
A Scalable Algorithm for High-Quality Clustering
of Web Snippets

Filippo Geraci1,2, Marco Pellegrini1, Paolo Pisati1, Fabrizio Sebastiani3
(1) Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche

Via G Moruzzi, 1 – 56124 Pisa, Italy
(2) Dipartimento di Ingegneria dell’Informazione, Università di Siena

Via Roma, 56 – 53100 Siena, Italy
(3) Dipartimento di Matematica Pura e Applicata, Università di Padova

Via GB Belzoni, 7 – 35131 Padova, Italy

{f.geraci,m.pellegrini,p.pisati}@iit.cnr.it fabrizio.sebastiani@unipd.it

ABSTRACT
We consider the problem of partitioning, in a highly accurate
and highly efficient way, a set of n documents lying in a met-
ric space into k non-overlapping clusters. We augment the
well-known furthest-point-first algorithm for k-center clus-
tering in metric spaces with a filtering scheme based on the
triangular inequality. We apply this algorithm to Web snip-
pet clustering, comparing it against strong baselines consist-
ing of recent, fast variants of the classical k-means iterative
algorithm. Our main conclusion is that our method attains
solutions of better or comparable accuracy, and does this
within a fraction of the time required by the baselines. Our
algorithm is thus valuable when, as in Web snippet clus-
tering, either the real-time nature of the task or the large
amount of data make the poorly scalable, traditional clus-
tering methods unsuitable.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering

Keywords
Meta Search Engines, Web Snippets, Clustering, Metric Spaces

1. INTRODUCTION
Clustering is an important operation in the exploratory analy-
sis of large data sets. Given a data set from some domain, it
is sometimes desirable to group data items that are similar
to each other under the same cluster, and data items that
are dissimilar from each other under different clusters. As
a consequence, the subdivision of the data set into clusters
makes the latent structure of the data space explicit, and
facilitates further human or automatic analysis.

Tools for clustering the results returned by Web search
engines have recently become a focus of attention in the IR

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

research community, also due to the success of commercial
services such as Vivisimo1. Real-time clustering technology
is a key ingredient of such systems, since the partition of the
search results into clusters must be generated on-the-fly.

In this paper we propose an algorithm for real-time clus-
tering, and discuss its accuracy and efficiency for Web snip-
pet clustering [4, 15]. In the terminology of Web search
engines, a snippet is the concise description of a Web page
p that is returned to the user as a result of a query, and
usually consists of at least (i) the title of p, (ii) its URL,
and (iii) a piece of text extracted from p. The function of
the snippet is to provide a highly succinct indication of why
p was selected, and to allow the user to decide whether p
is likely to be relevant to his/her information need before
actually clicking on the associated URL. In the context of
Web search engines, “Web snippet clustering” is a synonym
of “clustering the results of a Web search”, since the snippet
is all that is returned about p by the search engine, hence all
that is known about p to the user or to a clustering service
external to the search engine.

More abstractly, in this paper we consider the following
type of applicative scenario: (a) n documents must be par-
titioned into a set of k non-overlapping clusters, for a prede-
fined k; (b) n and k are both large; (c) the documents admit
a distance function that is a metric2; (d) the partition should
be highly accurate and should be found quickly.

Our algorithm is a variation of the furthest-point-first (FPF)
algorithm for k-center clustering [5] which attempts to mini-
mize the radius of the widest cluster over all possible group-
ings into k clusters (k-clusterings) of a set of n documents in
a metric space. We modify the FPF algorithm by using the
triangular inequality to filter out redundant distance com-
putations, thus significantly speeding up the computation
with respect to the standard implementation.

