DNA
sequences. In view of the biological relevance of tandemly
repeated subsequences in proteins, we worked on an evolu-
tion of TRStalker, modified and tuned to work with protein
sequences in order to detect amino acid (aa) tandem re-
peats, by incorporating amino acid similarity information
deep into the algorithmic framework. Amino acid substi-
tution matrices (such as the PAM and BLOSUM families



of matrices, based on known evolutionary changes of amino
acids in proteins) are usually expressed in terms of a similar-
ity score between amino acids. In the framework we present
here, we use the notion of weighted edit distance between
sequences, thus converting standard similarity scores into
distance weights. Interest in metric-space search and index-
ing in bioinformatics [19] has been recently rekindled since
one can tap on a vast array of efficient metric-based generic
methods developed over the years, thus reducing the need
for developing ad-hoc searching and indexing algorithms for
each new similarity measure. A technique for turning BLO-
SUM log-likelihood similarity matrices into corresponding
metric space was proposed in [9], while a second method
to turn PAM log-likelihood similarity matrices into a corre-
sponding metric space was proposed in [31]. It is also possi-
ble to define new metrics over amino acids by first mapping
each amino acid into a real vector space (see e.g. [2]) and
then applying one of the many possible metrics associated
to a real vector space. For this reason we generalize the def-
inition of tandem repeat in order to incorporate this larger
class of metrics in the proposed algorithm.

PTRStalker, the novel algorithm we developed, has been
compared against competing state-of-the-art methods over
large collections of proteins (UniprotKB/Swiss-Prot) as well
as on membrane channels proteins and on selected families
of proteins known to contain long fuzzy TRs. We found out
that 19.58% of the protein listed in UniPtotKB/Swiss-Prot
have significant fuzzy TRs. We could find fuzzy TRs, not
detected by competing methods, in Human Titin (striated
muscles). For the Chlorine channel protein ClC-0 (mem-
brane transport) we show that PTRStalker can detect known
symmetries while competing methods do not. The output
of our analysis of protein sequences has been collected into
a publicly available database, that will be continuously up-
dated in order to provide useful insight to researchers inter-
ested in protein sequence analysis.

The outline of the paper is the following: after a short intro-
duction on the algorithms developed for detecting tandem
repeats in protein sequences (Section 2), in Section 3 we
introduce and describe PTRStalker procedural approach in
detail. Section 4 describes the experiments we performed to
evaluate the metric chosen, and the results our algorithm
obtained, while Section 5 concludes.

2. STATE OF THE ART
The first methods developed for finding TRs in proteins
are based on detecting sub-optimal alignments in the self-
alignment matrix generated by the Smith-Waterman algo-
rithm. Some examples are Internal Repeat Finder [17, 25],
RADAR [10], REPRO [11, 26] and TRUST - Tracking Re-
peats Using Significance and Transitivity [29], even if they
often detect both tandem and interspersed repeats. More
recently Newman and Cooper proposed XSTREAM [22],
which uses a seed expansion approach, Jorda and Kajava
proposed T-REKS [13], which uses a clustering approach
based on k-means, while Sokol et al. [28] proposed TRED,
which is based on an estimation of edit distance between
strings. The systems HHrep [27] and HHRepID [3] are in-
stead based on building and matching Hidden Markov Mod-
els for the repeating substrings to be sought (not necessar-
ily tandem). Some approaches based on neuronal networks

aim at detecting particular repetitive structures. For exam-
ple, in [23], Palidwor et al. develop a classification tech-
niques for detecting alpha-rods repeats, a specific repetitive
structure. A meta searching approach that combines the
output of different algorithms has been also proposed, for
example in the tool REPPER [8]. With a few notable ex-
ceptions (see e.g. [6]) all these methods specialize on pro-
tein sequences. Among the -few- databases reporting protein
repetitive subsequences we recall ProtRepeatsDB [14], a re-
lational database of perfect and mismatch repeats, which
also provides cross species comparisons of different types of
amino acid repeats.

