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IP address lookup is a critical operation for high bandwidth routers in packet switching networks
such as Internet. The lookup is a non-trivial operation since it requires searching for the longest
prefix, among those stored in a (large) given table, matching the IP address. Ever increasing
routing tables size, traffic volume and links speed demand new and more efficient algorithms.
Moreover, the imminent move to IPv6 128-bit addresses will soon require a rethinking of previous
technical choices. This article describes a the new data structure for solving the IP table look
up problem christened the Adaptive Stratified Tree (AST). The proposed solution is based on
casting the problem in geometric terms and on repeated application of efficient local geometric
optimization routines. Experiments with this approach have shown that in terms of storage,

query time and update time the AST is at a par with state of the art algorithms based on data
compression or string manipulations (and often it is better on some of the measured quantities).

Categories and Subject Descriptors: C.2.6 [Internetworking]: Routers

General Terms: Algorithms.

Additional Key Words and Phrases: IP Table lookup; data structures.

1. INTRODUCTION

Motivation for the Problem. Internet is surely one of the great scientific,
technological and social successes of the last decade and an ever growing range
of services rely on the efficiency of the underlying switching infrastructure. Thus
improvements in the throughput of Internet routers are likely to have a large impact.
The IP Address Lookup mechanism is a critical component of an Internet Packet
Switch (see [McKeown 1999] for an overview). Briefly, a router within the network
holds a lookup table with n entries where each entry specifies a prefix (the maximum
length w of a prefix is 32 bits in the IPv4 protocol, 128 bits in the soon-to-be-
deployed IPv6 protocol) and a next hop exit line. When a packet comes to the
router, the destination address in the header of the packet is read, the longest
prefix in the table matching the destination is sought, and the packet is sent to the
corresponding next hop exit line. How to solve this problem so to be able to handle
millions of packets per second has been the topic of a large number of research
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papers in the last 10-15 years. Steady increase in the size of the lookup tables and
relentless demand of traffic performance put pressure on the research community
to come up with faster schemes.

Our Contribution. In the IP protocol the address lookup operation is equivalent
to the searching for the longest prefix match (lpm) of a fixed length string amongst
a stored set of prefixes. It is well known that the longest prefix match problem can
also be mapped into the problem of finding the shortest segment on a line containing
a query point. This is called the geometric (or locus) view as opposed to the pre-
vious string view. The geometric approach has been proposed in [Warkhede et al.
2004] and [Lampson et al. 1999]; it has been extended in [Feldmann and Muthukr-
ishnan 2000] and in several recent papers [Thorup 2003; Kaplan et al. 2003]. It has
been used in [Buchsbaum et al. 2003] to prove formally the equivalence among sev-
eral different problems. Important asymptotic worst case bounds have been found
following the geometric point of view, but, currently, the algorithms for IP lookup
with the best empirical performance, including the one in [Buchsbaum et al. 2003],
are based on the string view and use either optimized tries, or data compression
techniques, or both. The question that we rise is whether the geometric view is
valuable for the IP lookup problem only as a theoretical tool or it is also a vi-
able tool from a practical point of view. We notice that for the multi-dimensional
packet filtering problem the multi-dimensional FIS tree [Feldmann and Muthukr-
ishnan 2000], which follows the geometric view, has already established itself as
a benchmark not only for the asymptotic bounds but also for empirical perfor-
mance1. Since our objective is practical we chose for the moment not to rely on the
sophisticated techniques that have lead to the recent improvements in worst case
bounds (e.g. those in [Feldmann and Muthukrishnan 2000; Thorup 2003; Kaplan
et al. 2003])2. Instead, we ask ourselves whether simpler search trees built with the
help of local optimization routines could lead to the stated goal. The experiments
with the AST method lead us to give a strong positive hint on both accounts: (1)
it is indeed possible to gain state of the art performance in IP lookup using the
geometric view and (2) local adaptive optimization is a key ingredient for attaining
this goal.

Since this is an experimental paper and the evaluation of the experimental data
is critical we stress the experimental methodology beforehand in Section 2. In
Section 3 we discuss previous work with the intent of highlighting the key ideas
and key differences with the AST which is introduced in Section 4.1. In Section 4.2
we introduce some notation and preliminary storage reduction techniques, while in
Section 5 the local optimization routines are described. Experiments and results
for storage and query time are in Section 6, while dynamic operations are discussed
in Section 7. In Sections 8 and 9 we extend the review of related work to more
recent results and compare them with the AST.

1See [Geraci et al. 2005] for a an alternative efficient method for multi-dimensional packet filtering
based on geometric concepts.
2In Section 8 we comment of the relative practical performance of FIS tree and AST for IP lookup.

Journal of the ACM, Vol. V, No. N, Month 20YY.



Efficient IP Table Lookup via Adaptive Stratified Trees · 3

2. METHODOLOGY

Performance is established by means of experiments which are described in detail
in Section 6. The experimental methodology we adopted follows quite closely the
standards adopted in the papers describing the methods we compare to. Given the
economic relevance of Internet technologies, such state of the art methods have been
patented or are in the process of being patented, and, at the best of our knowledge,
the corresponding codes (either as source or as executables) are not in the public
domain. We refrained from re-implementing these methods, using as guidance the
published algorithms, since we are aware that at this level of performance (few
dozens of nanoseconds) overlooking seemingly simple implementation details could
result in an grossly unfair comparisons. Given the above mentioned difficulties, we
resolved for an admittedly weaker but still instructive comparison via the fact that
those papers present, either an explicit formula for mapping their performance onto
different machines3, or such formulae could be derived almost mechanically from the
description in words. A second issue was deciding the data sets to be used. Papers
from the late nineties did use table snapshots usually dating from the mid nineties,
when a table of 40,000 entries was considered a large one. Although recovering such
old data is probably feasible and using them certainly interesting, the evolution of
Internet in recent years has been so rapid that the outcome of comparisons based
on outdated test cases is certainly open to the criticism of not being relevant for the
present (and the future) of Internet. Therefore the comparisons shown in Tables
(IV) and (V), where we use data sets of comparable size and the mapping onto a
common architecture given by the formulae, should be considered just in a broad
qualitative sense. The main general conclusion we feel we can safely draw is that
geometric view is as useful as insight drawn from string manipulation and data
compression.

We remark that the extensive testing with 12 Lookup Tables of size ranging from
17,000 to 142,000 (reported in Tables (I), and (II)) confirms the reliability and
robustness of the AST.

3. PREVIOUS WORK

The literature on the IP lookup problem and its higher dimensional extension4 is
rather rich and a complete survey is beyond the scope of this article. Here we
mention briefly the principles underlying some of the methods. At a high level we
can distinguish three main approaches: (i) data structures and software searching
techniques (ii) design of specialized hardware aiming at exploiting machine-level
parallelism (iii) avoiding the lookup process altogether by exploiting additional
header information. Here we comment only on approach (i).

3Naturally such formulae cannot capture all the nuisances of modern CPU architectures: they
are based on the choice of a broad family (e.g. RISC vs CISC), leaving as parameters the clock
frequency as well as size and access time of cache and RAM memory.
4Sometimes the IP lookup problem is treated as the 1-dimensional special case of the more general
packet filtering problem. Similarly in geometric terms, the predecessor problem in 1-dimension
can be seen as a special case of the (hyper)-rectangle stabbing problem in dimension d ≥ 2. When
the packet filtering is solved via dimensionality reduction, the IP-lookup can be thought of as the
base case of the recursion. Sometimes the terminologies of the IP Lookup and the Packet Filtering
problems get mixed up and this may generate some confusion.
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The classical data structure to solve the longest matching prefix problem is the
binary trie [Knuth 1973]. Patricia Tries [Morrison 1968] take advantage of common
sub-sequences to compress certain paths in a binary trie, thus saving both in search
time and storage. The first IP Lookup algorithm in [Sklower 1991] is based on
the Patricia Trie idea. Nilsson and Karlsson [Nilsson and Karlsson 1999] add the
concept of level compression by increasing the out-degree of each node of the trie
as long as at least a large fraction (called the filling factor) of the sub-trees of a
node are non-empty.

Waldvogel et al. [Waldvogel et al. 1997] organize the prefixes in groups of prefixes
of same length and each group is stored in a hash table for fast membership testing.
The search is essentially a binary search by prefix length over the hash tables (a
quite similar technique is in [Willard 1983]). The number of hash tables can be
reduced by padding some of the prefixes [Srinivasan and Varghese 1999]. Good
hashing strategies are studied in [Broder and Mitzenmacher 2001a].

