
Fast exact computation of betweenness centrality in social networks

Miriam Baglioni∗, Filippo Geraci∗, Marco Pellegrini∗and Ernesto Lastres†
∗IIT - CNR, Via Moruzzi 1, Pisa 56124, Italy. Tel +39-050-3152410, {m.baglioni, f.geraci, m.pellegrini}@iit.cnr.it

†Sistemi Territoriali, via di Lupo Parra Sud 144 San Prospero 56023 (PI), Italy. Tel. +39-050-768711, e.lastres@sister.it

Abstract—Social networks have demonstrated in the last few
years to be a powerful and flexible concept useful to represent
and analyze data emerging form social interactions and social
activities. The study of these networks can thus provide a
deeper understanding of many emergent global phenomena.
The amount of data available in the form of social networks
data is growing by the day, and this poses many computational
challenging problems for their analysis. In fact many analysis
tools suitable to analyze small to medium sized networks are
inefficient for large social networks. The computation of the
betweenness centrality index is a well established method for
network data analysis and it is also important as subroutine
in more advanced algorithms, such as the Girvan-Newman
method for graph partitioning.

In this paper we present a new approach for the computation
of the betweenness centrality, which speeds up considerably
Brandes’ algorithm (the current state of the art) in the context
of social networks. Our approach exploits the natural sparsity
of the data to algebraically (and efficiently) determine the
betweenness of those nodes forming trees (tree-nodes) in the
social network. Moreover, for the residual network, which is
often of much smaller size, we modify directly the Brandes’
algorithm so that we can remove the nodes already processed
and perform the computation of the shortest paths only for the
residual nodes.

Tests conducted on a sample of publicly available large
networks from the Stanford repository show that improvements
of a factor ranging between 2 and 5 are possible on several
such graphs, when the sparsity, measured by the ratio of tree-
nodes to the total number of nodes, is in a medium range
(30% to 50%). For some large networks from the Stanford
repository and for a sample of social networks provided by
Sistemi Territoriali with high sparsity (80% and above) tests
show that our algorithm consistently runs between one and
two orders of magnitude faster than the current state of the
art exact algorithm.

Keywords-Betweenness centrality, social network analysis

I. INTRODUCTION

Social networks have demonstrated in the last few years to
be a powerful and flexible concept useful to represent and
analyze data emerging form social interactions and social
activities. The study of these networks can thus provide
a deeper understanding of many emergent social global
phenomena. Moreover such analytic tools and concepts have
been successfully adopted in a vast range of applications
including communications, marketing and bioinformatics.

According to the standard paradigm of social networks,
to each agent/item is associated a node of the network and
the edges between pairs of nodes represent the relationship
between them. Social networks are naturally represented as

graphs, consequently graph theory and efficient graph algo-
rithms plays an important role in social network analysis.
Among the analytic tools, centrality indices are often used
to score (and rank) the nodes (or the edges) of the network
to reflect their centrality position. The intuitive idea behind
this class of indices is that a more central node is likely
to be involved in many processes of the network, thus its
importance increases.

Depending on what we mean with the word “important”,
different definitions of centrality are possible [1]. For exam-
ple degree centrality highlights nodes with a higher number
of connections, closeness centrality highlights nodes easily
reachable from other nodes, and eigenvector centrality high-
lights nodes connected with authoritative nodes. A complete
compendium of many centrality definitions, problems and
measures can be found in [2]. Vertex betweenness [3], [4] is
one of the most broadly used centrality indices. The (vertex)
betweenness of a vertex v is defined as the sum, for each
pair of nodes (s, t) in the network, of the ratio between
the number of shortest (aka geodesic) paths from s to t
passing through v and the total number of shortest paths
from s to t. The main assumption of this index is that the
information flows in the network following shortest paths.
Despite the fact that this assumption could be considered
restrictive, betweenness finds a vast range of applications
(e.g. in computing lethality for biological networks [5] and
in bibliometry [6]).

