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1 Prologue

A 1965 essay by Paul Joseph Salomon Benacerraf (1930 – 2025) [1] begins by telling the story
of two child-mathematicians, Ernie and Johnny, each strictly educated by their respective parent-
mathematicians in a particular version of Peano arithmetic [2] having a single model/representation
in set theory. However, the models are different in the two families. We follow the separate evolution
of the two child-mathematicians until they meet and by exchanging their notes they realize that there
are “theorems” (note the quotation marks) that are verified in one model but not in the other, and
they start arguing.

Furthermore, it is assumed that a Platonist philosopher has followed the entire cultural evolution
of the two families and is now reasoning about which could be the “true” model of Peano arithmetic
among the two considered. A Platonist philosopher by definition should assume that only one of
the two models is the “true” one (i.e. the model that embodies the essence of the number in all
respects) or perhaps neither of the two, but certainly not both. The Platonist philosopher reasons in
the manner of Aristotelian logic, that is, according to the law of excluded middle (tertium non datur)
and avoiding contradictions (a proposition cannot be simultaneously true and false), furthermore
for reasons unknown to us he is prone to apply the principle of insufficient reason [3]. So the
author, abandoning the two boys to their arguments in the background, observes the reasoning of
the Platonist philosopher.

Broadly speaking, the initial step consists in tracing the phenomenon of the “true/false theorems”
in the two models back to an elementary characteristic of the two models. Namely, the fact that
the same natural number n ≥ 2 is identified (using the symbol ‘=’) with two different sets, let’s call
them I(n) and I ′(n), in the two models1. But the transitive property of equality would lead us to
state that I(n) = I ′(n) when instead they are evidently different sets2.

Not wanting to give up the transitive property of equality, the Platonist philosopher is now
reduced to the situation in which he must declare only one of the two models, or neither, “true”
(i.e. the model in which the equality between number and set is the authentic one) and the other
false, or both, (i.e. a model for which the equality between number and set is fictitious, superficial,
perhaps useful for making calculations, but essentially devoid of profound meaning). In order not to
end up like Buridan’s donkey, always undecided between the two equivalent piles of hay, applying
the principle of insufficient reason, he concludes that both models must necessarily be false.

Here enters the author, who has observed benevolently the life, thoughts and beliefs of the
two child-mathematicians and their families until now, and has also observed perhaps with less
benevolence the Platonist philosopher who, following the thread of his own reasoning, has certified
autonomously and without any external help the failure of the enterprise of identifying the essence of
the number with that of the set. The author generalizes by observing that there are infinite possible
models of Peano arithmetic that can be constructed in set theory, but for every pair of different
models one falls into the same trap that the Platonist philosopher has constructed for himself. From
here on the author becomes the protagonist forgetting about the Platonist philosopher, the two
families of mathematicians, and the strange phenomenon of the “theorems” verified in one model
but not in another.

Note the author’s basic indulgence for the two families of mathematicians, and instead the
satisfaction in seeing the rival Platonist philosopher fall into his own net and thus abandon the field.

What happens next? We are not interested now in establishing who is right or wrong between
the Platonist philosopher and the author on the essence of the number. What we narrate from here
on cannot (should not) be used either for or against the two philosophical schools that confront
each other in the essay. Instead, we are interested in the story of the two families of mathematicians
beyond the narrow scope of the essay. As in ‘Carnage’ (Roman Polanski’s 2011 film) the two families

1For the numbers 0 and 1, however, the corresponding sets in the two models coincide.
2For example, the number 3 is associated in one model with the set {ϕ, {ϕ}, {ϕ, {ϕ}}}, while in the second model

with {{{ϕ}}}, where ϕ indicates the empty set.
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organize a meeting (without the children) to settle their differences and reach an agreement, behind
the backs and without worrying too much about the other characters in the story, and what they
might say or think about them. The two families (father and mother) are the Montagues for Ernie
and the Capulets for Johnny.