In the context of on-line applications to IR, the algorithm
of the Scatter/Gather system [6] is often used as a base-

1http://vivisimo.com/
2A distance function d defined on a domain D is a metric
when, for any data points x, y, z ∈ D, it is true that (i)
d(x, y) ≥ 0 (non-negativity); (ii) d(x, y) = d(y, x) (symme-
try); (iii) d(x, y) = 0 ⇔ x = y (identity); (iv) d(x, y) ≤
d(x, z) + d(z, y) (triangular inequality). Metrics include, as
special cases, Euclidean distance and other distance func-
tions commonly used in IR applications. See [16] for a de-
tailed treatment.

line. Scatter/Gather employs a variant of Lloyd’s k-means
algorithm with additional split/join operations on clusters
intended to improve the accuracy of lower-accuracy clusters.
Scatter/Gather inherits the high computational costs of the
standard k-means algorithm. For this reason, Phillips’ re-
cently proposed fast variants of k-means [11], which also ex-
ploit filters based on the triangular inequality, are stronger
baselines, and are the ones that we will check our algorithm
against. In this paper we show that our method attains
solutions of better or comparable accuracy, and does this
within a fraction of the time required by the fast variants of
k-means.

The rest of the paper is organized as follows. Previous
results on Web snippet clustering are summarized in Section
2. Our algorithm is described in Section 3. We describe
the experimental setting in Section 4, while in Section 5
we report on our experiments at Web snippet clustering.
Section 6 concludes.

2. PREVIOUS WORK
Scatter/Gather [6] is historically one of the first systems
based on a variant of k-means for clustering search results.
However, it was not targeted to Web search, hence it did
not use snippets.

Zamir and Etzioni [15] propose a Web snippet cluster-
ing method (Suffix Tree Clustering – STC) based on suffix
arrays, and show that it outperforms algorithms such as k-
means, single-pass k-means, backshot and fractionation, and
group average agglomerative hierarchical clustering. Inter-
estingly, the authors show that very similar results are at-
tained when full documents are used instead of their snip-
pets, thus confirming the fact that Web search results can
be effectively clustered by looking at their snippets only.

Maarek et al. [7] characterize the challenges inherent in
Web snippet clustering, and propose an algorithm based on
complete-link hierarchical agglomerative clustering.

The Lingo [9], Shoc [17] and Eigencluster [1] systems all
tackle Web snippet clustering by performing a singular value
decomposition of the term-document incidence matrix; the
problem is that SVD is extremely time-consuming, hence
problematic when applied to a large number of snippets.

Ferragina and Gulli [4] propose a method for hierarchical
clustering of Web snippets which produces a hierarchy of
labelled clusters by constructing a sequence of labelled and
weighted bipartite graphs representing the individual snip-
pets on one side and a set of labelled clusters on the other
side. In this work the emphasis is on the accuracy of the
labels rather than on that of the clusters.

3. IMPROVING THE FPF ALGORITHM FOR
K-CENTER

We now move to discussing our proposed algorithm.
Many clustering algorithms are based on an explicit at-

tempt to minimize a given function of the distribution of the
documents within clusters, a function whose minimization
is believed to coincide with a higher accuracy of the result-
ing k-clustering3. Likewise, the furthest-point-first (FPF)

3These functions are sometimes used within experimental
evaluations as internal measures of accuracy, i.e. as mea-
sures of the “well-formedness” of the resulting k-clustering.
We will instead use an approach to evaluation based on ex-

algorithm [3] is an attempt to solve the so-called k-center
clustering problem, defined as follows:

The k-centers problem: Given a set S of points
in a metric space M endowed with a metric dis-
tance function D, and given a desired number k
of resulting clusters, partition S into non-overlapping
clusters C1, . . . , Ck and determine their “centers”
µ1, . . . , µk ∈ M so that maxj maxx∈Cj D(x, µj)
(i.e. the radius of the widest cluster) is mini-
mized.