A very similar concept of edge betweenness is defined in
[3] where for an edge e, the sum is computed for each pair of
nodes (s, t) of the ratio among the number of shortest paths
from s to t through the edge e over the number of all the
shortest paths from s to t. Edge betweenness has a prominent
application as a subroutine in the algorithm of Newman and
Girvan [7] for community detection of complex networks. In
this paper, for sake of clarity, we discuss only the problem
of computing efficiently vertex betweenness, however with
minor modifications our approach applies to edge between-
ness as well (see [8]). The computation of the betweenness
centrality index is demanding because, for a given node v,
all the shortest paths between each couple of nodes passing
through v have to be counted (even if it is not necessary to
explicitly enumerate them). This means that, in general, for
fairly large networks the computation of this index based
on a direct application of its definition becomes impractical,
having complexity O(n3), for a graph with n nodes. Since
the last decade the number and size of social networks have

been consistently increasing over time, efficient algorithms
have emerged to cope with this trend.

The fastest exact algorithm to date is due to Brandes [9].
It requires O(n+m) space and O(nm) time where n is the
number of nodes and m the number of edges in the graph.
For sparse graphs, where m = O(n), Brandes’ method is a
huge improvement over the naive direct method, however it
is still quadratic in n, regardless of any other special feature
the input graph may have.

In this paper we propose an evolution of the Brandes’
algorithm which exploits some widespread topological char-
acteristic of social networks to speed up the computation of
the betweenness centrality index. We show that for nodes in
the graph that belong to certain tree structures the beteenness
value can be computed by a straightforward counting argu-
ment. The advantage of our approach is twofold: on the one
hand we do not need to count shortest paths for the subset
of network nodes that have the required tree-structure, and,
on the other hand, for the residual nodes we compute the
shortest paths only between nodes belonging to the residual
of the original graph, thus more efficiently. Our algorithm
performance strictly depends on the number of nodes for
which we can algebraically derive the betweenness. There-
fore it works well in practice for social networks since we
observed that such tree structures are quite frequent in the
context of social networks where the number of edges of
the graph is of the same order of magnitude of the number
of nodes. Note, however, that our algorithm still reduces to
the Brandes’ algorithm in a strict worst case scenario.

We tested our algorithm on a set of 18 social graphs
of Sistemi Territoriali which is an ICT company with
headquarters in Italy, specializing in Business Intelligence
applications. These graphs coming from real applications
are very large and very sparse, a property our algorithms
exploits to gain in efficiency. Compared to Brandes’ method
we can gain orders of magnitudes (between one and two)
in terms of computation time. We tested our algorithm on
a set of 16 social graphs from the Stanford Large Network
Dataset Collection. We obtained marginal improvements on
7 cases, speed ups by a factor from 2 to 6 in 6 cases, and
speedups by orders of magnitude in two cases. At the best
of our knowledge this approach is novel.

The paper is organized as follows. Section II gives a
brief survey of related work, while section III gives key
insights from Brandes’ methods. In section IV we describe
our method in detail. In Section V we give the experimental
results.

II. RELATED WORK

Let G = (V,E) be the graph associated to a social net-
work, we denote as: σst the number of shortest paths starting
from the node s and ending in t, σst(v) the cardinality of
the subset of geodesic paths from s to t passing through
v. Betweenness centrality [4] measures, for a given vertex
v, the fraction of all the possible shortest paths between

pairs of nodes which pass through v. Formally betweenness
centrality B(v) is defined as:

B(v) =
∑

s6=v 6=t∈V

σst(v)

σst

The practical application of centrality indices depends
also on the scalability of the algorithm designed to compute
them. Early exact algorithms have a complexity in the order
of O(n3) [10], where n is the number of nodes. Thus the
computation of betweenness by this direct approach becomes
impractical for networks with just a few thousands of nodes.

In 2001 Brandes [9] developed the asymptotically fastest
exact algorithm to date, that exploits a recursive formula for
computing partial betweenness indices efficiently. It requires
O(n +m) space and O(nm) time where n is the number
of nodes and m the number of edges in the graph. For
sparse graphs, where m = O(n), Brandes’ method is a
huge improvement over the naive direct method, allowing
to tackle graphs with tens of thousands of nodes.

Given the importance of the index, and the increasing size
of networks to be analyzed, several strategies for scaling up
the computation have been pursued. Algorithms for parallel
models of computations have been developed (se e.g. [11]
and [12]).