2 Dialogue

2.1 First day

Montagues (Model I) and Capulets (Model II) meet in front of a good mug of beer, the tension begins
to dissolve and the two couples feel at ease, to the point of being able to ask the fateful question:
“Could you show us the set-theoretic model that you use to develop your Peano arithmetic? Let’s
call it PA.” At which point, each showing the other their model, both couples see a knowing smile
appear on the other’s face.

Capulets: “Dear Montagues, there would be no need for words between us seasoned mathemati-
cians, but since we are here to clarify, we must declare ourselves. Please, after you. ”

Montagues: “Certainly, dear Capulets, we are afraid, as we are sure you are also thinking,
that we are faced with a case of double abuse of notation. That is, the symbol ‘=’ should not be
understood as a symbol of equality/identity between numbers and sets, instead it takes the place of
a more precise notation that defines a function f with domain among the natural numbers N and
co-domain among the sets defined by the recursive scheme:

f(0)
def
= ϕ

f(x)
def
= f(x− 1) ∪ {f(x− 1)} se x > 0

for model I, which we believe is due to John von Neumann [4] so we could call this family of sets
Ivn. Similarly we will have in model II another function g with domain among the natural numbers
N and co-domain among the sets defined by the recursive scheme:

g(0)
def
= ϕ

g(x)
def
= {g(x− 1)} if x > 0

This model is due, we believe, to Ernst Zermelo [5] so we will call this family of sets with Iez.
Interestingly, if x ∈ N is 0 or 1 we get the same sets, then from x ≥ 2 we get different sets.”

Montagues: “It is interesting that these encodings are 1-1 and therefore invertible, that is, given
a set a ∈ Ivn there exists a unique number x ∈ N such that f(x) = a, which allows us to define the
inverse function f−1 with domain on Ivn and with co-domain in N . Similarly, we have a 1-1 function
g between N and the sets in Iez and its inverse function g−1 with domain in Iez and co-domain
N . Combining the functions f and the function g−1 we have a 1-1 function with domain in Iez and
co-domain in Ivn. Combining f−1 and g we have its inverse function. This allows us to uniquely and
invertibly associate any set in one model with a single set in the other model without even having
to mention the number to which both correspond.”

Capulets: “Interesting, we could conclude that the two representations are isomorphic and fur-
thermore both preserve the Peano axioms, so the theorems of PA derivable in the two models are
the same.”

Montagues: “Certainly the notation has become cumbersome, but it should save us from falling
victim to misunderstandings if we were to interpret, God forbid, the symbol ‘=’ as equivalence/identity,
which can only lead to disastrous consequences.”

Capulets: “We seem to recall that Dedekind demonstrated that all models for second-order Peano
arithmetic are isomorphic to each other way back in 1888. Who knows if this has anything to do
with it.”
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2.2 Second day

Montagues: “The mystery of propositions that are true in one PA model but turn out to be false in
the other remains unsolved. But we do not think we can attribute this to elementary issues such as
abuse of notation or problems with the transitivity of the equality/identity relation.”

Capulet: “Perhaps we should consult the giants on whose shoulders we are comfortably sitting
to scan the horizon. We believe that Model Theory could help us, or Goedel’s theorems. Let’s look
into the sacred texts, such as for example the recount that I found in a 2004 course in Mathematical
Logic at MIT in Boston [6].”

3 Reconciliation between mathematicians

Once it was established quite easily that the sign = does not indicate identity but is used as an

abbreviation for
def
= which indicates the definition of a function from one domain (natural numbers)

to another (sets of Zermelo-Fraenkel [7]), the two families established that it is not possible to apply
the transitive properties of identity in dealing with these definitions.

The apparent anomaly of propositions that seem to be theorems if evaluated with sets Ivn,
preferred by Ernie, while they do not seem to be theorems if evaluated with sets Iez, preferred by
Johnny, and vice versa, remains to be solved.