In [Srinivasan and Varghese 1999] a method called variable stride trie is described.
Here a trie is built but the number of bits (stride) used for the branching at a node
is chosen separately for each trie node. The choices that optimize the memory
occupation are found via dynamic programming. In [Buchsbaum et al. 2003] the
trie is augmented by compressing all leaves and internal nodes via shortest common
super-string compression [Blum et al. 1994]. It should be noticed that while in
[Srinivasan and Varghese 1999] the model states a 1 Mbyte cap on storage and tries
to attain the best worst case time within the cap (which is also our model), the
emphasis in [Buchsbaum et al. 2003] is different: the target is a good average time
for random traffic with no limit on storage, thus up to 3 Mbytes are used to store
a table of 118K entries.

Dagemark et al. [Degermark et al. 1997] use data compression techniques to store
compactly parts of the prefix-tree representing the set of prefixes. At present this
technique achieves in practice the lowest use of storage. Crescenzi et al. [Crescenzi
et al. 1999] instead start from a full table representation of the lookup function then
apply a data compression technique that reduces the storage to acceptable levels
in practice while requiring only 3 memory accesses to answer a query.

The Multiway Range Tree [Warkhede et al. 2004] and the Multiway seach tree
[Lampson et al. 1999] are the two early geometric based methods. The first one is
akin to a classical segment tree with a root-to-leaf visit. The second one is akin
to a fixed stride k-ways trie with a very large branching factor at the root. The
branching degree is uniform and is decided beforehand; no optimization, local or
global is done.

Ergun et al. [Sharp et al. 2001] and [Ergun et al. 2001] use the fast reconfiguration
capabilities of skip lists [Pugh 1990] to adapt on-line the search data structure to
the modifications of traffic patterns.

A number of recent papers have addressed the IP lookup problem with the aim
of improving the worst case asymptotic performance. Dynamic 1-D Fat Inverted
Segment Trees [Feldmann and Muthukrishnan 2000] is an elaboration of traditional
segment trees and, for a small constant l, achieves query time O(log w + l) uses
storage O(n+ln1+1/l) and has amortized update cost O(ln1/l log n) over a sequence
of O(n1/l) updates. Thorup [Thorup 2003] improves the Dynamic FIS Tree: the
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storage becomes linear in n and any sequence of dynamic operations is supported
efficiently (a detailed discussion of the FIS tree approach is postponed to Section 8).
Kaplan, Molad and Tarjan [Kaplan et al. 2003] give new algorithms for maintaining
sets of intervals on a line that can be used for solving the IP lookup problem
efficiently in the pointer model.

4. THE AST

4.1 The AST in a nutshell.

The AST construction algorithm is described in Section (5). Here we summarize the
main new ideas. The best way to explain the gist of the algorithm is to visualize it
geometrically. We first map the lookup problem into a predecessor search problem
(see Section (4.2) for details). The equivalent input for the predecessor problem is a
set of labelled points on the real line. We want to split this line into a grid of equal
size buckets, and then proceed recursively and separately on the points contained in
each grid bucket. A uniform grid is completely specified by giving an anchor point
a and the step s of the grid. During the query, finding the bucket containing the
query point p is done easily in time O(1) by evaluating the expression ⌊(p − a)/s⌋
which gives the offset from the special bucket containing the anchor. We will take
care of choosing s as a power of 2, so to reduce integer division to a right shift.
If we choose the step s too short we might end up with too many empty buckets,
which implies a waste of storage. We choose thus s as follows: choose the smallest
s for which the ratio of empty to occupied buckets is no more than a user-defined
constant threshold. On the other hand shifting the grid (i.e. moving its anchor)
can have dramatic effects on the number of empty buckets, occupied buckets and
the maximum number of keys in a bucket. So the search for the optimal step size
includes an inner optimization loop on the choice of the anchor to minimize the
maximum bucket occupancy. The construction of the (locally) optimal step and
anchor can be done efficiently in time close to linear, up to polylog terms (see
Section 5). The algorithm works in two main phases, in the first phase we build a
tree that aims at using small space at the expense of exhibiting a few long paths.
In the second phase the long paths are shortened by compressing them, increasing
the storage used.

During the construction a basic sub-task is finding a grid optimizing a local
objective function. This approach has to be contrasted with several techniques
in literature where a global optimality criterion is sought usually via much more
expensive dynamic programming techniques, such as in [Cheung and McCanne
1999], [Gupta et al. 2000], [Srinivasan and Varghese 1999], and [Buchsbaum et al.
2003]. Ioannidis, Grama and Atallah [Ioannidis et al. 2005] recently proposed a
global reconstruction method for tries that relies on a reduction to the knapsack
problem and therefore suggests the use of knapsack approximation methods. In
[Ioannidis et al. 2005] the target is to reduce the average query time based on
traffic statistics, not the worst case query time.

A simple theoretical analysis of the asymptotic worst case query time/storage
for the AST gives asymptotic worst case bounds O(n) for storage and O(log n) for
query time at the end of the first phase. We are not able to quantify asymptot-
ically the improvements introduced in the second phase since the computation is
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Fig. 1. Intervals and next-hops

essentially data adaptive. However the query time bound does not explain the ob-
served performance and we leave it as an open problem to produce a more refined
asymptotic analysis.

4.2 The Problem

The longest prefix match problem has an input that consists of a set T of 0/1 strings
of length up to an integer w and a function mapping each prefix to a label indicating
the next-hop. For any destination address q we return the label associated to the
longest among the strings in T that are prefixes of q. We can turn this problem
into the shortest stabbing segment problem as follows. Each entry in a routing table
has the form

netbase/netmask → nexthop

where netbase is an 32-bits IP address, netmask denote the number of bits used for
prefix and next-hop is the destination rout of the packets whose destination address
matches the prefix specified in this entry. From each table entry we build a pair of
values denoting the begin and the end of interval. The rule is:

begin = netbase ∧ mask
end = (netbase ∨ (¬mask)) + 1

where ∧ ∨ ¬ are the bitwise operators AND OR and NOT. Moreover we associate
to begin and end values a label

label[begin] = nexthop
label[end] = nexthop of previous matching prefix

Thus we can turn the set T of labelled prefixes into a set S of labelled points (see
figure (1)). For any query point q, its predecessor point in S is labelled correctly
with the next-hop of the longest matching prefix for q. For a prefix p ∈ T , de-
note with M(p) its corresponding segment (seen as a contiguous subset of the set
[0, .., 2w − 1]).
Semi-closed intervals. In real tables it happens quite often that the segments
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are adjacent, meaning that for two prefixes p′ and p′′, maxM(p′)+1 = minM(p′′).
In this case we can reduce considerably the number of required distinct points by
considering our intervals closed on the left by open on the right. That is the pair
[a, b[ with b ≥ a represents the interval [a, b− 1]. In such a way the closed intervals
[a, b], [b + 1, c] are represented as [a, b + 1[, [b + 1, c + 1[ thus only 3 distinct points
need to be recorded5 instead of 4. The left end-point of the second interval is called
a duplicate point.

Phantom points. If two consecutive points in S have the same label, then
the rightmost such point can be safely deleted from S for the purpose of solving
for static predecessor queries. As seen in Table (I) both duplicates and phantom
represent a sizable portion of the points in actual tables.

5. CONSTRUCTION OF THE AST

5.1 Main ideas

A Generic Recursive Bucketing Tree. Here we describe the AST data struc-
ture by iteratively refining a general framework with specific choices. For simplicity
we describe in detail the data structure that solves the predecessor problem in a
set of points on the line. Afterwards we will comment on the small modifications
needed to solve the dynamic IP-lookup problem.
We start by describing a Generic Recursive Bucketing Tree T (U, S). Consider
initially the set U = [0, .., 2w − 1] of all possible points and the input set S ⊂ U
of points. We build recursively a tree by levels. Each node x of the tree has an
associated connected subset of the universe Ux ⊆ U (i.e an interval), and a point
data set Sx ⊂ S, which is Sx = S ∩ Ux. Initially at the root of the tree r we have
Ur = U and Sr = S. Let x be a node of the tree and let k(x) be the number of
children on x. By y[1], ..., y[k(x)] we denote the children of x. We partition Ux into
a number k(x) of disjoint intervals, U1, ..., Uk(x), each associated to a child of x, then
as a consequence we associate to each child of x the set of points Sy[i] = Ui ∩ Sx.
The recursive construction stops for a node y when |Sy| ≤ c for a constant c. At
each leaf y, we associate to y the set Sy and moreover the point in S \ Sy that is
the unique predecessor of any point in Uy.
How to query a Generic Recursive Bucketing Tree. When a query point q is
given, the Generic Recursive Bucketing Tree T (U, S) is used to solve the predecessor
problem as follows. Trace a path from root to leaf as follows: when node x has
been reached, visit the child y of x such that q ∈ Uy. When we reach a leaf l at
the end of this path, the answer is computed by direct comparison of q with the
|Sl| + 1 points stored at leaf l.
From a Generic Recursive Bucketing Tree to an Adaptive Stratified Tree.
The only step that need to be specified is: how do we compute the partition of Ux

into a number k(x) of disjoint intervals? We use as split points the points of the

5Note that in case of singleton sets such as [a, a], we represent them as [a, a − 1] thus increasing
the number of points. In actual tables this increase happens rarely. If we use a machine with
w-bit registers to store prefixes up to w bits we might have to represent the number 2w which
require w + 1 bits, this however is not a problem since for the purpose of a query we do not need
to store the points beyond the query range, and for the purpose of updates we just treat the last
number as a special case.