A second strategy is to resort to approximations of the
betweenness [13]. In [14] the authors describe an approxi-
mation algorithm based on adaptive sampling which reduces
the number of shortest paths computations for vertices with
high centrality. In [15] the authors present a framework that
generalizes the Brandes’ approach to approximate between-
ness. In [16] the authors propose a definition of betweenness
which take into account paths up to a fixed length k.

Another important complexity reduction strategy was pre-
sented in [17] where ego-networks are used to approximate
betweenness. A ego-network is a graph composed by a node,
called ego, and by all the nodes, alters, connected to the
ego. Thus if two nodes are not directly connected, there is
only a possible alternative path which passes through the
ego node. The authors have empirically shown over random
generated networks that the betweenness of a node v is
strongly correlated to that of the ego network associated to
v.

In order to extend the use of betweenness centrality to
a wider range of applications, many variants of this index
were proposed in the literature. For example in [18] the
betweenness definition is applied to dynamic graphs, while
in [19] geodesic paths are replaced with random walks.

In this paper we propose to use specific local structures
abundant in many types of social graphs in order to speed
up the exact computation of the betweenness index of each
node by an adaptation of the exact algorithm due to Brandes.

We have tested graphs with up to 500K nodes, which
is a fair size for many applications. However in some
applications (e.g. web graphs, facebook friendship graphs),
we face much larger graphs in the regions of millions

of nodes. In this case approximating betweenness may be
the strategy of choice. Our approach can be adapted to
an approximation setting such as the one described by
Geisberger et al. [15], where approximation is attained by (a)
using a random subset of source nodes s for the BFS instead
of every possible node, and (b) by adopting a modified
weighted variant of the recursive equation (2).

III. BACKGROUND

In this section we give some key features of Brandes’
algorithm, since it gives a background to our approach. This
method is based on an accumulation technique where the
betweenness of a node can be computed as the sum of the
contributions of all the shortest paths starting from each node
of the graph taken in turns. Given three nodes s, t, v ∈ V ,
Brandes introduces the pair-dependency of s and t on v as
the fraction of all the shortest paths from s to t through v
over those from s to t:

δst(v) =
σst(v)

σst

The betweenness centrality of the node v is obtained as the
sum of the pair-dependency of each pair of nodes on v. To
eliminate the direct computation of all the sums, Brandes
introduces the dependence of a vertex s on v as:

δs•(v) =
∑
t∈V

δst(v) (1)

Thus the betweenness centrality B, of node v is given by
summing contributions from all source nodes:

B(v) =
∑
s∈V

δs•(v)

Observation 1. If a node v is a predecessor of w in a
shortest path starting in s, then v is a predecessor also in
any other shortest path starting from s and passing through
w [9].

Arguing form the observation 1, equation 1 can be rewritten
as a recursive formula:

δs•(v) =
∑

w:v∈Ps(w)

σsv
σsw

(1 + δs•(w)), (2)

where Ps(w) is the set of direct predecessors of a certain
node w in the shortest paths from s to w, encoded in a BFS
rooted DAG form node s.

IV. OUR ALGORITHM

Our algorithm algebraically computes the betweenness
of nodes belonging to trees in the network obtained by
removing iteratively nodes of degree 1. Afterwards we apply
a modification of Brandes’ algorithm [9] to compute the
betweenness of the nodes in the residual graph.

A first trivial observation is that nodes with a single
neighbor can be only shortest paths endpoints, thus their
betweenness is equal to zero. Thus we would like to remove

these nodes from the graph. However, these nodes by
their presence influence the betweenness of their (unique)
neighbors. In fact, such neighbor v works as a bridge to
connect the node to the rest of the graph and all the shortest
paths to (from) this node pass through that unique neighbor.
Our procedure computes the betweenness of a node v as the
sum of the contribution of all nodes for which v is their
unique direct neighbors.

Following this strategy, once the contribution of the nodes
with degree 1 has been considered in the computation of
the betweenness of their neighbors, they provide no more
information, and can be virtually removed from the graph.
The removal of the nodes with degree 1 from the graph, can
cause that the degree of some other node becomes 1. Thus
the previous considerations can be repeated on a new set
of degree one nodes. When we iterate, however, we need
also to record the number of nodes connected to each of the
degree one nodes that were removed from the graph. This
recursive procedure allows us to algebraically compute the
betweenness of trees in the graph.