Given a set S of n points, the FPF algorithm builds a se-
quence T1 ⊂ . . . ⊂ Tk = T of k sets of “centers” (with
Ti = {µ1, . . . , µi} ⊂ S) in the following way. At iteration i:

1. for every point pj ∈ S \ Ti−1, it determines µ(pj) =
arg minµs D(pj , µs), i.e. the center in Ti−1 closest to
pj ; µ(pj) is called the neighbour of pj ;

2. of all points pj it picks µi = arg maxpj D(pj , µ(pj)),
i.e. the point which maximizes such minimal distance,
and makes it a center, i.e. adds it to Ti−1, yielding Ti.

The final set of centers T = {µ1, . . . , µk} defines the result-
ing k-clustering, since each center µi identifies a cluster Ci

as the set of data points whose neighbour is µi.
Most of the computation is actually devoted to comput-

ing distances: if this is done in a straightforward manner,
i.e. computing the distance of each point from each center
in Ti−1, it takes O(n) time per iteration, so the total com-
putational cost of the algorithm is O(nk). We have thus im-
proved this algorithm by exploiting the triangular inequality
to filter out redundant distance computations.

The algorithm works as follows. Consider, in the FPF al-
gorithm, any center µx ∈ Ti and its associated set of closest
points N(µx) = {pj ∈ S \ Ti | µ(pj) = µx}. Store N(µx) as
a ranked list, in order of decreasing distance to µx. When a
new center µy is selected, scan N(µx) in decreasing order of
distance, and stop scanning when, for a point pj ∈ N(µx), it
is the case that D(pj , µx) ≤ 1

2
D(µy, µx). By the triangular

inequality, any point pj that satisfies this condition cannot
be closer to µy than to µx. This rule filters out from the scan
points whose neighbour cannot possibly be µy, thus signif-
icantly speeding up the identification of neighbours. Note
that all distances between centers in Ti must be available;
this implies an added O(k2) cost for computing and main-
taining these distances. Note that this modified algorithm
works in any metric space, hence in any vector space4.

This algorithm is advantageous in applications, such as
Web snippet clustering, in which all data are loaded into
main memory and clustering must be performed on-the-fly.
In such scenarios scalability is an issue not because of the
need to access slow secondary memories, but because of the
high number of distance computations. In this context, algo-
rithms (such as most variants of hierarchical agglomerative
clustering) that compute all O(n2) pairwise distances be-
tween the data points are too expensive. Also methods that

ternal measures of accuracy, i.e. an approach in which the
resulting k-clustering is checked against a “ground truth”,
or “gold standard”, consisting of a group of n documents
preclassified under k predefined classes. The accuracy of
the clustering engine will be defined in terms of its ability
at replicating this ground truth.
4We recall that any vector space is also a metric space, but
not vice-versa.

perform O(nk) distance computations are not feasible here,
except when k is a very small number (e.g. 2 or 3).

4. EXPERIMENTAL SETUP

4.1 Thek-means algorithm and its variants
Our experiments have been run with two variants of our k-
center algorithm and three recently proposed, fast variants
of k-means.

The k-means algorithm can be seen as an iterative cluster
quality booster. It takes as input a rough k-clustering (or,
more precisely, k candidate centroids) and produces as out-
put another k-clustering, hopefully of better quality. It has
been shown [12] that by using the sum of squared Euclidean
distances as objective function 5, the procedure converges
to a local minimum for the objective function within a finite
number of iterations.

The main building blocks of k-means are (i) the generation
of the initial k candidate centroids, (ii) the main iteration
loop, and (iii) the termination condition. In the main it-
eration loop, given a set of k centroids, each input point is
associated to its closest centroid, and the collection of points
associated to a centroid is considered as a cluster. For each
cluster, a new centroid that is a (weighted) linear combina-
tion of the points belonging to the cluster is recomputed,
and a new iteration starts6. Several termination conditions
are possible; e.g. the loop can be terminated after a prede-
termined number of iterations, or when the variation that
the centroids have undergone in the last iteration is below a
predetermined threshold.