Journal of the ACM, Vol. V, No. N, Month 20YY.



8 · M. Pellegrini and G. Fusco

infinite uniform grid G(a, s) = {a + ks : k ∈ N} of anchor a and step s that fall
in Ux (that is, Ux ∩ G(a, s)). Note that by using these split points all the induced
intervals (buckets) are of equal length (that is s) except maybe the first and the
last interval. Note also that finding the index of the bucket containing a query
point q amounts to just computing ⌊ q−a

s ⌋, that is an O(1) operation independent
of the number of children of a node. Thus we just need to specify rules for choosing
the anchor a and the step s for a node x. To do so we introduce two objective
functions that we would like to minimize simultaneously. Since a multi-objective
optimization is problematic, we will instead minimize one function subject to an
upper bound on the other.
Let E(a, s) be the number of buckets of the above construction containing no point
in Sx, and F (a, s) the number of buckets containing at least one point of Sx. The

ratio is R(a, s) = E(a,s)
F (a,s) . Define also the minimum of such ratio over all possible

choices of the anchor a: Rmin(s) = mina R(a, s). The ratio Rmin(s) is the first
objective function we are interested in. Such function has been defined with the
purpose of controlling the number of empty buckets since a proliferation for empty
buckets is bad for memory consumption. Full buckets instead contain input points
therefore their number can be charged to the size of the input.
Let G′(a, s) be the set of intervals partitioning Ux induced by G(a, s)∩Ux. Consider
g(a, s), the maximum number of points of S in any such interval, formally:

g(a, s) = max
I∈G′(a,s)

|S ∩ I|

Consider then the choice of anchor a that minimizes this maximum number, thus
leading to the following function: gmin(s) = mina g(a, s). The function gmin(s) is
the second objective function we are interested in. Such function has been intro-
duced with the purpose of controlling the maximum depth of the search tree.
Phase I: Saving Space. In order to control memory consumption we adopt the
following action recursively and separately at each node: find smallest value s′ such
that Rmin(s′) ≤ C, for a predefined constant threshold C then take an anchor
a that realizes the value of gmin(s′), i.e. gives us the min-max occupancy (this
shifting does not change the number of nodes at the level).
Phase II: Selective Reconstruction. The tree built in Phase I uses linear space
(see proof below) but can have some root-to-leaf path of high length. The purpose
of the second phase is to reduce the length of the long paths, without paying too
much in storage. In order to do so we visit the longest paths and we decrease the
value s′ used in the split so to increase the number of children and decrease the
min-max bucket occupancy. This operation trades off storage against tree depth.

5.2 Further details of the construction

How to compute efficiently Rmin(s) and gmin(s). In the previous paragraphs
we have introduced two functionals that we want to minimize and we have explained
how they are used in the AST construction. Here we will show that such functions
can be computed efficiently. Pre-processing time for data structures devoted to
IP-lookup is not one of the most important parameters, however since occasionally
one has to (partially) rebuild the data structures to maintain its properties, it is
important that such operations are performed as efficiently as possible.
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First of all we notice that by shifting the anchor by s to the right, the grid remains
unchanged: G(a, s) = G(a + s, s). Consider the continuous movement of a grid:
fG(α) = G(a+αs, s) for α ∈ [0, 1]. Call an event a value αi for which S∩fG(αi) 6= ∅.

Lemma 5.1. The number of events is at most n.

Proof. Take a single fixed interval I of G(a, s), we have an event when the
moving left extreme meets a point in I, this can happen only once for each point
in I. Therefore overall there are at most n events.

Since we study bucket occupancy, extending the shift for α > 1 is useless since every
distribution of points in the bucket has already been considered, given the periodic
nature of the grid. Consider point p ∈ S and the bucket Ip containing p. Point p
produces an event when αp = (p− left(Ip))/s that is when the shift is equal to the
distance from the left extreme of the interval containing p. Thus we can generate
the order of events by constructing a min-priority queue Q(S, αp) on the set S using
as priority the value of αp. We can extract iteratively the minimum for the queue
and update the counters c(I) for the shifting interval I. Note that for our counters
an event consists in decreasing the counter for a bucket and increasing it for the
neighbor bucket. Moreover we keep the current maximum of the counters. To
do so we keep a second max-priority queue Q(I, c(I)). When a counter increases,
we apply the operation increase-key; when it decreases, we apply the operation
decrease-key. Finally we record changes in the root of the priority queue, recording
the minimum value found during the life-time of the algorithm. This value is the

gmin(s) = min
α∈[0,1]

max
I∈G(αs,s)

|S ∩ I|

that is we find the shift that for a given step s minimizes the maximal occupancy.
Using standard priority queue implementations, the whole algorithm for computing
gmin(s) takes time O(n log n). Similarly we can compute Rmin(s) within the same
time bound. Next we show monotonicity properties of the functions Rmin(s) and
gmin(s) that will allow us to use binary search schemes in finding the value s′.

Lemma 5.2. For any two step values s and t, if t = 2s then we have gmin(t) ≥
gmin(s).

Proof. Consider the grid Gmin(t) that attains min-max occupancy K = gmin(t).
So every bucket in Gmin(t) has at most K elements. Now we consider the grid
G(s) that splits exactly in two every bucket in Gmin(t). In this grid G(s) the
maximum occupancy is at most K, so the value g(s) that minimizes the maxi-
mum occupancy for a translate of G(s) cannot attain a larger value than K, i.e.
gmin(s) ≤ K = gmin(t).

Lemma 5.3. For any two step values s and t, if t = 2s then we have Rmin(t) ≤
Rmin(s).

Proof. Take the grid Gmin(s), the grid of step s minimizing the ratio Rmin(s) =
Es/Fs. Now make the grid G(t) by pairing adjacent buckets. Call Ns, Fs, Es the
number of buckets, full buckets and empty buckets in Gmin(s). Call Nt, Ft, Et the
number of buckets, full buckets and empty buckets in G(t). We have the relations:
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Ns = N , Nt = N/2, Fs/2 ≤ Ft ≤ Fs, and (Es − Fs)/2 ≤ Et ≤ Es/2. Now we
express Rt = Et/Ft as a function of N and Ft.

Rt = Et/Ft =

(

1

2

)

N/Ft − 1.

This is an arc of hyperbola (in the variable Ft) having maximum value for abscissa
Ft = Fs/2. The value of the maximum is Es/Fs = Rmin(s). Thus we have
shown that R(t) ≤ Rmin(s). Naturally also Rmin(t) ≤ R(t) so we have proved
Rmin(t) ≤ Rmin(s).

Thus the minimum ratio is monotonic increasing as grids get finer and finer and we
can use binary search to find the largest step value satisfying the criterion of Phase
I.

Details of the selective reconstruction. In current technology an access to
the RAM memory is about ten times slower than one to L2 cache. Thus it is
fundamental to fit all the relevant data into the L2 cache. It is reasonable to
suppose that the target machine has, say, 1 Mb or 2 Mb of L2 cache and that
it is completely devoted to the IP Table Lookup. With this hypothesis the size
of the routing table does not make difference up to the L2 cache size. When the
routing table is built, we can perform a selective reconstruction of the longest paths
to flatten the AST in order to reduce the worst query time maintaining the total
memory consumption below the L2 cache size. The following steps are repeated
while the size of the Routing Table is below the L2 cache size and there are other
reconstructions to perform:

(i) Create a max-priority queue of internal nodes based on the maximum cost of
their children (see below).

(ii) Visit the AST and consider only internal nodes having only leaves as children:
determine the cost of these nodes and insert them in the max-priority queue.

(iii) Extract from the queue the nodes with the same maximum cost and flatten
them in the following way: if the maximum number of points in a child full leaf
is greater than 1 then split the step until the maximum number of points in
a bucket becomes smaller than the current maximum; otherwise go the parent
and split its step until the maximum number of points in a bucket becomes
smaller than maximum number of points a full leaf can contain (in this way
the level below is eliminated).

A few exceptions to the above rules: the root is not rebuilt, and, for simplicity,
when a level is eliminated other reconstructions of same cost are performed only
after recomputing the priority queue.
The cost of a node. Each node of the AST has associated a cost which represents
the time of the slowest query among all the queries that visit that node. The cost
of a full leaf is the time to reach the last point stored inside it (i.e. the time to visit
all the points from the median to the farthest extreme). The cost of an internal
node is the maximum of the costs of all its children. See Table (III) for the costs
in our experimental setting.