3. PTRSTALKER
In this Section we describe PTRStalker, an evolution of
the algorithm TRStalker [24] we developed for finding TRs
within DNA sequences. Whereas TRStalker and PTRStalker
use the same overall procedural approach to detect tandemly
repeated subsequences, PTRStalker has been opportunely
tuned for detecting TRs in protein sequences. In particular,
the main differences are in the formal definition of a tandem
repeat, in the metrics used, and in the q-grams matching pol-
icy (see below). However, the overall idea still holds: TRs
are detected by (i) first finding a set of candidate periods,
(ii) then finding a set of candidate pairs (period, starting
position), and (iii) finally verifying if in a particular posi-
tion there exists a TR according to the precise mathematical
definition adopted (see below). To make this paper self con-
tained, after introducing a few working definitions we will
recall the general structure of the algorithm presented in
[24], describing the innovative parts PTRStalker has.

3.1 Preliminaries
In order to extend the methodology used in [24] by incorpo-
rating amino acid similarity information encoded in similar-
ity matrices, we need to perform two tasks: define a weighted
edit distance, and suitably modify the tandem repeat defini-
tion so to obtain a Weighted Steiner Simple Tandem Repeat
(Weighted Steiner STR). We give here details for the BLO-
SUM metric space as defined in [9]. The extension to other
metrics is straightforward.

BLOSUM-weighted edit distance. We incorporate the
definition of BLOSUM-derived edit distance between two
strings as follows; the cost of indel operations is equal to
1, while the cost of substitutions depends on the involved
characters. Since BLOSUM matrix entry Mij defines the
level of similarity between characters i and j, and not their
distance, the cost Cij of a substitution between characters i
and j is computed, according to [9], as the ratio:

Cij =
Dij

Dmax

where

Dij = Mii +Mjj − 2Mij ,

Dmax = max
i∈Σ,j∈Σ

Dij



and Σ is the amino acid alphabet. Since Dij represents
the non-normalized distance between two characters, we use
Dmax, representing the maximum distance between two char-
acters, as the normalization value so to obtain the normal-
ized weight Cij ∈ [0, 1]. In [9] it is shown that these weights
are consistent, since they almost always satisfy the triangu-
lar inequality.

BLOSUM-weighted Steiner-STR. Let DB(a, b) be the
BLOSUM-derived edit distance between strings a and b com-
puted by using the BLOSUM-derived weights defined above.
In order to give meaningful limits to the divergence of strings
under this metric we need to define its behavior for random
pair of amino acid strings. For the expected edit distance
of two strings no analytic formula is known even in the un-
weighted case. Even if the theory of Karlin and Altshul [15]
could give some insight, the issue of extending this method-
ology to the case of tandem sequences is not trivial. Thus
we decided to estimate DB(a, b) with an experimental ap-
proach, by generating a suitable number of random strings in
which the probability of amino acid substitution is consistent
with the BLOUSM data, and by measuring the weighted
edit distance for a given error level. Alternatively, a rough
estimate can be obtained as follows. We approximate the ex-
pected BLOSUM-derived edit distance of two random amino
acid strings with its correspondent BLOSUM-derived Ham-
ming distance (ie. we disregard insertions and deletions).
We define with E(C) the expected substitution cost among
two amino acids due to the cost matrix C. Thus two ran-
dom amino acid stings of length p = |a| = |b| are at expected
distance pE(C). If we allow only a percentage µ of substitu-
tions we obtain an estimated weighted distance of µpE(C).

A BLOSUM-weighted Steiner-STR is defined as a string
X = x1x2..xt for which two conditions hold, for a user
defined error parameter 0 ≤ µ ≤ 1, and constant c with
1 ≤ c ≤ 2:

(a) for each i ∈ [1, .., t− 1], DB(xi, xi+1) ≤ cµ|xi|E(C)

(b) there exists a Steiner string x̄ ∈ Σ∗ so that for each
i ∈ [1, .., t], DB(x̄, xi) ≤ µ|xi|E(C)

Intuitively, in a BLOSUM-weighted Steiner-STR the TR
consists of t duplications of a single Steiner consensus string
x̄ with at most µ times the number of mutations one would
expect from random strings of the same length (condition
(b)). Moreover consecutive copies of the mutated string do
not diverge too much w.r.t. each other, at most cµ times the
number of mutations one would expect from random strings
of the same length (condition (a)). Note that condition (a)
is vacuous for µ ≥ 1/c. The choice for the constant c de-
pends also on the level of divergence. For protein repeats
with low divergence c = 2 is a sensible choice since two
copies at distance µ|xi|E(C) from x̄ are also at distance at
most 2µ|x̄|E(C) from each other by the triangular inequal-
ity. Thus (a) is a necessary condition for (b). For the higher
level of divergence we are interested in (µ = 0.3), the value
c = 2 is too loose and we use a lower value c = 1.5, so
to maintain a good filtering ability of condition (a) and to
avoid having as a possible solution a TR where the consec-
utive pairs may have a very irregular divergence. Note that

the standard TR definition for the unweighted edit distance
corresponds to a matrix with cost 1 for each substitution.