A. Algorithm formalization and description

We will assume the input G to be connected, in order to
simplify the argument. If G is not connected, the argument
can be repeated for each connected component separately.
Let F be the set of nodes in G = (V,E) that can be
removed by iteratively delete nodes of degree 1, and their
adjacent edge. We call the nodes in F the tree-nodes. Let
G′ = (V ′, E′) be the residual graph for the residuals set of
node, with V ′ = V \ F . The set F induces a forest in G,
moreover the root of each tree Ti of the forest is adjacent
to a unique vertex in V ′. Each node in F is a root to a
sub-tree. Let RG(w,F) be the set of of nodes of trees in
F having w as their root-neighbor in G′. The formula for
the betweenness of node v ∈ V involves a summation over
pairs of nodes s, t ∈ V . Thus we can split this summation
into sub-summations involving different types of nodes, and
provide different algorithms and formulae for each case.
Tree-nodes. Let u be a node in F , and let v1, .., vk be the
children of u in the tree Tu, and let Tvi , for i = 1, ..k, be the
subtrees rooted at vi. When s and t are in the same subtree
Tvi , then there is only one shortest path connecting them
completely in Tvi and this path does not contain u, thus the
contribution to B(u) is null. When s is in some tree Tvi , and
t is in the complement (V \{u})\Tvi , then each shortest path
connecting them will contain u. Thus the contribution to the
betweenness of u is given by the number of such pairs. We
will compute such number of pairs incrementally interleaved
with the computation of the set F by peeling away nodes
of degree 1 from the graph. When at iteration j, we peel
away node vi we have recursively computed the value of
|Tvi |, and also for the node u the value |RG(u, Fj)| which
is the sum of the sizes of trees Tvh , for h ∈ [1, ..k], i 6= k
already peeled away in previous iterations. The number of

new pairs to be added to B(u) is:

|Tvi | × (|(V \ {u}) \ Tvi | − |RG(u, Fj)|).

This ensures that each pair (s,t) is counted only once. Finally
observe that when both s and t are in V ′ no shortest path
between them will contain u therefore their contribution to
B(u) is zero. Since the roles of s and t are symmetrical
in the formula we need to multiply the final result by 2 in
order to cont all pairs (s, t) correctly. The pseudocode for
this procedure is shown in Section IV-B.
Residual graph nodes. Let u be a node in V ′, we will
see how to modify Brandes’ algorithm so that executing the
modified version on the residual graph G′ (thus at a reduced
computational cost), but actually computing the betweenness
of the nodes in u ∈ V ′ relative to the initial graph G.
Brandes algorithm’s inner loop works by computing from
a fixed node s a BFS search DAG in the input graph, which
is a rooted DAG (rooted at s), and by applying a structural
induction from the sinks of the DAG towards the root as in
formula (2).
Subcase 1. If a node x ∈ V ′ has R(x, F) 6= ∅ the tree
formed by R(x, F) and x would be part of the BFS DAG
in G having its source in V ′, however, since we run the
algorithm on the reduced graph G′, we need to account
for the contribution of the trimmed trees to the structural
recursive formula (2). The correction term for δs•(x) is
equal to |RG(x, F)| since each shortest path from s to
y ∈ RG(x, F) must contain x. Thus we obtain the new
formula:

δs•(u) =
∑

w:u∈Ps(w)

σsu
σsw

(1 + δs•(w) + |RG(w,F)|))

Note that in the development of the above formula R(s, F)
does not appear. Since no shortest path from s ∈ V ′ to any
t ∈ R(s, F) may include a node u ∈ V ′, this subtree has
zero contribution to δs•(u).
Subcase 2. Consider now a node x ∈ R(s, F) as source for
the BFS. In the computation of δx•(u), for u ∈ V ′ each
shortest path from x to t ∈ R(s, F) cannot contain u thus
gives zero contribution. For t ∈ V \ R(s, F), such shortest
path would contain a shortest path from s, thus we have
δx•(u) = δs•(u) for all x ∈ R(s, F). In order to account
for these contributions to B(u) it suffices to multiply the
contribution δs• by (1 + |R(s, F)|), obtaining:

B(u) = B(u) + δs•(u) ∗ (1 +RG(s, F)).