The leaves can be subdivided into classes (Lev, P ts, Base) depending on: their
level Lev in the AST, the number of points Pts from the median to the farthest
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extreme and the number of bits Base used to stored the points in the leaf (8, 16 or
32)6.

To guide the selective reconstruction a Clock-ticks Table is build once for each
CPU architecture. For all the possible classes of leaves, the table stores the cor-
responding query time. The query time of a particular class is measured in the
following way: a simple AST containing nodes of the chosen class is built, several
queries reaching nodes of that class are performed, the minimum time is taken and
it is normalized to L2 cache. The rationale is that a machine dedicated to the IP
Table Lookup is capable to perform a query in the minimum time measured in
the test machine because the processor is not disturbed by other running processes.
The measurements have been done using Pentium specific low level primitives to at-
tain higher precision; nothing forbids to use operating system primitives for better
portability.
Modifications for solving the IP-lookup problem. In order to solve the static
IP-lookup method we just have to stored labelled active points instead of points. For
the dynamic IP-lookup problem we need to store all labelled points (active, phantom
and duplicates). Notice however that in all computations involving point/bucket
occupancy only the active points will be considered, since duplicated and phantom
points are relevant only for the update procedure. The root of the tree is treated in
a special way since we use 2B buckets. The maximum number of active points in a
leaf is set to a parameter D. Finally the bound on the ratio Rmin(s) is a constant
C. The three parameters B, C, D are specified by the user of the code at build
time.

Asymptotic bounds for storage and worst case query time. Since at
each node the number of empty buckets is bounded by the number of full buckets
multiplied by a constant factor, it sufficed to analyze the number of full buckets.
Since each full leaf has at least one point and each point is in at most one set Sl

for some leaf l, the number of full leaves is O(n). Since by positioning the anchor
at the median point of the set Sx for a node x we obtain at least two full children
from any internal node, we have that the brunching factor of the tree restricted to
the full nodes is always at least two, therefore the number of internal full nodes is
linear in the number of full leaves. Thus the overall memory consumption is O(n).
Since at each level a bucket receives at most half of the points of its father, the
depth is at most O(log n).

6. EXPERIMENTS WITH AST

Fat-AST versus Slim-AST. We consider two variants of the basic AST data
structure. The Fat-AST is built on all input points (active, duplicates and phantom)
in the data set, thus it can answer correctly any query and supports updates directly,
however all occupancy counts are done with respect to the active points only. The
Slim-AST is built only on the active points in a data set, thus it can answer correctly
any query but is unable to support updates directly. Updates on the Slim-AST can
be done either (i) by a partial execution of the building algorithm starting from
the input data and portions of the data structure, or (ii) by requiring a version of

6As we search down the tree the points can be represented with fewer bits and we take advantage
of this fact to decrease further the storage consumption by roughly 10%.
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Routing Table Date Entries Total Active Phantom Duplicate
Points Points Points Points

1 Paix 05/30/2001 17,766 35,532 17,807 9,605 8,120
2 AADS 05/30/2001 32,505 65,010 32,642 17,071 15,297
3 Funet 10/30/1997 41,328 82,656 24,895 35,391 22,370
4 Pac Bell 05/30/2001 45,184 90,368 34,334 33,750 22,284
5 Mae West 05/30/2001 71,319 142,638 53,618 50,217 38,803

6 Telstra 03/31/2001 104,096 208,192 64,656 79,429 64,107
7 Oregon 03/31/2001 118,190 236,380 45,299 116,897 74,184
8 AT&T US 07/10/2003 121,613 243,226 102,861 62,910 77,455
9 Telus 07/10/2003 126,282 252,564 85,564 86,738 80,262

10 AT&T East Canada 07/10/2003 127,157 254,314 78,625 93,795 81,894
11 AT&T West Canada 07/10/2003 127,248 254,496 78,708 93,824 81,964
12 Oregon 07/10/2003 142,475 284,950 108,780 84,165 92,005

Table I. List of Input Lookup Tables. Input geometric statistics for active, duplicates and phantom
points.

the Fat-AST for the input data on a different (usually slower and less expensive)
memory bank and copying the portions of the tree that are changed back onto the
Slim-Tree. For fairness we compare the Slim-AST against data structures that do
not support fast updates like [Degermark et al. 1997] and [Crescenzi et al. 1999]
(Table (IV)), and we compare the Fat-AST against data structures supporting also
fast updates like the Variable Stride tries in [Srinivasan and Varghese 1999] (Table
(V)).
Worst case query time. The testing of the (empirical) worst case query time is
done statically on the structure of the tree by finding out the longest (most expen-
sive) path from root to leaf. The worst case query time gives valuable information
that is relevant for, but independent from, any actual query data stream.

Table (I) gives a synthetic view of the IP Lookup Tables used for testing the AST
data structure. For each table we report a progressive number, the name of the
organization or router holding the table, the date when the Table was downloaded
and the number of prefixes in the tables. Each prefix generates two points, next we
classify the points into active, phantom and duplicate points, giving the count for
each category.

Table (II) gives the relevant measure of storage, worst case memory access, and
worst case time (in clock ticks) for the Slim-AST and the Fat-AST.
Normalization in L2. To test the AST data structure we adopt the methodology
in [Degermark et al. 1997]. For completeness we describe the methodology. We
visit each node of AST twice so to force data for the second invocation in L1 cache
(This is known as the hot cache model). We measure number of clock-ticks by
reading the appropriate internal CPU registers relative to the second invocation.
As in [Degermark et al. 1997] we exclude from measurement the function invocation
overhead and consider the search completed when we retrieve the index of the
next-hop. We also record the number of L1 memory accesses of each query. This
is important because, knowing the L1 latency, we decompose the measured time
in CPU-operation cost and memory access cost. Afterwards we scale the memory
access cost to the cost of accessing data in L2 cache, unless by locality we can
argue that the data must be in L1 cache also on the target machine. We call this
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Routing Table Entries Memory Memory Worst query Worst Class
Slim-AST Fat-AST (clock-ticks) (Lev,Pts,Base)

1 Paix 17,766 374,314 440,436 35 2,2, 8
2 AADS 32,505 460,516 589,762 35 2,2, 8
3 Funet 41,328 453,034 679,568 30 2,1, 8
4 Pac Bell 45,184 464,063 716,548 35 2,2, 8

5 Mae West 71,319 610,587 980,182 35 2,2, 8
6 Telstra 104,096 780,452 1,314,990 35 2,2,16
7 Oregon 118,190 595,919 1,452,832 35 2,3, 8
8 AT&T US 121,613 955,702 1,488,806 30 2,1, 8
9 Telus (*) 126,282 878,179 1,610,716 40 2,4, 8

10 AT&T East Canada 127,157 878,155 1,542,682 40 2,4, 8
11 AT&T West Canada 127,248 878,491 1,543,525 40 2,4, 8
12 Oregon (*) 142,475 940,810 1,797,609 35 2,2,16

Table II. Slim-AST data structure performance. Tests on a 700 MHz Pentium III (T=1.4ns) with
1024 KB L2 Cache L2 delay is D=15 nsec, L1 latency m= 4 nsec. The parameters used are:
B = 16 C = 10−7 D = 61 for all tables except (*) where C = 1.

Position Level
1 2 3 4 5

Empty -3 20 42 66 116
1 12 30 65 93 121
2 12 35 67 94 125
3 16 35 64 100 128
4 22 40 69 101 129

Table III. L2-normalized costs for points of 8 bits. Measures in clock ticks. The first negative
entry is due to the inherent approximation in the measurement and normalization of the raw data;
as an outlayer is not used in the construction of the interpolation formula.

measurement model the L2-normalized model. Since the root is accessed in each
query, after unrolling the search loop, we store step, anchor and pointer to the first
child at the root in registers so the access to the root is treated separately from
accessing any other level of the AST. The results of the L2-normalized measures are
shown in table (III) for 8-bit keys. Access times for 16 and 32 bit keys are almost
identical.
Target architecture. Here we derive a formula we will use to scale our results
to other architectures. The target architecture is made of one processor and two
caches: one L1 cache and one L2 cache. P ↔ CL1 ↔ CL2. We suppose every
memory access is an L1 miss, except when we access consecutive cells. We need to
determine by fitting the experimental measurements the constants a, b and c in the
formula for accessing a point at level k and distance s in the list stored at a leaf:

a + k(M + m + b) + (M + m) + (s − 1)(c + m),

where M is the time to access L2 cache, m the time to access T 1 cache.
Since in Table (II) we have only results for classes from (2, 1) to (2, 4), in Table

(III) we need accuracy of interpolation only in this range. Via easy calculations,
the final interpolation formula for any (2, s) class is: 3(M + m) + (s − 1)m. We
denote with D = M + m the L2 latency.
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Derivation of formulae in Tables (IV) and (V). From [Crescenzi et al. 1999,
page 68]: ”According to these measurements, on a Pentium II processor, each
lookup requires 3 · clk + 3 · MD nanoseconds, where clk denotes the clock cycle
time and MD is the memory access delay”. Thus in our notation this time formula
becomes 3T + 3D, assuming the data structure fits completely in L2 memory.