Homologous q-grams. Let I be a finite subset of non-
negative integers. We call I an index set. The span of I is
span(I) = max{i− j|i, j ∈ I}, the position of I is pos(I) =
min i ∈ I, and the shape of I is shape(I) = {i−pos(I)|i ∈ I}.
When |I| = q and span(I) = s, the shape of I belongs to
the class of (q, s)-shapes. Any set of non-negative integers
Q containing 0 is a shape. For an alphabet Σ (the 20 amino
acid letters in our case), a string S ∈ Σ∗ of length n can
be seen as a function defined over [0, .., n − 1] with values
in Σ, and for any subset I ⊂ [0, .., n − 1] the restriction of
S to I, denoted by S[I], is a substring of S. Given any
shape Q in the class of (q, s)-shapes, all sets I ⊂ [0, ..n− 1]
such that shape(I) = Q, form the set of Indexes(Q,n).
We can use elements from the Indexes(Q,n) to generate
restrictions for the string S. An index set I such that |I| = q
and span(I) = q − 1 is called an ungapped q-gram since its
shape is shape(I) = [0, ..q − 1]. If we have an index set J
with |J | = q and span(J) = s ≥ q we have a gapped q-
gram since its shape is formed of non consecutive integers.
As noted in [5] gapped q-grams are strictly more powerful
than ungapped ones. In order to generate a population of
candidate periods we consider now all possible (q, s)-shapes
with q = 3 and s = 4, 3, 2. Denoting with − the gaps and
with # symbols from Σ, (the first and last positions must be
always #), we have the (3, 4)-shapes ##−−#, #−#−#,
and #−−##; the (3, 3)-shapes #−##, ##−#; and the
(3, 2)-shape ###.

Gapped q-grams (also called spaced seeds) have been used
in [12, 16, 30] to speed up homology search. In these papers
much larger values of q and s are used in order to attain sen-
sitivity. Therefore the key problem for them becomes how
to select one (or a few) effective seed out of an exponentially
large family (for s and q). Since we use small values of (q, s)
we do not have this seed selection problem and we can afford
to use a complete family, formed by 6 seeds only.

In defining the notions of homologous q-grams for amino
acid sequences we take into account the fact that functional
properties of proteins are preserved even under considerable
sequence substitutions. The BLOSUM similarity matrices
give a quantitative definition of the allowed amino acid sub-
stitutions. Given two index sets I1, I2 ∈ Indexes(Q,n), we
call them matching (or homologous in S, if S[I1] and S[I2]
have two identical symbols in corresponding positions while
the symbol in the remaining position can be different in the
two strings but within ranking z of each other as given by
the BLOSUM similarity matrix (that is, the one symbol is
among the top z most similar symbols to the other one, and
vice versa). The slackness parameter is z = 1 when we want
exact match, and z = 3 and z = 5 when we allow more sub-
stitutions. The value |pos(I1)− pos(I2)| is called the period
of the match.

Note that, by considering the z amino acids closer to a given
amino acid, we introduce a discrete ranking in the metric
space. Alternatively one could choose a fixed radius and
consider all amino acids within that radius. We performed
dedicated experiments in order to choose the right approach
and the results (not shown here) indicate that there is almost



no difference in the two approaches. We decided to adopt the
discrete ranking approach because choosing suitable radii
implies ad-hoc dependance on the specific metric.

Anti-smear weighting. The anti-smear weighting tech-
nique allows to cope with the fluctuations in the period of
matching q-grams introduced by insertion and deletions of
amino acids in a sequence. If q1 and q2 are occurrences of
homologous q-grams in X at distance k, before the implant
of mutations, the effect of insertion and deletions on the po-
sitions of the string X between q1 and q2 is to alter their
distance so that a different period k′ is detected. The dif-
ference k − k′ is equal to the algebraic sum of number of
insertions and deletions in the positions between q1 and q2.
Assuming that any such position can be an insertion or a
deletion independently with the same probability, the ran-
dom variable k − k′ is distributed as a sum of independent
r.v. with values in {+1,−1, 0} with mean value 0, thus, by
a Chernoff bound argument, its tail distribution decays ex-
ponentially [20, 21]. Also near-by probes in X have small
variations in the value of the shift k − k′. Inspired by the
above observation we devise a weighting scheme that incre-
ments the total weight of period k if another period of value
k̄ is discovered in a near-by position, with weights that decay
exponentially with |k − k̄|.