B. Algorithm pseudo-code

In the following Algorithm 1 we show the pseudo-code for
SPVB (Shortest-paths vertex betweenness) preprocessing,
handling degree 1 nodes. For simplicity we assume G to
be connected. For a disconnected graph G, the algorithm
should be applied to each connected component separately.
For a node v of degree 1 at a certain stage of the iteration, the
vector p records the number of nodes in a subtree rooted at v

(excluding the root). For any other node u, vector p records
the sum of the sizes of subtrees rooted at children of that
node that have been deleted in previous iterations.

SPVB:
Data: undirected unweighted graph G=(V,E)
Result: the graph’s node betweenness B[v] for all

v ∈ V
B[v] = 0, v ∈ V ; p[v] = 0, v ∈ V ; i = 0;
Gi = G; deg1 = {v ∈ V i|deg(v) = 1};
repeat

v ← deg1;
u ∈ V i.(v, u) ∈ Ei;
B[u] = B[u] + 2(n− p[v]− p[u]− 2)(p[v] + 1);
remove v from deg1;
p[u] = p[u] + p[v] + 1;
i++;
V i = V i−1\{v}
Ei = Ei−1\{(v, u)}
if deg(u) = 1 then u→ deg1 ; /* deg(u) is
computed on the new graph Gi */

until deg1 = ∅ ;
if |V i| > 1 then

Brandes modified(Gi, p, B)
end

Algorithm 1: Shortest-paths vertex betweenness

The modification of Brandes’ algorithm does not change its
asymptotic complexity, which however must be evaluated
on the residual graph with n′ = |V | − |F | nodes and m′ =
|E|− |F | edges, thus with a time complexity O(n′m′). The
complexity of the first part of SPVB is constant for each
node in F , except for the operations needed to dynamically
modify the graph Gi and maintain the set of degree-1 nodes.
With standard dynamic dictionary data structure we have an
overhead of O(log n) for each update operation.

V. EXPERIMENTS

In order to evaluate the performance of our algorithm
we run a set of experiments using both a collection of 18
graphs provided by Sistemi Territoriali (SisTer), which is an
Italian ICT company involved in the field of data analysis for
Business intelligence and a collection of graphs downloaded
from the Stanford Large Network Dataset Collection1. Since
both our algorithm and Brandes’ compute the exact value
of betweenness, we tested the correctness of the imple-
mentation by comparing the two output vectors. Here we
report only on the the running time of the two algorithms.
For our experiments we used a standard PC endowed with
a 2.5 GHz Intel Core 2, 8Gb of RAM and Linux 2.6.37
operating system. The two algorithms were implemented
in Java. In order to avoid possible biases in the running
time evaluation due to the particular CPU architecture, we

1http://snap.stanford.edu/data/

Brandes modified:
Data: directed graph G = (V,E),
for each v:
the number of tree-nodes connected to v: p[v],
the partial betweenness computed for v: B[v]
Result: the graph’s node betweenness B[v]
for s ∈ V do

S = empty stack;
P[w]= empty list,w ∈ V ;
σ[t] = 0, t ∈ V ;σ[s] = 1;
d[t] = −1, t ∈ V i ; d[s] =0;
Q= empty queue;
enqueue s→ Q;
while Q not empty do

dequeue v ← Q;
push v → S;
forall neighbor w of v do

// w found for the first time?
if d[w] < 0 then

enqueue w → Q;
d[w]=d[v] + 1;

end
// shortest path to w via v?
if d[w] = d[v] + 1 then

σ[w] = σ[w] + σ[v];
append v → P [w];

end
end

end
δ[v] = 0, v ∈ V ;
// S returns vertices in order of non-increasing
distance from s
while S not empty do

pop w← S;
for v ∈ P[w] do

δ[v] = δ[v] + σ[v]
σ[w] (δ[w] + p[w] + 1);

end
if w 6= s then

B[w] = B[w] + δ[w]× (p[s] + 1)
end

end
end

Algorithm 2: Modified Brandes’ algorithm

decided to implement the algorithm as a mono-processor
sequential program.
SisTer Collection. In table I we report the graph id, the
number of nodes and edges in the SisTer collection and the
percentage of tree-nodes in each graph. Note that a very
large percentage of the nodes can be dealt with algebraically
by our algorithm and the residual graph, on which we ran
a modified Brandes’, is quite small relative to the original
size.