Back to basics, they consult a nice MIT course on mathematical logic from 2004 that is easily
found online [6]. Lesson 17 deals with interpretations, that is, how to translate a proposition from the
language of Peano arithmetic (LA) to another language, in our case the language of Zermelo–Fraenkel
set theory (LS).

In the language of set theory we have the symbols of first-order logic and only one non-logic
binary predicate ‘belongs to’ indicated by ∈.

In the language of arithmetic we have the symbols of first-order logic and some predicates (binary
and ternary) that indicate: successor (S), addition (A), multiplication (M), exponentiation (E) and
‘less-than’ (L). We must therefore have at hand LS formulas that replace such arithmetic predicates
(S, A, M , E and L) in addition we need formulae N(x) and Z(x) that represent the predicates “x
is a set associated with a natural number” , and “x is a set associated with zero” where x takes
values among all the sets. These formulas will obviously be different for the systems ez and vn, but
the translation rules that follow do not depend on which of the two systems is used, just choose one
consistently.

At this point an arithmetic formula in LA language is translated into a formula in LS quite
mechanically, except for one detail, that of the quantifiers. The expression ∀x... and ∃x... in the LA
language indicate that x has values in the domain of numbers. The same expression in the language
of sets LS indicates that x as has values in the domain of sets. However, there are sets that are not
associated with numbers, so the way of translation must take this into account. In particular, one
translates ∀xP (x) in LA with ∀x(N(x) → P (x)) in LS, where P (x) is any formula in which x is
a free variable. Note that for sets in LS that do not correspond to numbers the antecedent of the
implication is always false so the implication is true for such sets.

Similarly, ∃xP (x) in LA translates to ∃x(N(x) ∧ P (x)) in LS, Note that for sets in LS that do
not correspond to numbers the first part of the conjunction is always false, so the conjunction is
false for such sets.

Let’s now see what happens to the theorem in question in LA proposed by Ernie, which states
that a number x (set) is less than another number y (set) if and only if x is an element of y. Here n
is the generic function that associates numbers to sets: So let’s start from a formula in LA plus the
function n :

∀x∀y(x < y ↔ n(x) ∈ n(y)) (1)
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becomes in the LS language:

∀x∀y(N(x) → (N(y) → ((L(x, y) ↔ x ∈ y))) (2)

For Ernie who uses the von neuman system N , L and n are: Nvn Lvn and nvn so the theorem
established by Ernie in the LS language is:

∀x∀y(Nvn(x) → (Nvn(y) → (Lvn(x, y) ↔ x ∈ y))) (3)

At this point Johnny’s father and mother look at what has been written and agree that for them
too this is a theorem that their son can accept (even if a little vacuous since the antecedents Nvn(x)
and Nvn(y) are always false on the sets Iez, except for the sets corresponding to 0 and 1).

The mutual recognition argument obviously also works for Johnny’s theorems once they are
correctly translated into the LS language, i.e. using (Sez, Aez,Mez, Eez, Lez) and Nez, Zez in the
translation, with the same rules as above for treating quantifiers.

We note that no deep theorem of logic was needed to reconcile the two boys, we did not have
to invoke Geodel’s incompleteness theorems, or worry about whether every true formula of PA is
formally provable, etc... We did not even have to invoke model theory and worry too much about
axioms. Here only a little syntactical foresight resolved the situation.

At this point two of the mathematical difficulties that emerged in the discussion on page 54/55
of [1] have evaporated. Are there any others left?? There is the question of the cardinality of the set
that represents a number, but we will leave this for another day, since each day has enough trouble
of its own. Furthermore, the discussion on cardinalities is introduced with the aim of refuting some
theories of Gottlob Frege (1848 - 1925), but in other respects it is tangential to the main discussion
in [1].

We note the mathematical style in solving the question using when possible only syntactic rules
and the snail trick, which brings along its little house in the shape of a shell. In this case the
theorems must bring with them all their antecedents in order to be able to pass from one language
to another, otherwise there is a risk of losing pieces in the move. This syntactic rigor, however,
magically becomes semantic precision since it leaves no ambiguity in the translation and therefore
leaves no room for false dilemmas.