Let q be a q-gram in the input string Y at position i. Let
q1, .., qh be the next h occurrences of q in Y following the
occurrence at position i. The h corresponding detected dis-
tances are kg = jg − i, for g ∈ [1, ..h]. For the period kg, we
increment its weight:

w0(kg) = w0(kg) + 1 +
∑
k∈Q

2−|kg−k|, (1)

where Q is a queue holding the last H detected distances
in the sequential scan of the input string Y . This way, the
final weight w0(k) for a given period k is the sum of the
individual anti-smear weights computed above for probes at
distance k. After the weight update, we enqueue all h values
kg in the queue Q, and we dequeue an equal number h of
items.

Multiplicity weighting. The goal os this technique is to
strengthen the signal when the TR is made by more than
two repeating units. Let w0(k) be the weight of the period
k as assigned by the anti-smear weighting procedure. As
observed before for a TR with a large number of copies we
will find also integer multiples of k with a relatively high
frequency. We take advantage of this fact and compute new
weights:

w1(k) =
∑
h≥1

w0(hk). (2)

The candidate periods are then sorted by the weight w1(.),
and processed in decreasing order.

Positional k-density. We further exploit the property of
TRs for which the same period is detected by probes in
near-by positions. The positional k-density is the density of
probes that contribute to the counter for the candidate pe-
riod k. Let k be the period under investigation. Consider the
setKk of the positions of those q-grams (i.e. substrings of Y )

that contribute to the weighting of k through the multiplic-
ity weighting. In order to avoid double counting we always
take the position of the first of the two matching probes.
Note that, if a position is shared by several pairs of probes
it will be counted only once. Let f : [1, .., |Y |] → {0, 1} the
characteristic function that for each position in Y denote the
membership of that position to Kk. Consider the k-window
smoothing of f : F (i) =

∑i+k
j=i f(j) that computes the k-

smoothed density of the function f , for i ∈ [1, .., |Y | − k].
Finally we define a threshold t(k) proportional to the average
k-density by a user-defined constant, and we consider as a
candidate position set CP (Y, k) = {i ∈ [1, .., |Y | − k]|F (i) ≥
t(k)}. The output of this positional density computation is
a sequence of pairs (k, i) where k is a candidate period and
i a candidate position.

TR validation. We take each candidate pair (p, i) and
explicitly test whether there is a TR of period p starting in
position i according to the definition used, by using an align-
ment technique based on the well-known Smith-Waterman
algorithm. In this phase, besides validating the TRs, we
discover the (fractional) repetition number of the TRs even-
tually extracted. Finally, we check for inclusion the TRs
found and we filter out those TRs completely enclosed in
another one. For TRs in the same position and length but
different period we report the TR with shorter period.

Let Y be the input string:
1. L = 50, K,T = {}
2. for each Yj in block(Y )
3. for each P i in findGappedQGrams(Yj)
4. K′ = periods(P i)
5. for each k in K′

6. w(k) = updateWeight(k, i)
7. if !((k, i) ∈ K)
8. K = K ∪ (k, i)

9. K̃ = posDensity(K)

10. K̃L = getTopPeriods(K̃, L)

11. for each (k, i) in K̃L

12. t = getTR(k, i)
13. if verifyTR(t)
14. T = T ∪ t
15. for each t ∈ T
16. if (!maximal(t) || !minp(t))
17. T = T \ t
18. return T

Figure 1: PTRStalker algorithm scheme.

3.2 The algorithm
In the following we will go through the high level pseudocode
of PTRStalker, reported in Figure 1), explaining each phase
and function in detail.

Step 1. The number L of candidate periods to examine
is empirically set to 50, while the set of candidate pairs K,
and the set of TRs T to be given as output are initialized as
empty sets.



Step 2. The function block(Y ) splits the input sequence
Y into n blocks Yj , 1 ≤ j ≤ n, of predefined length (we
used a value of 2000 aa). We limit our computations within
a block so to avoid counting q-grams when they are too
far to be involved in a TR local to the block. For TRs
stranding across blocks we adopt mechanisms to carry over
useful information from one block to the next one.