From [Srinivasan and Varghese 1999, pages 27-29]. Several variants of the fixed
and variable stride methods are compared on the 38816 prefixes Mae East table
for different sizes of the L2 memory (512KB and 1 MB). Taking the data for the 1
MB L2 cache size in [Srinivasan and Varghese 1999, table X, page 29], the authors
comment: ”Now we consider the same database using a machine with 1MB of L2
cache (Table X). Here we see the minimum time is 148 nsec.; however this does not
meet the worst-case deletion time requirements. In practice it might work quite
well because the average insertion/deletion times are a few microseconds, compared
to the worst case requirement of 2.5 msec.” Since we are interesting in comparing at
this stage only time versus storage, we do not consider the worst case update time
as a drawback, and we concentrate on the method attaining the smallest query time
while keeping the overall memory consumption below 1MB. The entry that satisfies
these requirements is attained for the algorithm ”Leaf-pushed variable stride” with
k = 3 levels. In [Srinivasan and Varghese 1999, table VIII, page 27] this algorithm
is characterized by the formula (8k + 2) · clk + k · MD, which, for k = 3, in our
notation gives the formula 26T + 3D.

From [Degermark et al. 1997, page 11]:”The difference in access time between
the primary and the secondary caches is 20 nanoseconds (4 cycles). The lookup
time on the Pentium Pro when two levels need to be examined is then at worst
69 + 8 · 4 = 101 cycles”. Table [Degermark et al. 1997, table 2, page 10] reports 10
ns = 2 cycles L1 latency and 30ns = 6 cycles for the Pentium Pro 200 MHz machine
used for the measurements. Since visiting each level of the data structure requires
4 memory accesses, two levels are accessed, and the latency of L2 access is 6 cycles
we can derive x = 101− 6 · 8 = 53 cycles for non-memory access operations and 8D
memory accesses, yielding a formula 53T + 8D. However from Table [Degermark
et al. 1997, table 1, page 10] we see that a third level is often needed to handle all
the queries in tables large enough. Thus a worst case estimate on the 32732 prefixes
Mae East is given by adding 4 more memory access, yielding 53T + 12D. Anyhow,
the qualitative conclusion we draw from the comparison do not change when either
formula is used.
Discussion of AST performance. In Tables (IV) and (V) we compare the Slim-
AST and the Fat-AST methods with three other methods for which analogous
formulae have been derived by the respective authors (explicitly or implicitly),
mapped onto a common architecture. The method in [Degermark et al. 1997] is
by far the most storage efficient, using roughly 4 bytes per entry; it is based on
tree compression techniques, which make updates difficult. The query time in much
higher than that of the AST. The Expansion/Compression method [Crescenzi et al.
1999] is very fast (requires only 3 memory access) using a fair amount of memory and
requiring extensive reconstructions of the data structure at each update7 The Slim-

7However recently the average query time as well as the storage consumption have been somewhat
improved (R. Grossi, personal communication).
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Ref Method Input Formula Time Memory
size (ns) (KB)

[Degermark et al. 1997] Lulea 38141 53T +12D 254 160
[Crescenzi et al. 1999] Exp./Con. 44024 3T +3D 49 1057
This paper Slim AST 45184 m + 3D 49 464

Table IV. Comparisons of static IP methods for a 700 MHz Pentium III (T=1.4ns) with 1024 KB
L2 Cache L2 delay is D=15 nsec, L1 latency m= 4 nsec.

Ref Method Input Formula Time Memory
size (ns) (KB)

[Srinivasan and Varghese 1999] Variable stride 38816 26T + 3D 81 655
This paper Fat AST 45184 m + 3D 49 716

Table V. Comparisons of dynamic IP methods for a 700 MHz Pentium III (T=1.4ns) with 1024

KB L2 Cache L2 delay is D=15 nsec, L1 latency m= 4 nsec.

AST is as fast, but requires much less memory thus has better scaling properties.
The method of [Srinivasan and Varghese 1999] balances well query time, storage

and update time. Its storage performance for tables of roughly 40,000 entries is not
far form the one of the Fat-AST, however the Fat-AST is remarkably faster on a
similar data set. Recent improvements of the scheme in [Srinivasan and Varghese
1999] are described and compared to the AST in section 8.

7. DYNAMIC OPERATIONS

Relative importance of performance measures. In this paper we designed
the AST experiments so to give highest importance to the worst case query time,
second in importance comes storage consumption, and finally comes update times.
In this section we describe the dynamic operations on a Fat-AST. We describe some
measurements on update time and we compare with those of a Variable Stride Tries
in [Srinivasan and Varghese 1999]. Other dynamic ip lookup results are mentioned
in Section 8 and compared to the AST.
Description of the dynamic operations. We give a brief sketch of the dynamic
operations. Inserting a new prefix p involves two phases: (1) inserting the end-
points of the corresponding segment M(p); (2) updating the next-hop index for all
the leaves that are covered by the segment M(p). While phase (1) involves only
two searches and local restructuring, phase (2) involves a DFS of the portion of the
AST tree dominated by the inserted/deleted segment. Such a DFS is potentially an
expensive operation, requiring in the worst case the visit of the whole tree. However
we can trim the search by observing that it is not necessary to visit sub-trees with
a span included into a segment that is included in M(p) since these nodes do not
change the next hop. There are n prefixes and O(n) leaves, and the span of each
leaf is intersected without being enclosed by at most 2D + 1 segments, therefore
only O(1) leaves need to be visited on average and eventually updated8.

8This rough argument can be made precise in an amortized sense by using the model of (N, ∆)-
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100% 99% 95%
Routing Table Accesses Time Accesses Time Accesses Time

L2 L1 µ-sec L2 L1 µ-sec L2 L1 µ-sec

1 Paix 107 734 4.54 97 668 4.13 43 288 1.80
2 AADS 588 6 8.84 69 466 2.90 33 216 1.36
3 Funet 4285 156 64.90 79 538 3.34 59 398 2.48
4 PacBell 1296 154 20.06 71 480 2.98 35 222 1.41
5 MaeWest 1941 84 29.45 103 706 4.37 51 346 2.15
6 Telstra 1867 548 30.20 81 546 3.40 53 356 2.22
7 Oregon 4381 1598 72.11 457 3184 19.59 87 588 3.66
8 AT&T US 1675 76 25.43 67 460 2.85 43 282 1.77
9 Telus 1686 10 25.33 73 488 3.05 45 294 1.85

10 AT&T East Canada 1686 10 25.33 81 552 3.42 49 322 2.02
11 AT&T West Canada 1686 10 25.33 81 552 3.42 49 322 2.02
12 Oregon 2309 76 34.94 465 3244 19.95 67 446 2.79

Table VI. Fat-AST data structure performance of insertion. Number of memory access in L2 and
L1 cache for the 100, 99 and 95 percentiles. Time estimate in the test machine. Tests on a 700
MHz Pentium III (T=1.4ns) with 1024 KB L2 Cache L2 delay is D=15 nsec, L1 latency m= 4
nsec.

100% 99% 95%
Routing Table Accesses Time Accesses Time Accesses Time

L2 L1 µ-sec L2 L1 µ-sec L2 L1 µ-sec

1 Paix 102 22 1.62 57 390 2.42 31 196 1.25
2 AADS 588 6 8.84 57 390 2.42 29 192 1.20
3 Funet 4285 156 64.90 79 538 3.34 59 398 2.48
4 PacBell 1296 154 20.06 71 480 2.99 33 218 1.37
5 MaeWest 1941 84 29.45 89 610 3.78 49 320 2.02
6 Telstra 1948 28 29.33 81 546 3.40 50 316 2.01
7 Oregon 4381 1598 72.11 457 3184 19.59 87 588 3.66
8 AT&T US 1675 76 25.43 67 460 2.85 43 282 1.77
9 Telus 1686 10 25.33 73 488 3.05 45 292 1.84

10 AT&T East Canada 1686 10 25.33 81 552 3.42 49 322 2.02
11 AT&T West Canada 1686 10 25.33 81 552 3.42 49 322 2.02
12 Oregon 2309 76 34.94 465 3244 19.95 67 446 2.79

Table VII. Slim-AST data structure performance of deletions. Number of memory access in L2
and L1 cache for the 100, 99 and 95 percentiles. Tests on a 700 MHz Pentium III (T=1.4ns) with
1024 KB L2 Cache L2 delay is D=15 nsec, L1 latency m= 4 nsec.