4 The dialogue resumes: third day

Montagues: “It seems to us that we all agree that the asserted “true/false theorems” in the two LS
models of PA are not theorems because they do not respect the rules for translating a preposition
from one language to the other. On the other hand, the propositions stated in a syntactically correct
way are instead equally true (therefore by definition theorems) or false in both models.”

Capulet: “We wonder if we have not been too rigid in our educational approach that has taught
only one model in the LS language to our young people.”

Montagues: “My wife and I exclude it. In fact, the rules for translating from LA to LS are
formulated to correctly treat sets that do not correspond to numbers versus sets that correspond to
numbers in the model. These rules must be used regardless of whether one is aware of the existence
of models other than the one adopted.”

Capulet: “The time has come to bring the boys in and explain to them how theorems are born.”

5 Impact on the discourse of the Platonist philosopher

On page 56 second paragraph in [1], the Platonist philosopher summarizes the situation in a bifur-
cation for which he must admit:
(A) that simultaneously 3 = 3vn and 3 = 3ez, or
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(B) that at least one of the two systems (ez or vn) is not correct (for various reasons), but perhaps
also that neither of them is correct.
and furthermore that:
(C) there are no other alternatives (even if this is not explicitly stated).
The discourse continues, abandoning (A) very quickly because of the transitivity of equality and the
fact that obviously 3vn ̸= 3ez. Then the text begins to deal with (B) with a long discussion that
ends on page 62 with the conclusion that neither of the two systems is correct.

What to say in light of the reconciliation between Ernie’s and Johnny’s families. Can this
reconciliation have an impact on the discourse of the Platonist philosopher? It would be easy now
to show that in reality (C) does not hold because the alternative exists, that is, to give the symbol
= its correct meaning in the context, which is not that of identity. In other words, we have a case of
the “false dichotomy” fallacy [8]. However, there is still something useful and subtle to extract from
the discussion on (B). This discussion, reduced to the bare bones, is an application of the “principle
of insufficient reason” in the Boolean context.

6 The principle of insufficient reason

The “principle of insufficient reason”, also called the “principle of indifference”, [3] is used in various
interpretations of probabilistic phenomena or phenomena due to belief. In essence this principle
establishes that if we do not have good reasons to attribute different probabilities to similar events,
then all such events should be attributed the same probability. For example, in an ideal experiment
in which a 6-sided die is thrown, each face is attributed a probability 1/6 of appearing after the
throw (since for reasons of symmetry we have no reason to consider one face less probable than
another). Another use of this principle in the Bayesian theory of probability as belief consists in
attributing a uniform a priori probability to events about which we know nothing (not having yet
done the appropriate experiments that can modify the a posteriori probability).

It is known that this principle in probability must be treated with care, since an unqualified
use leads for example to Bertrand’s paradoxes [9] and other similar ones. The debate is still open
whether such paradoxes are inevitable or resolvable with appropriate limitations (see [10]).

The use of this principle in the Boolean context involves a translation from the continuous
numerical domain of probabilities to the discrete Boolean domain of true/false values (excluding a
third possibility).

A simplified version of the thread of reasoning followed by the Benacerraf Platonist is the fol-
lowing: there are two visions (vn and ez) for which one wants to establish whether it is true/false
that they faithfully represent in all respects the natural numbers as sets. An exhaustive table of the
possibilities in matrix form is the following:

vn ez
a) true true
b) true false
c) false true
d) false false

 (4)

By the law of the excluded middle and by the principle of non-contradiction one and only one of
the 4 lines a), b) c) or d) must be correct (to the exclusion of all the others). Line a) is excluded be-
cause it corresponds to the situation A) that the Platonist philosopher believes to be contradictory,
thus false. Lines b) and c) treat the conditions vn and ez differently, while, following the principle
of insufficient reason, one should treat vn and ez equally by giving the two visions the same truth-
ness/falseness value, so one can exclude b) and c). In the end only d) survives and necessarily must
be the correct conclusion.
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This reasoning scheme can certainly be extended to k visions, one can build a table with k
columns and with 2k rows in which the first row has all the ‘true’ values, the last one has all the
‘false’ values and in the middle the remaining 2k−2 rows are mixed (with both true and false values).
The principle of insufficient reason will lead to excluding all mixed lines, so that in the end one will
have to choose only between the first and the last line. If there is an auxiliary argument to exclude
one of the two surviving lines, the other wins.