Steps 3–4. The candidate periods are found by detecting
the distance (counted in amino acid positions) among ho-
mologous q-grams. Because of the presence of substitutions,
insertions, and/or deletions, many instances of q-grams will
be probably affected by error and a match could be missed,
thus reducing the frequency counts for the candidate period
k. In order to cope with this effect, for each block Yj , func-
tion findGappedQGrams(Yj) records for each occurrence
of a gapped q-gram P i in Y its distances K′ to the next 5
occurrences (candidate periods) and its starting position i in
Y . Note that the candidate periods will be processed later
in order of cumulative weight.

Steps 5–8. For each period k detected by a q-gram at
position i, the function updateWeight(k, i) increments the
weight w(k) of the period k ∈ K′ by applying the two
weighting techniques presented before: the anti-smear weight-
ing technique to cope with the fluctuations in the period of
matching q-grams introduced by insertion and deletions of
amino acids in a sequence (see Equation 1), and the multi-
plicity weighting (see Equation 2) to strengthen the signal
when the TR is made by more than two repeating units. For
computing the anti-smear weight as shown in Equation 1 we
empirically set h = 5 and H = 20. The candidate pair (k, i)
is then added to the set K, if it is not already present.

Step 9. PTRStalker further exploits the property of TRs
that the same period is detected by probes in near-by po-
sitions through the positional k-density. Thus, the function
posDensity(K) computes the density of probes that con-
tribute to the counter for the candidate period K, and then
cuts off for position with low density, returning those candi-
dates with higher positional density.

Step 10. Function getTopPeriods(K̃, L) ranks the periods
by weighted frequency and returns only the top L positions

in the set K̃L.

Steps 11–14. For each candidate pair (k, i), functions
getTR() computes a candidate TR of period k starting at
position i and verifyTR() verifies whether there is a tan-
dem repeat t of period k starting at position i according to
the definition of TR given, and if so t is added to the set
T . Recall that for a BLOSUM-weighted Steiner-STR we set
µ = 0.3 and c = 1.5. In this validation phase, the expected
BLOSUM-derived edit distance of two random amino acid
strings has been roughly approximated by its correspondent
BLOSUM-derived Hamming distance.

Steps 16–18. Finally, for each candidate tandem repeat
t ∈ T the function maximal() verifies whether t is included
in a longer TR, and possibly removes t from T , while minp()
for TRs in the same position and length but different period
maintains only the TR with shorter period. The procedure
returns the set T as result.

Metric z = 1 z = 3 z = 5

BLOSUM 90 26.5 30.8 34.3
BLOSUM 70 31.8 38.7 40.7
BLOSUM 50 34.5 41.7 43.8

Edit 18.2 - -

Table 1: UniProtKB/Swiss-Prot database: percent-
age of protein sequences that contain at least a tan-
dem repeat with length ≥ 14.

Metric z = 1 z = 3 z = 5

BLOSUM 90 17.7 20.5 23.2
BLOSUM 70 21.6 25.6 26.1
BLOSUM 50 22.5 27.4 29.1

Edit 4.3 - -

Table 2: UniProtKB/Swiss-Prot database: percent-
age of protein sequences that contain at least a tan-
dem repeat with length ≥ 20.

The elements of T can be visualized and listed according to
different properties of the TR found: initial position, final
position, repeating unit size, number of repetitions, total
length, absolute divergence, mean divergence, etc.

4. EXPERIMENTS
In this section we report PTRStalker performance with the
use of a BLOSUM-based metric and the unweighted edit
distance. Furthermore we report a detailed comparison of
PTRStalker versus some state of the art algorithms. For
some of the experiments reported below, PTRStalker has
been run to analyze the UniprotKB/Swiss-Prot database of
protein sequences. More in detail, the version we used in
our experiments was UniProtKB/Swiss-Prot Release 57.15
of 02 March 2010 -henceforth called Swiss-Prot database,
that contains 515, 203 sequence entries.