Deleting prefix p from the AST involves phases similar to insertion, however we
need to determine first the segment in the AST including M(p) in order to perform
the leaf re-labeling. This is done by performing at most w searches, one for each
prefix of p, and selecting the longest such prefix present in the AST. In practice fewer
than w searches are necessary in most cases. Although it is possible to check and
enforce the other AST invariants at each update we have noticed that the query
performance remains stable over long sequences of random updates. Therefore
enforcing the AST invariant is best left to an off-line periodic restructuring process.
Experimental data. We perform experiments on updating the AST using as

sequences of updates of Mulmuley [Mulmuley 1993].
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100% 99% 95%
Prefix # of Accesses Time Accesses Time Accesses Time
Length Prefixes L2 L1 µ-sec L2 L1 µ-sec L2 L1 µ-sec

8 17 1686 14 25.35 100 0 1.50 100 0 1.50
9 5 49 0 0.73 39 2 0.59 39 2 0.59
10 8 1675 80 25.45 41 30 0.73 41 30 0.73
11 13 1273 258 20.13 1223 60 18.59 1223 60 18.59
12 54 841 122 13.10 744 140 11.72 479 142 7.75
13 97 494 260 8.45 473 16 7.16 245 192 4.44
14 259 251 382 5.29 204 286 4.20 124 174 2.56
15 473 176 764 5.70 112 8 1.71 64 222 1.85
16 7459 185 52 2.98 46 292 1.86 20 98 0.69
17 1601 92 612 3.83 49 334 2.07 30 184 1.19

18 2933 512 14 7.74 54 340 2.17 31 194 1.24
19 8477 316 38 4.89 53 356 2.22 31 198 1.26
20 8424 175 70 2.90 53 360 2.23 33 208 1.33
21 5972 110 740 4.61 63 432 2.67 41 276 1.72
22 8979 157 1080 6.67 65 436 2.72 49 326 2.04
23 10088 157 1080 6.67 79 534 3.32 55 368 2.30
24 67865 157 1080 6.67 87 588 3.66 57 386 2.40
25 151 157 1080 6.67 157 1080 6.67 157 1080 6.67
26 169 47 314 1.96 37 248 1.55 33 214 1.35
27 696 157 1080 6.67 157 1080 6.67 157 1080 6.67
28 691 48 306 1.94 47 314 1.96 33 214 1.35
29 2490 157 1080 6.67 157 1080 6.67 37 248 1.55
30 324 48 294 1.90 39 250 1.58 37 238 1.51
31 0
32 3 39 250 1.58 29 180 1.16 29 180 1.16

Table VIII. Fat-AST data structure performance of insertion by prefix length for Data set West
AT&T Canada. Number of memory access in L2 and L1 cache for the 100, 99 and 95 percentiles.
Time estimate in the test machine. Tests on a 700 MHz Pentium III (T=1.4ns) with 1024 KB L2
Cache L2 delay is D=15 nsec, L1 latency m= 4 nsec.

update data stream the full content of each table. For deletions this is natural
since we can delete only prefixes present in the table. For insertions, we argue that
entries in the table have been inserted in the past, thus it is reasonable to use them
as representative also for the future updates9.

Tables (VI) and (VII) show upper estimates on the number of memory accesses
and the percentile time in µ-seconds for completing 95%, 99% and 100% of the
updates (insertions and deletions) for the Fat-AST data structures built for the
lookup tests. Note that experiments for deletions and insertion give very similar
counts.

During the update we count the number of memory cells accessed distinguishing
access in L2 and those in L1, assuming the data structure is stored completely in L2
cache. Since in the counting we adopt a conservative policy, i.e. we upper bound
the number of cells accessed at each node visited during the update, the final count
represents an upper bound on the actual number of memory access.

Tables (VIII) and (IX) show the insert and times (upper estimates) for a typical

9In public repositories of Internet data sets it seems to be difficult to find both table snapshots
and traffic streams for the same tables, which would form an even better test case.

Journal of the ACM, Vol. V, No. N, Month 20YY.



18 · M. Pellegrini and G. Fusco

100% 99% 95%
Prefix # of Accesses Time Accesses Time Accesses Time
Length Prefixes L2 L1 µ-sec L2 L1 µ-sec L2 L1 µ-sec

8 17 1686 10 25.33 96 0 1.44 96 0 1.44
9 5 45 0 0.68 37 0 0.56 37 0 0.56
10 8 1675 76 25.43 41 26 0.72 41 26 0.72
11 13 1273 254 20.11 1223 56 18.57 1223 56 18.57
12 54 841 118 13.09 742 138 11.68 477 140 7.71
13 97 494 256 8.43 429 156 7.06 243 190 4.41
14 259 251 378 5.28 204 282 4.19 122 32 1.96
15 473 176 760 5.68 104 108 1.99 62 94 1.31
16 7459 160 1080 6.72 43 272 1.73 20 100 0.70
17 1601 90 610 3.79 47 310 1.95 30 172 1.14

18 2933 512 10 7.72 54 336 2.15 31 208 1.30
19 8477 316 34 4.88 53 360 2.23 31 198 1.26
20 8424 175 66 2.89 53 360 2.23 33 220 1.38
21 5972 110 736 4.59 63 428 2.66 41 272 1.70
22 8979 157 1076 6.66 67 460 2.85 49 322 2.02
23 10088 157 1076 6.66 79 530 3.31 55 368 2.30
24 67865 157 1076 6.66 85 586 3.62 55 366 2.29
25 151 157 1076 6.66 157 1076 6.66 157 1076 6.66
26 169 47 310 1.95 37 244 1.53 33 210 1.33
27 696 157 1076 6.66 157 1076 6.66 157 1076 6.66
28 691 48 302 1.93 47 310 1.95 33 210 1.33
29 2490 157 1076 6.66 157 1076 6.66 37 244 1.53
30 324 48 290 1.88 37 248 1.55 35 236 1.47
31 0
32 3 37 248 1.55 27 178 1.12 27 178 1.12

Table IX. Fat-AST data structure performance of deletion by prefix length for Data set West
AT&T Canada. Number of memory access in L2 and L1 cache for the 100, 99 and 95 percentiles.
Time estimate in the test machine. Tests on a 700 MHz Pentium III (T=1.4ns) with 1024 KB L2
Cache L2 delay is D=15 nsec, L1 latency m= 4 nsec.

large table (West AT&T Canada) with results separated by prefix length. For the
same prefix length in both tables we obtain very similar counts. Note that the
worst update time is attained by a few quite short prefixes (of length from 8 to 12).

Comparison of update time with [Srinivasan and Varghese 1999]. In
[Srinivasan and Varghese 1999] an estimate of 2500 µ-sec for worst case updates
is given counting the dominant cost of the memory accesses. The cost is incurred
when a node in the trie with a large out degree (217) needs to be rebuilt, and an
access cost of 20 nsec per entry is assumed. Since 24-bit prefixes are very frequent
(about 50% of the entries) the variable stride tries are forced so that updating for
such length is faster, requiring roughly 3 µ-seconds. Although our machine is faster
than that used in [Srinivasan and Varghese 1999] the L2 access time is quite similar,
therefore the timings in [Srinivasan and Varghese 1999] can be compared (although
only on a qualitative basis) with results in table (VI). We believe that the 2500 µ-
sec worst case estimate for [Srinivasan and Varghese 1999] is overly pessimistic: in
our experiments (deletion and insertion of every entry of every table), except for the
Oregon data sets, up to 95% of the updates are completed in about 4 µ-seconds, thus

Journal of the ACM, Vol. V, No. N, Month 20YY.



Efficient IP Table Lookup via Adaptive Stratified Trees · 19

very close to the average update time in [Srinivasan and Varghese 1999]. Globally
the update performance of AST and Variable stride tries are comparable.

Finally we remark that updates in [Degermark et al. 1997] and [Crescenzi et al.
1999] are handled by rebuilding the data structure from scratch, thus requiring time
of the order of several milliseconds for every update.

8. MORE RELATED WORK AND COMPARISONS WITH AST

Comparing the AST and the FIS tree. Let S be the set of end-points of
the input intervals, and q a query point, we want to report the shortest segment
in the input set containing q. If q 6∈ S then the answer for q is the same as the
answer for the predecessor of q in S, which is a point of S. If q ∈ S we just have to
recognize this fact, thus a dynamic dictionary is needed, and use an auxiliary data
structure for a restricted form of the problem in which the query set coincides with
S. Usually data structure for the predecessor problem is able to act as a dictionary.
Thus we can solve the stabbing problem by using two data structures:

(I) A Data structure for Dynamic predecessor problem (in [Thorup 2003] also called
Dynamic searching problem).

(II) A data structure for Dynamic list stabbing, with the restriction that the set of
possible queries coincide with the set of end-points of the input segment.