We have already seen how in the light of the reconciliation between the mathematicians, we have
an indication that this auxiliary argument on A) is not so compelling. But let’s reason beyond that.

7 How to make at least one pigeon disappear

In this short paragraph I intend to show how the “principle of insufficient reason” in the Boolean/Discrete
context is problematic even when applied alone (i.e. without the need for auxiliary arguments to
discriminate between two surviving possibilities). To do this we will apply it in parallel to the
“pigeonhole principle” [11] and observe what comes out.

Suppose we have n+ 1 ideal classical pigeons (they do not die, do not give birth, do not wander
around in the dark, and cannot be in a state of quantum superposition) that go to sleep in n
pigeonholes at night, for n ≥ 2.

The pigeonhole law assures us that there will be at least one pigeonhole containing two or more
pigeons.

Let us now look at the same problem from the point of view of the Benacerraf Platonist philoso-
pher armed with the Boolean/Discrete insufficient reason principle. The Platonist asks the mathe-
matician: “Can you say that the first hole always contains two or more pigeons? ”

To which the mathematician replies that he cannot say so. The Platonist then asks the math-
ematician the same question about the second, the third, and so on up to the n-th hole, always
receiving the same negative answer. So reasoning, the Platonist concludes that with respect to the
n holes we are in the same condition of knowledge/ignorance and we have no reason to treat them
differently, therefore we will treat them all equally, so each hole must have the same number of pi-
geons. If this number is zero, we have succeeded in the enterprise of making n+1 pigeons disappear,
if this number is 1, then we will have concluded that a pigeon has disappeared. We can exclude
that this number is two or greater than two since we would have to create ex-nihilo at least n − 1
pigeons, something that we exclude as absurd in our ideal model. So finally having examined all
the possible numbers we know that at least one pigeon has disappeared and no hole contains two or
more pigeons.

8 More on pigeons: Can experimental proof help?

The pigeon holes are placed very high up and no one wants to take a ladder at night to go and
look in every hole and count the pigeons it contains. Both the mathematician and the philosopher
are very convinced of their reasoning and each would like the other to spend time and effort in
an experimental verification. However, not even an experimental verification would be conclusive
here, since real pigeons, unlike ideal ones, can die, give birth, hang around at night, and even be in
quantum superposition (like Schroedinger’s cats). It would probably be better to do experiments
with inanimate objects such as tin cans and glass marbles. But here too, what can an experiment
with 10 cans and 11 marbles tell us definitively for the case n > 11? Faced with these practical and
theoretical difficulties, the two give up on the experimental test.
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9 Irony of philosophy

In the classical myth of Plato’s cave, humanity is analogized to prisoners who have been forced since
childhood to live at the bottom of a cave with their backs turned to the exit and who see of the
objects of the external world only the shadows that the sunlight casts on the bottom of the cave.
The poor prisoners wonder about the nature of what they see, but they are naturally confused. The
philosopher is the one who, having broken his chains, goes out, and with difficulty sees the objects
in their true nature and returns to the cave to reveal the truth to his unfortunate companions and
thus free them too [12].

In Benacerraf’s article our two child-mathematicians are placed and chained with their backs to
the exit in two different caves (even if at a certain point they communicate) and each of the two sees
external objects illuminated by the sun (the natural numbers) only the shadow on the bottom of his
cave (an interpretation of the natural numbers as sets), and furthermore they are two very different
shadows. The poor child-mathematicians wonder about the nature of what they see, but they are
naturally even more confused than their previous colleagues, who at least saw the same shadow
to discuss. Benacerraf’s Platonist philosopher, however, fails in his existential purpose because,
although he has left the cave, he still reasons about shadows instead of objects in their true nature,
and above all he does not return to console his companions who remain chained. On an ethical level,
the Platonist philosopher conceived by Benacerraf is a very poor Platonist.