4.1 Metric Evaluation
We performed a set of experiments to evaluate the effects
of BLOSUM-based metrics and q-gram similarity. For this
reason PTRStalker has been run on the first one thousand
sequences of the database, using the definition of BLOSUM-
weighted Steiner-STR. We also evaluated the influence of the
q-gram similarity matching parameter z. Table 1 reports
the percentage of sequences that contain at least a TR with
length ≥ 14 when using edit distance and BLOSUM-based
distance (three different matrices have been used: BLOSUM
90, BLOSUM 70, and BLOSUM 50). The table also show
the results obtained for different levels of q-gram similarity.
When z = 1 similarity is not considered: a q-gram is only
similar to itself. When z = 3, for every q-gram also the
two other more similar q-grams have been considered (the
total number is three), and so on. Tables 2, 3, 4 show the
results obtained when considering TRs with length ≥ 20,
≥ 30, and ≥ 40. The maximum sensitivity is attained for
almost all length classes with z = 5 and the BLOSUM70
matrix. The use of BLOSUM metrics more than doubles the
sensitivity for TR of length above 20 aa w.r.t the unweighted
edit distance.



Metric z = 1 z = 3 z = 5

BLOSUM 90 5.7 6.4 7.8
BLOSUM 70 7.0 7.0 8.7
BLOSUM 50 7.1 8.4 8.8

Edit 2.2 - -

Table 3: UniProtKB/Swiss-Prot database: percent-
age of protein sequences that contain at least a tan-
dem repeat with length ≥ 30.

Metric z = 1 z = 3 z = 5

BLOSUM 90 4.3 4.9 4.9
BLOSUM 70 4.9 5.5 5.4
BLOSUM 50 4.9 5.7 5.7

Edit 1.8 - -

Table 4: UniProtKB/Swiss-Prot database: percent-
age of protein sequences that contain at least a tan-
dem repeat with length ≥ 40.

These experiments show that the use of BLOSUM based
metrics is effective in detecting longer fuzzy TRs.

4.2 Proteins With Very Long Tandem Repeats
In this experiments we compared PTRStalker with two state
of the art algorithms: XSTREAM [22] and T-REKS [13],
for the task of detecting very long tandem repeats (span-
ning more than 4000 aa). HHRep and HHRepID are less
suitable for this task since they report pairs of homologous
substrings, thus failing to report multi-repeating units. We
have selected 12 proteins from Swiss-Prot database for which
a tandem repeat of length ≥ 4000 aa has been detected
by PTRStalker. The data in Table 5 show that T-REKS
with the standard parameter setting for these long proteins
does not detect fuzzy TRs longer than 100 aa in 6/12 cases
(marked *), and, even when longer TRs are found, these
are often sub-TR of those found by the other to meth-
ods. PTRStalker and XSTREAM have a remarkable con-
sistence in detecting the location of the longest fuzzy TR
in 11/12 cases. Sometimes they differ in the periodicity,
since XSTREAM gives priority to higher repeat number
(and consequently shorter period), while PTRStalker prefers
TR with longer span (often attained with a lower copy num-
ber and longer period). One notable difference in the output
of PTRStalker and XSTREAM is for the Human Titin se-
quence (involved in the functioning of vertebrate striated
muscles). This protein is one of the longest and most com-
plex human proteins. Here PTRStalker is able to detect a
much longer TR (4-repeat, 1082-period) completely missed
by the other two methods.

4.3 Membrane Proteins
Membrane proteins perform a wide range of biological func-
tions including signal transduction and molecular transport.
Here we report the behavior of PTRStalker in detecting
fuzzy tandem repeats in two families of well known mem-
brane proteins: the Urea Transport Channels and the Chlo-
ride Channels.

4.3.1 Urea Transport Channels
Transmembrane transport protein biology is key to the un-
derstanding of many critical biological process such as ab-
sorption and distribution of drugs within the human body.
Transport proteins are basic component of transmembrane
channels and often exhibit interesting symmetries at the
structural level. Since experimental structural resolution
of membrane proteins is difficult one would like to extract
as much information as possible from the analysis of se-
quence data. In a set of experiments we tested the ability of
PTRStalker in detecting blindly known repetitive structures
in proteins of the Urea Transporter (UT) family [18]. Many
members of the UT family are known to have a dimeric
structure but the level of amino acid identity between ho-
mologous subsequences is rather poor. Here we employ the
metric based on the BLOSUM30 substitution matrices. For
the purpose of detecting long fuzzy dimeric structures in pro-
tein the tools XSTREAM and T-REKS proved unsuitable,
therefore we tested PTRStalker against the tools HHRep
and HHRepID. Results in Table 6 show that all three meth-
ods could detect the some dimeric structure of the four UT
proteins under examination. In the case of UT-A1 [Mus
musculus] PTRStalker attains a notably longer alignment
w.r.t those reported by the two alternative methods, there-
fore giving a result more consistent with the known structure
of that protein.