The FIS Tree (Fat Inverted Segment Tree) is an elaboration of the segment tree and
is used to implement the data structure specified in (II). Since the FIS-Tree has a
tree structure and each end-point of the input segments is stored at a leaf of the
FIS tree, we can couple data structures (I) and (II) using an inverse mapping that
maps the points returned by the data structure (I) to the corresponding leaves of
the data structure (II). This mapping operation is essential since the FIS-tree can
be visited efficiently at query time only when the visit follows a leaf-to-root path
(for this reason the adjective ”Inverted” is part of the acronym).
Data structure (I) can be implemented using a variety of solutions in literature.
In [Feldmann and Muthukrishnan 2000] it is suggested to use a dynamic van
Emde Boas tree augmented with Dynamic Hashing so to keep the query time
at O(log log U) and reduce the storage to O(n). A more practical solution also
mentioned in [Feldmann and Muthukrishnan 2000] is that of using B-trees.
The coupling of the data structures (I) and (II) (e.g. van Emde Boas Tree + FIS-
tree) is traversed as follows. First the da structure (I) is traversed in a root-to-leaf
fashion so to identify the proper starting leaf in the data structure (II), afterwards
the FIS tree is traversed from leaf-to-root, and candidate answers are collected at
the nodes on the path, and among these the final answer is selected. If one were
interested in a static solution, all this construction is useless and a data structure
(I) with labelled points would be sufficient. So the coupling of the data structures
(I) and (II) is needed in order to have dynamic update procedures with provable
asymptotic performance.
The AST is not a FIS-tree. In particular the AST is a tree that is traversed in a
root-to-leaf fashion and finds the correct output as a label of the reached leaf. Thus
the AST sacrifices provable update performance bounds (and relies on empirically
assessed measurements for this measure of quality) but gains in the fact that a
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single shallow tree has to be traversed. Even if a depth parameter t = 2 is chosen
for the FIS-tree, the twin data structure (I) when implemented as a van Emde Boas
tree would visit log log U nodes, thus for U = 232, an additional 5 nodes are visited,
giving a total of 7 visited nodes to answer any query. In our experiments with AST
we would solve ip-lookup queries by visiting only two nodes of an AST tree and a
total of three memory accesses. Since visiting a path in a tree would require at least
a memory access per node, even without further experimental evidence, it is safe to
conclude that any standard implementation of a FIS-tree based data structure for
IP-lookup would result in a slower query time than the AST (or other specialized
methods such as [Srinivasan and Varghese 1999]).

Improved construction of fixed and variable stride tries. Sahni and Kim in
a series of papers [Sahni and Kim 2001; 2002; 2003] propose new formulations of the
dynamic programming underlying the construction of the fixed stride and variable
stride tries in [Srinivasan and Varghese 1999]. The emphasis is on improving the
preprocessing time. Both in the fixed stride and in the variable stride cases the
user defines an input parameter k that is the depth of the tree. For a a given
value of k the searching algorithm and the searching performance is identical to
that in [Srinivasan and Varghese 1999]. Thus the other quality measure that need
to be measured is the memory consumption. For k = 3 and variable stride trie,
for a table of 35K prefixes, the reported storage is 677 Kbytes [Sahni and Kim
2003, Table 4, page 676], which is reasonably close to the storage bound reported
in [Srinivasan and Varghese 1999]. With the same data set, a value k = 2 would
lower the search time but push up the storage to 1.8 Kbytes. Thus we can conclude
that the storage and search time trade offs are analogous to those in [Srinivasan
and Varghese 1999].

Data structures stressing dynamic operations. Sahni and Kim in [Sahni and
Kim 2004] give a data structure that improves the update time with respect to the
variable stride tries in [Srinivasan and Varghese 1999; Sahni and Kim 2003] but has
slower search time and larger storage requirements. In our setting we compare data
structures by giving higher priority to search time (within reasonable storage), next
in importance is storage and only the last criterion in update time. Thus the AST
and the result in [Sahni and Kim 2004] are not comparable because they imply
a different ranking of relevant performance measures. Similarly, Lu and Sahni
[Lu and Sahni 2005] propose a variant of the B-tree to handle efficiently updates.
Experimental data reported cannot be compared directly with ours since the raw
timing reported in [Lu and Sahni 2005] comprises accesses in RAM memory, while
in our analysis we fit all data in L2-level cache, however we can make use of a cache-
miss analysis in [Lu and Sahni 2005, page 17] that estimates a worst case number
of cache misses for look up search at 0.5 log2 n. This number would correspond to
memory accesses if the data structure were completely in L2 cache. For n = 32K
prefixes this would imply a number of about 7 memory accesses. This is far from
the AST count of 3 for similar input sizes. This discrepancy is obviously due to
the emphasis in improving dynamic operations at expenses of lookup efficiency. Lu
and Shani in [Lu and Sahni 2004b] explore the use of red-black trees and priority-
search trees for solving the longest prefix mach problem (as well as other related
problems). Since these are trees with branching factor 2, they put stress on low
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memory consumption and fast updates at the cost of having to visit paths of length
O(log n) in order to solve IP-lookup queries. Sun, Sahni and Zhao [Sun et al. 2004]
propose a general technique for exploiting independent sets in the input data on a
multi-processor parallel architecture to speed up update operations.

A very recent data structure Sundström and Larzon [Sundström and Larzon
2005] give a data structure whose main feature is to be able to store large data
sets requiring just 4 memory accesses to handle a lookup query. More precisely a
data set of 131227 prefixes is stored in 950K bytes and a search requires 4 memory
access. The update operations on this data set have a worst case cost of 752
memory accesses. The data sets 8,9,10 and 11 in our Table (I) get close to that
used in [Sundström and Larzon 2005] in terms of sheer size. We see that we can
achieve for those data seta only 3 memory accesses. The Slim-AST achieves also
similar storage bounds but cannot handle updates directly. The Fat-AST would
supports dynamic operations but uses roughly 50% more memory on such input
data.

Partitioning schemes. Lu, Kiam and Sahni [Lu et al. 2005] propose several
schemes for an initial partition of the data set into disjoint subsets. The rationale
is to be able to apply for each subset a more traditional data structure (e.g. vari-
able stride tries) whose parameters are optimized on the local input subset. This
operation leads in experiments to improve in storage and average search time. Note
that this technique is “generic” and as such could be applied directly also to AST’s.

Data Structures stressing storage requirements. Elaborating on ideas in
[Degermark et al. 1997] Earthon at al. [Eatherton et al. 2004] propose the Tree
bitmap data structure that can be adapted to several memory models. For the
memory model adopted in this paper (L2 and L1 cache levels) they are able to
re-map the tables in [Degermark et al. 1997] so that each tree node access requires
only 1 memory access (while in [Degermark et al. 1997]) 4 memory access per node
are needed. However the requirement of small memory occupancy results in a tree
with higher depth. In experiments a data set of 40,902 prefixes is stored in 312
Kbytes but requires 7 memory accesses in worst case. Moreover the technique in
[Eatherton et al. 2004] allows for fast average update time.

Different matching rules. Sahni and Lu in [Lu and Sahni 2004a] explore a
slightly different problem matching rule. Here it is supposed each prefix has an
associated priority unrelated to the length and the problem is to return the highest
priority prefix matching the destination address of a packet. The emphasis is on
good worst case asymptotic bounds on storage and update time. The number of
memory accesses is equivalent to the height of the tree which is O(log n). For
n = 32K this would imply about 15 memory accesses.

Hashing Based schemes The basic scheme of [Waldvogel et al. 1997] (binary
search on levels) is to expand certain prefixes so to obtain a small number of sur-
viving prefix lengths and store all prefixes of the same length and markers for longer
prefixes in a hash table. The IP-lookup problem is then solved by a binary search
by prefix length. Kim and Sahni improve the basic approach in [Waldvogel et al.
1997] by providing a new dynamic programming formulation whose aim is to reduce
storage consumption as well as reducing the number of prefix lengths. Broder and
Mitzenmacher [Broder and Mitzenmacher 2001b] give a technique for improving
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the performance of a single hash tables. The use of randomized schemes based on
hashing can lead to good average case performance however this is paid for in the
difficulty of controlling worst case lookup time (which basically corresponds to the
maximum bucket occupancy of one of the hash tables used). Moreover dynamic
updates becomes problematic since the event of exceeding the maximum allowed
bucket occupancy (for speed each bucket can occupy a single cache-line) requires
the complete re-computation of the hash functions and of the hash tables. In order
to give a feeling of what can be accomplished with this technique we report an
experiment in [Broder and Mitzenmacher 2001b] with a table of 38,816 prefixes
showing that the scheme in [Waldvogel et al. 1997] is able to solve queries with two
memory accesses, using 4 megabytes, under the assumption that six prefixes can
be stored in a single cache line. The scheme in [Broder and Mitzenmacher 2001b]
reduces the maximum bucket occupancy to four, uses half of the storage, but re-
quires to visit two buckets in each hash table, thus, requiring in total four memory
accesses. In contrast the Fat-AST requires 3 memory accesses, thus is better than
[Broder and Mitzenmacher 2001b], for a much smaller memory occupancy.
Hw based methods. There is a quite large portion of the recent research on
the IP lookup problem that uses specialized hw architectures different form the hw
model adopted in this paper (e.g. [Hasan and Vijaykumar 2005], [Dharmapurikar
et al. 2003], [Taylor et al. 2003], [Liu and Lea 2001], [Wuu and Pin 2001]). For this
reason we do not comment further on these results.