Figure 1 compares the running time of our and Brandes’

Graph ID Node # Edge # Tree nodes (%)
G1 233,377 238,741 86 %
G2 14,991 14,990 99 %
G3 15,044 15,101 85 %
G4 16,723 16,760 84 %
G5 16,732 16,769 84 %
G6 169,059 169,080 99 %
G7 16,968 17,026 84 %
G8 3,214 3,423 95 %
G9 3,507 3,620 96 %
G10 3,507 3,620 96 %
G11 3,519 3,632 96 %
G12 44,550 46,519 77 %
G13 46,331 46,331 99 %
G14 47,784 48,461 84 %
G15 5,023 5,049 93 %
G16 52,143 53,603 85 %
G17 8,856 10,087 89 %
G18 506,900 587,529 80 %

Table I
SISTER COLLECTION. FOR EACH GRAPH IT IS LISTED THE NUMBER OF

NODES, THE NUMBER OF EDGES, AND THE PERCENTAGE OF
TREE-NODES. THE GRAPHS NEED NOT BE CONNECTED.

Figure 1. A comparison of the running time of our algorithm (left) and
Brandes’ (right) on 18 sparse large graphs. The ordinate axis report running
time in seconds and is in logarithmic scale. Data for Brandes on graph 18
is missing due to time-out

algorithms. On the x-axis we report the graph id, while
on the y-axis we report in logarithmic scale the running
time expressed in seconds. From figure 1 it is possible
to observe that our algorithm is always more than one
order of magnitude faster than the procedure of Brandes,
sometimes even two orders of magnitude faster. For graph
G1, with 233,377 nodes for example, we were able to
finish the computation within one hour while Brandes’ needs
approximately two days. For graph G6, with 169,059 nodes,
we could complete in about 1 minute, compared to two
days for Brandes. A notable result is shown also for graph

Graph name Node # Edge # Tree nodes (%)
ca-GrQc 5,242 28,980 21%
as20000102 6,474 13,233 36%
ca-HepTh 9,877 51,971 20%
ca-HepPh 12,008 237,010 11%
ca-AstroPh 18,772 396,160 6%
ca-CondMat 23,133 186,936 9%
as-caida20071112 26,389 106,762 38%
cit-HepTh 27,770 352,807 5%
cit-HepPh 34,546 421,578 4%
p2p-Gnutella31 62,586 147,892 46%
soc-epinion1 75,879 508,837 51%
soc-sign-Slashdot090221 82,144 549,202 36%
soc-Slashdot0922 82,168 948,464 2%
soc-sign-epinions 131,828 841,372 51%
Email-EuAll 265,214 420,045 80%
web-NotreDame 325,729 1,497,134 51%

Table II
SELECTED GRAPHS FROM THE STANFORD COLLECTION. FOR EACH

GRAPH IT IS LISTED THE NUMBER OF NODES, THE NUMBER OF EDGES,
AND THE PERCENTAGE OF TREE-NODES, WHICH IS THE MOST

IMPORTANT PARAMETER AFFECTING THE TIME PERFORMANCE.

G18 which is our biggest in this collection. In this case our
algorithm required approximately 2,4 days to finish while
Brandes’ could not terminate in one month (data not shown).
Stanford Collection. We have selected a subset of graphs
from the Stanford collection, using the following criteria.
First the graphs have been ranked by number of nodes
and we have selected representative graphs from as many
categories as possible (Social networks, Communication
Networks, Citation networks, Collaboration networks, Web
graphs, Internet peer-to-peer networks, and Autonomous
systems graphs). We have excluded graphs that because of
their size would take more than one week of computing time.
In Table (II) we have listed these graphs, their size in number
of nodes and edges, and the percentage of tree-nodes, which
is the most important parameter influencing the performance
of our method. Each input graph was considered undirected.
We decided a cut-off time of seven days. In order to measure
the convergence of the two methods we collected also
the partial output of the two algorithms every 24 hours
of execution. In table III the running time, expressed in
seconds, of the two methods is shown, and the speed up
factor. As it is expected the speed up factor is strongly
correlated to the fraction of the tree-nodes in the graph. We
notice a speed-up factor ranging from 2 to almost 6 when
the ratio of tree-nodes to the total number of nodes is in the
range 30% to 50%.
Two large test graphs are quite noticeable. Graph Email-
EuAll has a percentage of 80% of tree-nodes which is a
value closer to those found in the SisTer collection, thus the
speed up measured is at least 27 (since we stopped Brandes’
after one week). That value is between one and two orders
of magnitude, consistently with those measured in the SisTer
collection.
For the web-NotreDame graph, which is the largest graph