4.3.2 Chloride Channel ClC-0
CLC Channels are a family of membrane proteins whose
major action is to translocate chloride ions across cell mem-
branes. They have been subject to intense study since the
cloning and identification of this protein in the species Tor-
pedo marmorata (marbled electric ray) in 1990 [7]. This
first identified protein, denoted CLC-0 (UniProtKB locus
CICH TORMA, accession P21564), is 805 aa long. It is di-
vided into a pore domain in the region [49 – 507] and a
cytoplasmatic domain in the region [508 - 805]. The pore
domain has a diadic structure made of 18 alpha-helices or-
ganized in two symmetric groups of 9 alpha-helices each.
The cytopalsmatic domain contains two CSB subdomains
in positions [543 – 601] and [719 – 776]. Our hypothesis is
that by analyzing just the amino acid sequence we can gain
insight into the symmetries present in the structure of the
protein (at least at a high level). We submitted the ClC-0
sequence to PTRStalker, XSTREAM, T-REKS, HHrep and
HHrepID. As shown in Table 7, HHrep identifies two ho-
mologous regions in positions [542 – 597] and [718 – 770]
which coincide almost exactly with the CSB subdomains
and two (short) partially overlapping domains that do not
correspond to the global symmetry of the pore domain. In-
stead, PTRStalker discovers a tandem structure in positions
[8 – 289] [291 – 575] that covers most of the pore domain re-
specting its symmetry, and a tandem structure in positions
[517 – 627] [628 – 800 ] that extends the two CSB subdo-
mains. XSTREAM, T-REKS and HHrepID could not find
any repetitive structure.

4.4 Analysis of UniprotKB/Swiss-Prot
PTRStalker has been run to analyze the database in order to
report Steiner Tandem Repeats with edit distance where the
level of similarity between the repeated copies and the motif
was greater than or equal to 0.7. The output of PTRStalker



Prot acc # Prot ID Prot Len PTRStalker XSTREAM T-REKS

Q8IVF2 AHNK2 HUMAN 5795 aa 165-x-24 [720 - 4666] 165-x-23 [774 - 4617] *
Q9N4M4 ANC1 CAEEL 8545 aa 915-x-6 [3000 - 8491] 903-x-4.27 [4342 - 8199] 58-x-4 [2336 - 2567]
P08519 APOA HUMAN 4548 aa 1495-x-3 [0 - 4486 ] 114-x-37 [7 - 4220] 114-x-24 [1501 - 4125]
P20930 FILA HUMAN 4061 aa 1339-x-3 [32 - 4051] 323-x-11 [268 - 3902] *
Q54CU4 COLA DICDI 11103 aa 433-x-17 [1175 - 8554] 430-x-17 [1257 - 8691] *
Q8R0W0 EPIPL MOUSE 6548 aa 515-x-8 [2000 - 6548] 515-x-8 [2067 - 6529] *
Q9Y6R7 FCGBP HUMAN 5405 aa 1367-x-3 [1000 - 5102] 1201-x-3 [1100 - 4811] *
P05790 FIBH BOMMO 5263 aa 1049-x-5 [1 - 5247] 168-x-30 [152 - 5221] 8-x-19 [3362 - 3495]
Q9UKN1 MUC12 HUMAN 5478 aa 1548-x-3 [74 - 4719] 1557-x-2 [446 - 3569] 25-x-8 [2049 - 2280]
Q8WXI7 MUC16 HUMAN 22152 aa 156-x-61 [12038 - 21555] 156-x-61 [12047 - 21567] 156-x-17 [12420 - 15000]
Q6PZE0 MUC19 MOUSE 7524 aa 652-x-9.6 [1071 - 7372] 163-x-36.4 [1281 -7214] *
Q8WZ42 TITIN HUMAN 34350 aa 1082-x-4 [22186 - 26525] 28-x-6 [11428 - 11596] 10-x-26 [11445 - 11686]

Table 5: Analysis of the 12 proteins from the UniProtKB/Swiss-Prot database for which a tandem repeat of
length ≥ 4000 aa has been detected by PTRStalker. For each protein (row) and each algorithm that returned
at least a result (column) we report the longest TR found by each algorithm above the threshold of 100 aa.
For each TR we report: the period -x- repeat number and the [interval spanned]. Fail to report is marked
with ‘*’. Note that HHRep and HHRepID are not listed here because they fail to report multi-repeating
units, since they only report pairs of homologous substrings.