Given the importance of this algorithm, there is a vast
literature that discusses its shortcomings and possible im-
provements to the basic framework. In particular, one well-
known such shortcoming is that some clusters may become
empty during the computation. To overcome this problem,
following [11] we adopt the “ISODATA” technique that,
when a cluster becomes empty, splits one of the “largest”
clusters so as to keep the number of clusters unchanged.

It is well-known, and our experiments confirm this, that
the quality of the initialization (i.e. the choice of the initial k
centroids) has a deep impact on the resulting accuracy. Sev-
eral methods for initializing k-means are compared in [10].
As our baselines we have chosen the three such methods
that are most amply cited in the literature while being at
the same time relatively simple; we have ruled out more ad-
vanced and complex initializations since the possible boost
in quality would be paid immediately in terms of computa-
tional cost, thus bringing about too slow an algorithm for
our intended application.

4.2 Algorithms, baselines, and variants
5More precisely, this corresponds to partitioning S, at every
iteration, into non-overlapping clusters C1, . . . , Ck and de-
termining their centroids µ1, . . . , µk ∈ V so that the sum of
the squares of the inter-cluster point-to-center distancesX

j

X
x∈Cj

(D(x, µj))
2

is minimized.
6Note that k-means is defined on vector spaces but not in
general on metric spaces, since in metric spaces linear com-
binations of points are not points themselves.

The five algorithms we compare in our experiments are (i)
two variants of our algorithm (KC and RS), and (ii) three re-
cently proposed, fast variants of k-means (RC, RP, MQ) [11].
More in detail:

KC This is our k-Center algorithm with triangular inequal-
ity filtering, as described in Section 3.

RS This is the same as our KC algorithm, but applied to a
Random Sample of the input points of size n′ =

√
nk

(given that k ≤ n, it is always true that n′ ≤ n).
The remaining (n− n′) input points are subsequently
associated to the closest center.

RP This is k-means (as described in Section 4.1) with an
initialization based on Random Perturbation: for each
dimension dj of the space, the distribution of the pro-
jections on dj of the data points is computed, along
with its mean µj and its standard deviation σj ; the k
initial centroids are obtained through k perturbations,
driven by the µj ’s and σj ’s, of the centroid of all data
points [10].

MQ This is MacQueen’s [8] variant of k-means: the initial
centroids are randomly chosen among the input points,
and the remaining points are assigned one at a time to
the nearest centroid, and each such assignment causes
the immediate recomputation of the centroid involved.

RC This is again k-means where the initial centroids are
Randomly Chosen among the input points and the re-
maining points are assigned to the closest centroid.

4.3 Quality measures
We denote with L = {L1, ..., Lk} the ground truth partition
formed by a collection of classes, and with C = {C1, .., Ck}
the outcome of the clustering algorithm. As measures of
accuracy we use F1, entropy and purity, three well-known
measures that have been widely used in text clustering (see
e.g. [1, 13] and the references therein). As evident from
Table 1, the three measures tend to rank our algorithms in
a fairly consistent way.

F1 is the harmonic mean of precision (π) and recall (ρ).
Given a cluster Cj and a class Li, precision is defined as
πij = |Li ∩ Cj |/|Cj |, i.e. the probability that an element of
cluster Cj is actually an element of class Li, while recall is
defined as ρij = |Li ∩ Cj |/|Li|, i.e. the probability that an
element of class Li falls in cluster Cj ; F ij

1 is thus defined as

F ij
1 = 2(πij · ρij)/(πij + ρij). On an entire k-clustering F1

is defined as F1 = 1
n

P
i |Li|maxj F ij

1 , where n is the total
number of documents. The value of F1 is in the range [0, 1]
and a higher value indicates better quality.