Graph name Node # Brandes (s) Ours (s) Ratio
ca-GrQc 5,242 35 s 24 s 1.45
as20000102 6,474 141 s 54 s 2.65
ca-HepTh 9,877 230 s 148 s 1.55
ca-HepPh 12,008 703 s 563 s 1.24
ca-AstroPh 18,772 2,703 s 2,447 s 1.10
ca-CondMat 23,133 3,288 s 2,718 s 1.21
as-caida20071112 26,389 6,740 s 2,014 s 3.34
cit-HepTh 27,770 8,875 s 8,227 s 1.07
cit-HepTh 34,546 16,765 s 15,636 s 1.07
p2p-Gnutella31 62,586 74,096 s 15,573 s 4.76
soc-Epinion1 75,879 145,350 s 25,771 s 5.64
soc-sign-Slashdot090221 82,140 199,773 s 64,905 s 3.07
soc-Slashdot0902 82,168 199,544 s 190,536 s 1.04
soc-sign-epinions 131,828 564,343s 96,738 s 5.83
Email-EuAll 265,214 > 7 days 22,057 s > 27
web-NotreDame 325,729 - ≈ 9 days ≈ 8

Table III
RUNNING TIME (IN SECONDS)OF THE TWO METHODS OVER SELECTED

STANFORD COLLECTION GRAPHS, AND THEIR RATIO (SPEED UP
FACTOR).

in our sample of the Stanford collection, we estimate the
convergence properties of the two algorithms as follows. Our
algorithm has been run to completion (in about 9 days) in
order to have the exact target solution vector. Also at fixed
intervals each day we recorded the intermediate values of the
betweenness vectors for both algorithms. For each vertex we
compute the ratio of the intermediate value over the target
value (setting 0/0 to value 1), and then we average over all
the vertices. This measure is strongly biased by the fact
that for leaves (nodes with degree 1) both Brandes and our
algorithm assign at initialization the correct value 0, thus in
this case precision is attained by default. To avoid this bias
we repeat the measurement by averaging only over those
nodes with final value of betweenness greater than zero (see
Figure 2). From figure 2 we can appreciate that the average
convergence rate is almost linear in both case, but the curve
for our algorithm has a much higher slope. After 7 days our
algorithm reached about 75% of the target, against 10% of
Brandes’, by a linear extrapolation we can thus predict a
speed up factor of about 8.

VI. CONCLUSIONS AND ACKNOWLEDGMENTS

Brandes’ algorithm for computing betweenness centrality
in a graph is a key breakthrough beyond the naive cubic
method that computes explicitly the shortest paths in a graph.
However, it is not able to exploit possible additional locally
sparse features of the input graph to speed up further the
computation on large graphs. In this work we show that
combining exact algebraic determination of betweenness
centrality for some tree-like sub-graphs of the input graph,
with a modified Brands’ procedure on the residual graph
we can gain orders of magnitudes (between one and two)
in terms of computation time for very sparse graphs, and a
good factor from 2 to 5, in moderately sparse graphs. At the

Figure 2. Evolution in time of the average (over the vertices) ratio of
the partial betweenness values over the final betweenness value. In the
averaging leaves are excluded.

best of our knowledge this approach is novel. In our test set
we did not find a significant number of tree-nodes only in
author collaboration graphs, and citation graphs, while for
the other categories in this test set we did find a significant
number of tree-nodes. We thus conjecture that this feature is
common enough in a range of social networks so to make the
application of our method an interesting option when exact
betweenness is to be computed. As future work we plan to
explore further this approach by expoloring the role of ar-
ticulation points and determining other classes of subgraphs
(besides trees) in which we can gain by the direct algebraic
determination of the betweenness. Moreover the impact of
our approach combined with approximation schemes will
be investigated. This research is partially supported by the
project BINet “Nuova Piattaforma di Business Intelligence
Basata sulle Reti Sociali” funded by Regione Toscana POR
CReO 2007-2013 Programme.