10 On the usefulness of paradoxes in philosophy and math-
ematics

Western philosophy and its paradoxes were born more or less together around the seventh century
BC in the cultural area of classical Greece. Zeno’s paradoxes of motion and quantity are among
the oldest reported and still discussed today [13]. Among modern paradoxes, the most famous are
perhaps Russell’s set-theoretic ones [14].

The usefulness of paradoxes lies in the stimulus they provide in developing new philosophy or new
mathematics or both, as well as in the intimate satisfaction of being able to undermine with little
stories of a few lines understandable by everyone, abstruse theoretical constructions that occupy
several volumes. They are a stimulus to keep thoughts under control when these fly too far from
the ground.

Reading excerpts from Benacerraf’s article widely reported in [15] and [16] I asked myself whether
the dilemma described in sections I and II is actually a paradox of mathematics. I am not aware
that mathematicians have set out to fix arithmetic and thus overcome this dilemma. Benacerraf’s
article is widely cited in the philosophical literature and is credited with having given rise to at
least two new lines of inquiry in the philosophy of mathematics. It is not so obvious what could
determine the fact that a non-problem for a mathematician could instead become a central problem
in a branch of philosophy. So I thought it was worth exploring this borderline phenomenon between
two disciplines to understand how they differ even when they are apparently talking about the same
thing.

11 Zermelo, Von Neumann and Benacerraf

Ernst Friedrich Ferdinand Zermelo (1871 - 1953) [5] and John von Neumann ( 1903 – 1957) [4]
were two mathematicians active at the beginning of the 20th century in the area of the foundations
of Mathematics (and for John von Neumann in many other areas of Mathematics). Many of the
main results in Mathematical Logic reported in the aforementioned MIT course [6] date back to the
mid-1930s.
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The article by Paul Joseph Salomon Benacerraf (1930 – 2025) is from 1965 so everything discussed
by the two child-mathematicians and their parents and the way they reconciled themselves were very
well known at the time this article was written. So I don’t think the author was ignorant of the fact
that the proposed paradox was actually empty for mathematicians.

Here comes into play the essential fact that it is not the author who observes the scene but a
supposed Platonist philosopher who is obsessed with the notion of identity, and whose thoughts the
author only tries to untangle, until these same thoughts turn against the initial hypothesis. So even
if the author sees the Platonist getting bogged down in his own reasoning he will do nothing to bring
him back on the right path, already savouring his final defeat.

In other words, accepting the mathematicians’ solution from the beginning in order to avoid
the apparent paradoxes implies giving up on posing the problem of what number is in terms of the
identity of the concept of number with something else (here with sets in the Zermelo-Fraenkel theory).
Benacerraf’s Platonist instead strongly wants to cast the problem as a problem of identity (in the
purest philosophical tradition) and therefore willingly accepts the misunderstanding of confusing =

with
def
= in examining Ernie and Johnny’s systems (who in turn, raised in caves, cannot warn the

Platonist of the misunderstanding). Nor does the author intend to stop the Platonist in his mad
rush, in the end anyway he would have arrived sooner or later at the same conclusion, that “numbers
cannot be sets” which was where he wanted the Platonist to arrive, but by the longest possible route.
The problem of the “true/false theorems” of the two models seems more like a red herring.

Figure 1: John von Neumann

12 Obsession with definiteness

A pedestrian view of the relationship between the work of the mathematicians and that of the
philosophers would see the mathematicians as intent on defining, specifying, analyzing every aspect
of the problem down to the smallest comma, avoiding every ambiguity even with the help of formal
languages instead of natural ones.