Entropy is a widely used measure in information theory.
In our context, it measures our amount of uncertainty about
the ground truth provided the available information is the
computed k-clustering. Given a cluster Cj and a class Li,
we can define Ej =

P
i πij log πij (where πij is defined as

above), and E = 1
n

P
j |Cj | · Ej . The value of E is in the

range [0, log n] and a lower value indicates better quality.
While the entropy of a k-clustering is an average of the

entropy of single clusters, the notion of purity is obtained
using simply the maximum operator, i.e. Pj = maxi πij and
P = 1

n

P
j |Cj | ·Pj . Purity is in the range [0, 1], and a higher

value indicates better quality.

4.4 Hw and sw platform
We have run our tests on a processor AMD Athlon (1Ghz
Clock) with 750Mb RAM (however, the system could al-
locate only 512Mb RAM) and operating system FreeBSD
4.11-STABLE. The code was developed in Python V. 2.4.1.

5. EXPERIMENTS
We have made a series of experiments using as input the
snippets resulting from queries to the Open Directory Project
(ODP)7. The ODP is a searchable Web-based directory con-
sisting of a collection of a few millions Web pages (as of
today ODP claims to index 5.1M Web pages) pre-classified
into more than 590K categories by a group of volunteer hu-
man experts. The classification induced by the ODP la-
belling scheme gives us an objective “ground truth” against
which we can compare our clustering efforts. In ODP, doc-
uments are organized according to a hierarchical ontology.
For any snippet we have obtained a label for its class by
considering only the first two levels of the path on the ODP
category tree. For example, if a document belongs to class
Games/Puzzles/ and another document belongs to class
Games/Puzzles/Crosswords, we consider both of them
to belong to class Games/Puzzles. This coarsification is
needed in order to balance the number of classes and the
number of snippets returned by a query. In ODP the tex-
tual quality of the snippets is quite variable; therefore, in
order to filter out noise, for each query we first collect the
top-ranked 200 snippets and then we discard those that are
shorter than 40 characters and contain fewer than 3 words.
Each retained snippet is turned into vectorial form by re-
moving stop words, performing stemming, and weighting
the terms by cosine-normalized tf ∗ idf . The sine of the an-
gle between two vectors is used by the clustering algorithms
as the measure of their distance (note that the often used
cosine is a measure of closeness, not of distance).

Since Web snippet clustering is used as an on-line support
to Web browsing, real-time response is a critical parameter.
A clustering phase that introduces a delay comparable to
the time needed for just downloading the snippets, thus in
fact doubling the user waiting time, is not acceptable for
most users. For this reason, instead of using a fixed number
of iterations as the termination condition of the k-means
algorithm, we opt for a fixed time deadline (5 seconds, in
our experiments) and we halt the clustering algorithms at
the end of the first iteration that has run over the deadline.

In Table 1 we report clustering time and output quality
of several variants of k-center and k-means on a sample of
12 queries subdivided, according to the method of [2], in
three broad families: ambiguous queries (armstrong, jaguar,
mandrake, java), generic queries (health, language, machine,
music, clusters), and specific queries (mickey mouse, olympic
games, steven spielberg). In Table 1, for each query group
we indicate averages of the number n of snippets found, the
number k of ODP classes to which they are associated, and
the time τ (in seconds) used to build the vectorial repre-
sentations. For each query group and each algorithm we
indicate the time used for clustering and the quality of the
outcome; we highlight in bold the two best values in each
column8. The main conclusion of these experiments is that

7http://www.dmoz.org/
8For the sake of replicating the experiments all the
search results have been cached and are available at

Algorithm Clustering Time F1 E P

Query group = “ambiguous”
avg(n) = 165 avg(k) = 38.75 avg(τ) = 0.695

KC 0.923 0.383 0.967 0.590
RS 1.053 0.393 0.901 0.595
RP 45.310 0.270 1.135 0.456
MQ 6.775 0.332 0.981 0.555
RC 6.991 0.366 0.880 0.589