REFERENCES

[1] D. Koschatzki, K. Lehmann, L. Peeters, S. Richter,
D. Tenfelde-Podehl, and O. Zlotowski, “Centrality indices,”
in Network Analysis, ser. LNCS, U. Brandes and T. Erlebach,
Eds. Springer Verlag, 2005, vol. 3418, pp. 16–61.

[2] S. P. Borgatti, “Centrality and network flow,” Social Networks,
vol. 27, no. 1, pp. 55 – 71, 2005.

[3] J. M. Anthonisse, “The rush in a directed graph,” Stichting
Mathematisch Centrum, 2e Boerhaavestraat 49 Amsterdam,
Tech. Rep. Tech. Rep. BN 9/71, October 1971.

[4] L. C. Freeman, “A Set of Measures of Centrality Based on
Betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, Mar.
1977.

[5] A. Del Sol, H. Fujihashi, and P. O’Meara, “Topology of
small-world networks of protein–protein complex structures,”
Bioinformatics, vol. 21, pp. 1311–1315, April 2005.

[6] L. Leydesdorff, “Betweenness centrality as an indicator of
the interdisciplinarity of scientific journals,” Journal of the
American Society for Information Science and Technology,
vol. 58, pp. 1303–1309, July 2007.

[7] M. Girvan and M. E. J. Newman, “Community structure in
social and biological networks,” PNAS, vol. 99, no. 12, pp.
7821–7826, 2002.

[8] U. Brandes, “On variants of shortest-path betweenness cen-
trality and their generic computation,” Social Networks,
vol. 30, no. 2, pp. 136 – 145, 2008.

[9] ——, “A faster algorithm for betweenness centrality,” Journal
of Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[10] R. Jacob, D. Koschtzki, K. Lehmann, L. Peeters, and
D. Tenfelde-Podehl, “Algorithms for centrality indices,” in
Network Analysis, ser. LNCS, U. Brandes and T. Erlebach,
Eds. Springer Verlag, 2005, vol. 3418, pp. 62–82.

[11] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. Chavarria-Miranda, “A faster parallel algorithm and effi-
cient multithreaded implementations for evaluating between-
ness centrality on massive datasets,” Parallel and Distributed
Processing Symposium, International, vol. 0, pp. 1–8, 2009.

[12] D. Bader and K. Madduri, “Parallel algorithms for evaluating
centrality indices in real-world networks,” in ICPP 2006, aug.
2006, pp. 539 –550.

[13] U. Brandes and C. Pich, “Centrality estimation in large
networks,” I. J. Bifurcation and Chaos, vol. 17, no. 7, pp.
2303–2318, 2007.

[14] D. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approxi-
mating betweenness centrality,” in Algorithms and Models for
the Web-Graph, ser. LNCS, A. Bonato and F. Chung, Eds.
Springer Verlag, 2007, vol. 4863, pp. 124–137.

[15] R. Geisberger, P. Sanders, and D. Schultes, “Better approx-
imation of betweenness centrality,” in ALENEX, 2008, pp.
90–100.

[16] S. White and P. Smyth, “Algorithms for estimating relative
importance in networks,” in Proceedings of the ninth ACM
SIGKDD. New York, NY, USA: ACM, 2003, pp. 266–275.

[17] M. Everett and S. P. Borgatti, “Ego network betweenness,”
Social Networks, vol. 27, no. 1, pp. 31 – 38, 2005.

[18] T. Carpenter, G. Karakosta, and D. Shallcross, “Practical
issues and algorithms for analyzing terrorist networks,” 2002,
invited paper at WMC 2002.

[19] M. J. Newman, “A measure of betweenness centrality based
on random walks,” Social Networks, vol. 27, no. 1, pp. 39 –
54, 2005.