Furthermore, this view would see the philosophers instead at ease among the ambiguities of
natural language, capable of confidently making great conceptual leaps supported by centuries of
habit of logical/philosophical demonstration starting from the Platonic dialogues and Aristotelian
logic up to modern Dialectics, passing through Medieval Scholasticism.

Instead, the sad story of the pigeons that disappeared because of the poorly applied principle
of insufficient reason demonstrates that the mathematicians, through the pigeonhole principle, do
not need to see or know exactly which hole contains two or more pigeons, it is enough for them
to know that such hole exists without knowing which one it is. They can also give a symbolic
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Figure 2: Ernst Zermelo

Figure 3: Paul Benacerraf

name to that hole, even without knowing which hole it is, and from there continue with their
demonstrations (see the sophisticated combinatoric theory due to Frank P. Ramsey (1903 – 1930)
[17]). The mathematicians does not worry about the indefiniteness of the situation, indeed they
exploits it to their advantage.

On the contrary, the Platonist philosopher described in [1] in order to attain absolute and granitic
knowledge by dotting all the i’s and crossing all the t’s is led to ask wrong/useless questions trying
to identify exactly where the infamous two or more pigeons might be. At which point, after n tiring
questions, having made sure of the total equivalence from the cognitive point of view of the n holes,
he feels authorized to use the principle of insufficient reason to make at least one pigeon disappear
in order to make the pigeons’ accounts add up as if he were a magician. The excess of precision
together with poorly applied principles has led him to erroneous conclusions, without his being aware
of it. For the case of set-theoretic models of natural numbers, the fallacy of false dichotomy also
intervenes to complicate things a little more by combining with the obsession for definiteness and
the principle of insufficient reason.

13 Epilogue

Benacerraf’s article is composed of three parts (“Gallia est omnis divisa in partes tres”) of which
the first and second are the ‘pars destruens’ in which the Platonist philosopher dominates who
reluctantly at the end of the second part must admit that “numbers cannot be sets”.

The third part begins a ‘pars construens’ discussion in which he tries to tackle the problem of
what numbers can be, if they cannot be sets.
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In this short essay we concern us with sections I and II, and we say nothing about section III. We
have shown how the paradoxes invoked are easily solvable in mathematics, so they are considered
non-problems and deserve at most a footnote. We have then seen that the Platonist’s way of
reasoning is fraught with hidden dangers due to a casual use of the principle of insufficient reason
in a context foreign to that in which it originated. However, if the reasoning is problematic, it does
not follow that the conclusion is false (i.e. the conclusion “numbers cannot be sets” may very well
be the correct one).

The mathematical dilemmas from which the discussion in [1] starts are not such for the math-
ematicians themselves, who operate in a systematic way and are attentive to the syntax of the
languages used (LA and LS) and to the rules on how to translate one into the other. If the Platonist
philosopher in [1] had considered the solution to the apparent paradox advanced by the mathemati-
cians then he would probably have looked for a different way, even if it is not certain that he could
have found a different solution.

The mathematicians behave like the generals of an army with heavy logistics that carries slowly
and with considerable effort over long distances everything it may need because one never knows
what traps the enemy has devised and one must be ready to ward off any eventuality. Benacerraf’s
Platonist philosopher behaves like the general of a light army who bets everything on speed and
travels without a pack of baggage in enemy territory, living off what the territory has to offer, trying
to keep the enemy always unbalanced and unable to react.