9. ON THE STATIC AND DYNAMIC PREDECESSOR PROBLEM

On the predecessor problem. Consider the following rather general formulation.
Let U = [0, 2w − 1] be the set of positive integers expressible in binary notation
with words of w bits10 and let S ⊂ U be a finite subset of cardinality n. The
complement set U \S is composed of a collection IS of disjoint open intervals. The
universe U is thus partitioned into a collection of intervals IS and points S. Let f
be a function defined on U , with range values in a set H , such that f is invariant
within each interval of IS . The problem is to build at pre-processing time a data
structure D(U, S) so to retrieve efficiently f(q) for a query q ∈ U given on-line.
For the static setting the exact nature of the range set H and of the function f
is immaterial and we concentrate on the task of searching, given a query q ∈ U ,
the node in the data structure D(U, S) holding the associated value f(q). Since we
can associate the value for points in each interval IS to the left end point of the
interval, this query problem is equivalent to the predecessor problem: given U and
S as above, for any x ∈ U find max{y ∈ S|y ≤ x}.

Solutions to the (static) predecessor problem have performance bounds that are
very sensitive to two conditions, the first is the relative size of n with respect to U ,
the second is the maximum amount of storage allowed. We may insist in having
just linear storage O(n), or storage polynomial in n or we may allow storage super-
polynomial in n (i.e. polynomial in n and U). Note that, if n is not too small with
respect to U , technically n > U1/C for some constant C > 1, then also U < nC and
therefore a polynomial in n and U is automatically a polynomial also in n only.

10In typical current processors w = 32.
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By using a k-ary tree with k = U ǫ, the resulting tree uses storage O(nU ǫ) and the
query time is constant.The height of the tree is log U

log Uǫ
= 1

ǫ = O(1), while the storage

is bounded by O(nk) = O(nU ǫ), see e.g. [Eppstein and Muthukrishnan 2001].
Naturally, with the observation above, when n > U1/C the storage is O(n1+ǫ) and
the query remains O(1).
The results we will survey try to reduce the storage requirement without increasing
too much the query time. The methods we survey are in general dynamic, or can
made so with some extra machinery, however, since we are interested in the query
time vs. storage performance, we will not dwell on such dynamic features.
Willard [Willard 1983] [Willard 1984] gives data structures (fast y-tries and fast q-
tries) using storage O(n) achieving query time O(min{log log U,

√
log U}). Stratified

trees of van Emde Boas achieve query time O(log log U) using storage O(U) in
the original paper [van Emde Boas et al. 1977]. Storage was reduced afterwards
to O(nU ǫ) in [Johnson 1982], and to O(n) in [van Emde Boas 1977] when n >
|U |/ logc |U |. Willard in [Willard 2000] lowers the lower limit for ataining linear
storage to n > |U |/(log U)c·log log |U|). Beame and Fich [Beame and Fich 1999] have
shown that the predecessor problem among n input data from an integer universe
U can be found using O(n) storage and query time

O

(

min

{

(log log U)(log log n)

log log log U
,

√

log n

log log n

})

,

and even more interestingly they show that with storage limited to polynomial
this is essentially the best that can be done for a certain range of relative sizes
of n and U . They obtain the following static lower bounds: for every n such
that (log U)ω(1) < n < Uo(1), using a number polynomial in n of memory cells of
roughly 2(log U)c

bits each for c < 1, a query must use in the worst case Ω( log log U
log log log U )

operations, while with cells of O(log U)C bits each, Ω(
√

log n/ log log n) operations
are needed.
There are several results not as strong as those of Beame and Fich but worth
recalling. Raman [Raman 1995] gives a data structure using storage O(n) and
performing queries in time O(min{log log U, 1 + log n/ log log U}). A randomized
method of Anderson [Andersson 1995] uses storage O(n) and has expected query
time O(

√
log n). Subsequently in [Andersson 1996], still using linear storage, the

method has been made deterministic and the query time improved to

O

(

min

{

√

log n, log log U log log n, log log n +
log n

log log U

})

.

The problem of the optimality of the known bounds on the query time for the
predecessor search problem is studied in [Patrascu and Thorup 2006].
Knuth in [Knuth 1973] surveys several bucketing schemes (Tries, Patricia Trees,
Digital Search tree) which are all variants of the basic k-ary tree approach. All
these schemes produce search trees of height logk n, while the expected size of the
tree is O(nk/ ln k). A variant discussed in [Knuth 1973] uses an hybrid approach,
when a bucket holds less than s data items a standard binary search tree is used.
The expected height is reduced to (1 + 1/s) logk n + log s, while the storage is
O(nk/s ln k + n).
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Previous results with distribution dependent guarantees. N-trees defined
by Ehrlich [Ehrlich 1981] capture in a formal way the probably older idea of recur-
sive bucketing where the number of buckets depends on the number of data items
in each bucket. Results in [Ehrlich 1981] show that the expected construction time
is O(n) when the data are drawn uniformly at random from the universe. Later
Tamminen [Tamminen 1983] showed that for any data set drawn from a distribution
with a bounded and Lebesgue integrable probability density function, the height of
the N-tree is bounded by a small constant. This result is interesting since it intro-
duces distribution dependent guarantees beyond the standard uniform distribution.
Willard [Willard 1985] gives an O(log log n) expected time algorithm to search on
data drawn from a smooth distribution.
Comparison of AST and predecessor search data structures. The AST
doe not have provable worst case bounds that are competitive with the above
mentioned structures for predecessor search. However experiments in [Pellegrini
and Vecchiocattivi 2001] have shown that the AST trees have storage and depth
tradeoffs (measured in number of nodes of the tree and in the longest path) that
are significantly superior to k-trees, n-trees and van Emde Boas trees.
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11. CONCLUSIONS AND OPEN PROBLEMS

Preliminary experiments with AST give encouraging results when compared with
published results for state of the art methods, however fine tuning of the AST
requires choosing properly some user defined parameters and we do not have at
the moment general rules for this choice. How to find a theoretical underpinning
to explain the AST good empirical performance is still an open issue for further
research.
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Sundström, M. and Larzon, L.-Å. 2005. High-performance longest prefix matching supporting
high-speed incremental updates and guaranteed compression. In IEEE Computer and Com-
munications Societies (INFOCOM). Vol. 3. 1641–1652.

Tamminen, M. 1983. Analysis of N-trees. Information Processing Letters 16, 3 (Apr.), 131–137.

Taylor, D. E., Lockwood, J. W., Sproull, T. S., Turner, J. S., and Parlour, D. 2003. Scal-
able IP lookup for internet routers. IEEE Journal on Selected Areas in Communications 21, 4.

Thorup, M. 2003. Space efficient dynamic stabbing with fast queries. In Proceedings of the 35th
Annual ACM Symposium on Theory of Computing, June 9-11, 2003, San Diego, CA, USA.
ACM, 649–658.

van Emde Boas, P. 1977. Preserving order in a forest in less than logarithmic time. Information
Processing Letters 6, 80–82.

van Emde Boas, P., Kaas, R., and Zijlstra, E. 1977. Design and implementation of an efficient
priority queue. Mathematical Systems Theory 10, 99–127.

Waldvogel, M., Varghese, G., Turner, J., and Plattner, B. 1997. Scalable high speed IP
routing lookups. In SIGCOMM. 25–36.

Journal of the ACM, Vol. V, No. N, Month 20YY.



Efficient IP Table Lookup via Adaptive Stratified Trees · 27

Warkhede, P. R., Suri, S., and Varghese, G. 2004. Multiway range trees: Scalable IP lookup

with fast updates. Computer Networks 44, 3, 289–303.

Willard, D. E. 1983. Log-logarithmic worst-case range queries are possible in space Θ(N).
Information Processing Letters 17, 2 (24 Aug.), 81–84.

Willard, D. E. 1984. New trie data structures which support very fast search operations. Journal
of Computer and System Sciences 28, 3 (June), 379–394.

Willard, D. E. 1985. Searching unindexed and nonuniformly generated files in log log N time.
SIAM Journal on Computing 14, 4 (Nov.), 1013–1029.

Willard, D. E. 2000. Examining computational geometry, Van Emde Boas trees, and hashing
from the perspective of the fusion tree. SIAM Journal on Computing 29, 3 (June), 1030–1049.

Wuu, L.-C. and Pin, S.-Y. 2001. A fast IP lookup scheme for longest-matching prefix. In
International Conference on Computer Networks and Mobile Computing (ICCNMC). IEEE
Computer Society, 407–412.

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Month 20YY.