Query group = “generic”
avg(n) = 181.4 avg(k) = 42 avg(τ) = 0.889

KC 1.208 0.379 1.005 0.541
RS 1.339 0.369 0.994 0.536
RP 56.912 0.279 1.184 0.431
MQ 7.164 0.364 0.991 0.532
RC 6.597 0.345 1.035 0.514

Query group = “specific”
avg(n) = 107.3 avg(k) = 26 avg(τ) = 0.509

KC 0.536 0.510 0.834 0.642
RS 0.606 0.530 0.758 0.647
RP 17.239 0.372 1.004 0.508
MQ 5.796 0.413 0.837 0.591
RC 5.092 0.427 0.845 0.589

Query group = “ambiguous ∪ generic ∪ specific”
avg(n) = 157.4 avg(k) = 36.9 avg(τ) = 0.729

KC 0.945 0.413 0.949 0.582
RS 1.060 0.417 0.904 0.583
RP 43.126 0.299 1.122 0.458
MQ 6.692 0.365 0.949 0.554
RC 6.352 0.372 0.935 0.557

Table 1: Results of Web snippet clustering for a
sample of ODP snippets.

our two versions of FPF (KC and RS) are 5 to 10 times
faster than the three fast versions of k-means (RP, MQ, and
RC), and obtain a level of accuracy comparable or superior
to these latter.

Note that in these experiments we ask our system to par-
tition the snippets into exactly k clusters, where k is the
number of labels under which the snippets are partitioned
in the ground truth. These experiments thus do not address
the problem of how the value of k should be chosen in an
operational environment. Choosing this value can only be
done empirically, since the “optimal” value of k is depen-
dent on the user’s preferences as to the level of granularity
at which information should be organized, which is highly
subjective.

5.1 Redefining the distance function
In subsequent experiments we have tested the effect of using
distance functions other than sine. We have obtained inter-
esting results by using a slight modification of the standard
Jaccard Coefficient, which we call Weighted Jaccard Coeffi-
cient (WJC) [14]. The WJC takes advantage of the intrinsic
structure of the ODP snippets, by weighting different parts
of the snippet (title, body, URL) differently; more precisely,
we assign weight 3 to the title, weight 1 to the body, and
ignore the URL (in experiments we have run, the text of
the URL seems proves almost useless for increasing cluster
quality). So, our WJC metric is defined as follow:

http://psp1.iit.cnr.it/~mcsoft/fpf/fpf.html

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4

F
-m

ea
su

re

Time in seconds

F-measure

TF-IDF
Weight 3

Figure 1: F1 values obtained, for the same queries,
using sine (large black dots) or WJC (small grey
dots) as distance functions, running the two variants
of our algorithm (KC and RS) on ODP data; time
(in seconds) includes the construction of the vector
representation and clustering.

d(s1, s2) =

8<: 1 if |s1 ∩ s2| = 0
0 if 2p(s1, s2) ≥ |s1|+ |s2|
1− p(s1,s2)

|s1|+|s2|−p(s1,s2)
otherwise

where

p(s1, s2) =
X

i∈s1∩s2

w(s1, i) + w(s2, i)

2

and w(s, i) is the weighted number of occurrences of word i
in the snippet s.

It is easy to note that, by using the WJC, the preprocess-
ing phase is reduced to stop word removal and stemming,
and does away with the need to compute cosine-normalized
tf ∗ idf weights; as a consequence, it is much faster. We
do not report detailed results of these experiments for rea-
sons of space, and we only summarize them qualitatively in
Figure 1, which clearly shows how WJC has an accuracy
comparable to sine while being far more efficient.

6. CONCLUSIONS
The k-means algorithm is a renowned clustering method
used in a wide range of applications. In contrast, the furthest-
point-first method for k-center clustering had been consid-
ered so far only of theoretical interest. In this paper we
propose a much faster variant of FPF based on a filtering
step that exploits the triangular inequality, and show its
suitability for Web snippet clustering, a task at which our
algorithm performs with accuracy comparable or often bet-
ter than recently proposed, fast versions of k-means, while
being far more efficient to run. We show that even higher
efficiency can be obtained by using metrics that exploit the
internal structure of the snippets.