Prot ID Prot acc # Prot Len PTRStalker HHRep HHRepID
dvUT [D. vulgaris DP4] ABM28909 337 aa [14 - 165] [177 - 323] [11 - 91] [174 - 254] [2 - 138 ] [141 - 286]

apUT [A. pleuropneumoniae AP76] YP 001969475 300 aa [17 - 136] [153 - 284] [2 - 140] [156 - 288] [2 - 138] [156 - 286]
UT-A1 [Mus musculus] AAM00357 930 aa [4 - 452] [467 - 918] [63-337] [ 532-800] [65 - 493] [533 - 916]
UT-A1 [Homo sapiens] AAL08485 920 aa [4 - 320] [403 - 763] [50 - 338] [519 - 800] [87 - 490] [548 - 906]

Table 6: Analysis of proteins belonging to the Urea Transporter (UT) family. For each protein (row) and for
each algorithm that returned at least a result (column) we report the longest fuzzy repeated subsequence
detected by each algorithm by giving start and end position of homologous segments. Note that XSTREAM
and T-REKS are not listed here because they are unsuitable for detecting long fuzzy dimeric structures.

Prot ID Prot acc # Prot Len PTRStalker HHRep

CLC-0 [CICH TORMA] P21564 805 aa
[8 – 289] [291 – 575] [119 – 220] [174 – 260]

[517 – 627] [628 – 800 ] [542 – 597] [718 – 770]

Table 7: Analysis of the CIC-0 protein belonging to the Chloride Channel family. For each algorithm that
returned at least a result we report the fuzzy repeated subsequences detected by giving its start and its end
position. Note that XSTREAM, T-REKS, and HHrepID are not listed here because they could not find any
repetitive structure.

has been stored in a web-accessible database1. The website
takes as input the accession number of a sequence and shows
a table containing all the TRs found in such a sequence. For
every TR it displays the start and end position, the length
of the motif, the number of repeats, the total length and the
consensus string.

This analisys provides an indirect evaluation of PTRStalker
with respect to other tools: in [13] T-REKS and other pro-
grams are compared by analyzing an old version of the Swiss-
Prot database (Release of January 2009), which contained
356, 232 sequences. Among the four evaluated tools (T-
REKS, Internal Repeats Finder [17], XSTREAM [22], and
TRED [28]), T-REKS is the one that provided the best
results by identifying 33, 780 sequences as containing TRs.
The definition of TR used by T-REKS is the following: total

1The database is freely available at the following address:
http://vecchio.iet.unipi.it:8080/PTRStalkerDB.

length of TRs greater or equal to 14 residues (nine residues
for homorepeats) and Psim ≥ 0.7 (average level of similarity
between copies and consensus). A direct comparison be-
tween PTRStalker and T-REKS would require the analisys
of the same version of the Swiss-Prot database. Neverthe-
less, an indirect comparison can be performed by counting
the percentage of sequences containing TRs (found with a
given program) against the total number of analyzed se-
quences (we assume that such percentage is independent
from the specific version of the used database). Let us call
PTR such value. T-REKS, according to the numbers re-
ported above and derived from [13], obtains PTR = 9.48%,
while PTRStalker registers a value of PTR equal to 19.53%
(for PTRStalker, we counted only the sequences for which
a TR not shorter than 14 residues has been found, inde-
pendently from the nature of the TR, i.e. homorepeats or
not).



5. CONCLUSIONS AND FUTURE WORK
Discovering fuzzy tandem repeating units in amino acid se-
quences gives precious hints as to the internal protein organi-
zation and symmetries. However due to high level of protein
sequence divergence this task is considered challenging even
for relatively short sequences. In this paper we presented a
new algorithm, PTRStalker, opportunely tuned for detect-
ing amino acid tandem repeats within protein sequences.
We proved that PTRStalker pushes forward the state of the
art. Indeed, feeding PTRStalker with sequences from the
UniProtKB/Swiss-Prot database did allow us to detect novel
repetitive structures not captured by other state-of-the-art
tools. In particular we could find a new notable long fuzzy
TR in Human Titin. For Chlorine channel protein ClC-0 we
showed that PTRStalker can detect general symmetries not
detected by competing methods.

Future work will aim at comparing the relative power of
different amino acid metric spaces within the PTRStalker
framework. In particular we are interested in those based
on PAM matrices [31] and those based on the vector space
mapping approach [2].
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