14 Bibliography

[1] Paul Benacerraf (1965), “What Numbers Could Not Be”, Philosophical Review Vol. 74, pp.
47–73
[2] https://en.wikipedia.org/wiki/Peano_axioms
[3] https://en.wikipedia.org/wiki/Principle_of_indifference
[4] https://en.wikipedia.org/wiki/John_von_Neumann
[5] https://en.wikipedia.org/wiki/Ernst_Zermelo
[6] https://ocw.mit.edu/courses/24-242-logic-ii-spring-2004/
[7] https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
[8] https://en.wikipedia.org/wiki/False_dilemma).
[9] https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
[10] November, Dan D. “The Indifference Principle, its Paradoxes and Kolmogorov’s Probability
Space.” (2019).
[11] https://en.wikipedia.org/wiki/Pigeonhole_principle

[12] https://en.wikipedia.org/wiki/Allegory_of_the_cave
[13] https://en.wikipedia.org/wiki/Zeno’s_paradoxes
[14] https://en.wikipedia.org/wiki/Russell’s_paradox
[15] Horsten, Leon, “Philosophy of Mathematics”, The Stanford Encyclopedia of Philosophy (Winter
2023 Edition), Edward N. Zalta & Uri Nodelman (eds.), URL = https://plato.stanford.edu/

archives/win2023/entries/philosophy-mathematics/.

[16] https://en.wikipedia.org/wiki/Benacerraf’s_identification_problem
[17] https://en.wikipedia.org/wiki/Ramsey’s_theorem
[18] Avron, Arnon, and Balthasar Grabmayr. “Breaking the Tie: Benacerraf’s Identification Argu-
ment Revisited.” Philosophia Mathematica 31.1 (2022): 81-103.

A Notes

1) A recent paper by Arnon and Gramayr [18] is a useful reference point to summarize the state
of the art on the academic discussion and the ‘fortune’ of the identification problem. The

11

https://en.wikipedia.org/wiki/Peano_axioms
https://en.wikipedia.org/wiki/Principle_of_indifference
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/Ernst_Zermelo
https://ocw.mit.edu/courses/24-242-logic-ii-spring-2004/
https://en.wikipedia.org/wiki/Zermelo-Fraenkel_set_theory
https://en.wikipedia.org/wiki/False_dilemma).
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Pigeonhole_principle
https://en.wikipedia.org/wiki/Allegory_of_the_cave
https://en.wikipedia.org/wiki/Zeno's_paradoxes
https://en.wikipedia.org/wiki/Russell's_paradox
https://plato.stanford.edu/archives/win2023/entries/philosophy-mathematics/.
https://plato.stanford.edu/archives/win2023/entries/philosophy-mathematics/.
https://en.wikipedia.org/wiki/Benacerraf's_identification_problem
https://en.wikipedia.org/wiki/Ramsey's_theorem


central thesis of the paper [18] is that there are valid reasons to prefer one of the two models
compared (the von Neumann one) therefore an important step of the argument in the 1965
paper [1] would fall through. The issues highlighted in [18] are very different from those
exposed in this essay.

2) In the MIT course cited [6], the predicate “less than” in the LS language for the von Neumann
model is defined as

L(x, y)
def
= x ∈ y (5)

which would however make Ernie’s theorem a tautology (independently of the antecedents).
This undesired effect can be circumvented by adopting an alternative and equally valid defini-
tion of the type:

L(x, y)
def
= ∃z(N(z) ∧ ¬Z(z) ∧A(x, z, y)) (6)

where we say that x is less than y if there exists a number z different from zero for which the
addition of x and z is equal to y. Of course the predicate A(x, z, y), as well as N() and Z() in
LS must be defined without using L(x, y) to avoid circularity in the definitions.

3) In the comparison between the pigeonhole principle and the principle of insufficient reason
in Section 7 the philosopher’s question about each specific hole could be changed or varied,
but the result would remain the same. The problem lies in trying to infer knowledge about a
specific hole knowing with certainty which hole we are talking about.

4) From the MIT course [6] it is clear that there are several variants of Peano arithmetic, which
differ mainly in the type of quantifications allowed (first-order theories quantify on numbers,
second-order theories quantify on numbers and sets of numbers) and in the way of treating the
axioms of induction. Finally, there are other variants in which some axioms can be exchanged
with some theorems, or auxiliary axioms can be associated, formally derivable from the other
axioms, but which are added to the necessary axioms for convenience in the demonstrations.
The discussion presented in the article [1] does not depend on these details, and for simplicity
we refer to a first-order theory.
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