Our algorithm dispenses with the need to compute cen-
troids, and could thus easily deal with situations where the

notion of a centroid is not a natural or well-defined one, or
is expensive to compute and update.

7. REFERENCES
[1] D. Cheng, R. Kannan, S. Vempala, and G. Wang. On a

recursive spectral algorithm for clustering from pairwise
similarities. Technical Report MIT-LCS-TR-906,
Massachusetts Institute of Technology, Cambridge, US,
2003.

[2] E. Di Giacomo, W. Didimo, L. Grilli, and G. Liotta. A
topology-driven approach to the design of Web meta-search
clustering engines. In Proceedings of SOFSEM-05, 31st
Annual Conference on Current Trends in Theory and
Practice of Informatics, Liptovský Ján, SK, 2005.

[3] T. Feder and D. Greene. Optimal algorithms for
approximate clustering. In Proceedings of STOC-88, 20th
ACM Symposium on Theory of Computing, pages 434–444,
Chicago, US, 1988.

[4] P. Ferragina and A. Gulli. A personalized search engine
based on Web-snippet hierarchical clustering. In Special
Interest Tracks and Poster Proceedings of WWW-05,
International Conference on the World Wide Web, pages
801–810, 2005.

[5] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoretical Computer Science,
38(2/3):293–306, 1985.

[6] M. A. Hearst and J. O. Pedersen. Reexamining the cluster
hypothesis: Scatter/Gather on retrieval results. In
Proceedings of SIGIR-96, pages 76–84, Zürich, CH, 1996.

[7] Y. Maarek, R. Fagin, I. Ben-Shaul, and D. Pelleg.
Ephemeral document clustering for Web applications.
Technical Report RJ 10186, IBM, San Jose, US, 2000.

[8] J. MacQueen. Some methods for classification and analysis
of multivariate observations. In Proceedings of the 5th
Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281–297, 1967.

[9] S. Osinski and D. Weiss. Conceptual clustering using Lingo
algorithm: Evaluation on Open Directory Project data. In
Proceedings of IIPWM-04, 5th Conference on Intelligent
Information Processing and Web Mining, pages 369–377,
Zakopane, PL, 2004.

[10] J. M. Peña, J. A. Lozano, and P. Larrañaga. An empirical
comparison of four initialization methods for the k-means
algorithm. Pattern Recognition Letters, 20(10):1027–1040,
1999.

[11] S. J. Phillips. Acceleration of k-means and related
clustering algorithms. In Proceedings of ALENEX-02, 4th
International Workshop on Algorithm Engineering and
Experiments, pages 166–177, San Francisco, US, 2002.

[12] S. Selim and M. Ismail. K-means type algorithms: A
generalized convergence theorem and characterization of
local optimality. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6(1):81–87, 1984.

[13] M. Steinbach, G. Karypis, and V. Kumar. A comparison of
document clustering techniques. In Proceedings of the ACM
KDD-00 Workshop on Text Mining, Boston, US, 2000.

[14] A. Strehl, J. Ghosh, and R. J. Mooney. Impact of similarity
measures on Web-page clustering. In Proceedings of the
AAAI Workshop on AI for Web Search, pages 58–64,
Austin, US, 2000.

[15] O. Zamir and O. Etzioni. Web document clustering: A
feasibility demonstration. In Proceedings of SIGIR-98,
pages 46–54, Melbourne, AU, 1998.

[16] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity
search: The metric space approach. Springer-Verlag,
Heidelberg, DE, 2006. Forthcoming.

[17] D. Zhang and Y. Dong. Semantic, hierarchical, online
clustering of Web search results. In Proceedings of
APWEB-04, 6th Asia-Pacific Web Conference, pages
69–78, Hangzhou, CN, 2004.

