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Abstract. The most popular approach to explain cancer is based on
the discovery of oncogenes and tumour suppressor genes as a preliminary
step in estimating their impact on altered pathways. The present paper
proposes a pipeline which aims at detecting ‘weak’ or ’indirect’ functions
impacted by Copy Number Variations (CNVs) of cancer–related genes,
integrating such signals over all known oncogenes/tumour suppressor
genes of a cancer type. We applied the pipeline to the task of detecting
the aberrant functional effects of these alterations across ovarian cancer
patients from The Cancer Genome Atlas (TCGA) data.
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1 Introduction

Currently, cancer is one of the best characterized diseases from a molecular point
of view and, indeed, the wealth of cancer–related data created the opportunity
to unravel its development mechanisms [1]. Commonly, the discovery of onco-
genes and tumor suppressors is a preliminary step in estimating their impact
on altered pathways that cause the onset of cancer [2]. Although many of these
genes have been discovered and studied for many types of cancer — they may
be either specific for a particular tumour, or active in different tumour types —,
usually only their primary functions are recognized [3].
Our investigation is based on the hypothesis that a more systematic and uni-
form approach to gene–function association might reveal ‘secondary’ or ‘indirect’
functional implications. In summary, all processes mediated by oncogenes and
tumor suppressors are generally directly or not directly related to different forms
of cancer, while a deep knowledge of their interactions is fundamental to better
understand the mechanism of oncogenesis.
The present paper proposes a software pipeline which aims at detecting ‘weak’
(or ’indirect’) functions impacted by Copy Number Variations (CNVs) of cancer
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related genes. CNVs are structural rearrangements involving DNA segments, of
at least 50 bp, that can be present with a variable copy number compared to the
reference genome [4]. Pathogenic CNVs are often associated with unfavorable
cancer prognosis and can occur as specific focal event or as regional aberrations
(> 3Mb in length)[5].
CNVs could directly influence the expression pattern of oncogenes and tumour
suppressors but their potential contribution to oncogenesis remains poorly un-
derstood and unclear. To learn more about the relationships between CNVs and
cancer, we applied our pipeline to the task of detecting the aberrant functional
effects of oncogenes and tumor suppressors by CNVs on the High Serous Ovar-
ian Carcinoma (HGSOC) dataset, obtained from The Cancer Genome Atlas
(TCGA). More precisely, we integrated copy number with gene expression data
of 32 oncogenes and 16 tumor suppressors identified by TCGA, as reported in [3].
We have chosen to study this type of cancer because HGSOC is characterized by
genomic instability, including recurrent somatic mutations, promoter methyla-
tion events and a high frequency of CNVs. In order to determine co–expression
profiles among up/down–regulated genes, a recent bi–clustering method [6] is
applied, aimed at selecting significant gene activation patterns that are typical
only of a subset of patients. Indeed, a standard requirement in analyzing gene
data is that of grouping genes according to their expression with respect to
multiple patients, since subsets of genes may be co–regulated and co–expressed
only for certain patient populations, while they behave almost independently for
others. Finding these local expression patterns can be obtained with a two–way
clustering or bi–clustering, and is the key to uncover unknown genetic pathways.
Finally, among cancer related genes identified by TCGA, we only report results
for the oncogene Derlin–1 (DERL1), in order to clearly explain every single step
of our pipeline. DERL1 is a component of the endoplasmic reticulum–associated
degradation (ERAD) for misfolded proteins and is located on the focally ampli-
fied region 8q24.13 identified in HGSOC by TCGA, as reported in [7]. In fact,
although DERL1 overexpression is associated with several tumor types, includ-
ing colon and bladder cancer, the impact of DERL1 CNVs on ovarian cancer
neoplasia is not yet well understood.
The paper is organized as follows. In the next section the data collection proce-
dure and the software pipeline, used to detect functional implications of CNVs
on the serous ovarian carcinoma, are described, while Section 3 collects experi-
mental results. Finally, in Section 4, we discuss on the obtained outcomes, draw
some conclusions and illustrate future perspectives.

2 Materials and methods

2.1 Data sources

The copy number and mRNA expression data of TCGA are collected from the
Broad Institute’s GDAC Firehose, using the R package RTCGAtoolbox [8]. The
copy number calls were determined by TCGA using the GISTIC algorithm [9]
which identifies genomic regions that are significantly amplified or deleted across
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a set of tumors. Each significantly aberrant region is examined to determine
whether it is a focal event (length of the copy number alterations < 3 Mb) or a
broad event (equal to the length of a chromosome arm or of an entire chromo-
some), or shows both characteristics. GISTIC output includes the copy number
status of each gene in each sample and it is achieved through the implement of
low and high level thresholds to the gene copy levels. The low-level threshold is
typically 0.1 or 0.3, while the high-level threshold is computed on a sample by
sample basis and is related on the maximum and minimum median arm-level
amplification and deletion copy number found in each samples.
Copy number estimation by GISTIC is explained in table 1

Table 1. Copy number estimation by Gistic2

CNV values Categorization

-1 Shallow Deletion
-2 Deep Deletion
0 Neutral Copy
+1 Low level Gain
+2 High level Amplification

2.2 Pipeline

The core of the proposed pipeline is composed by four steps:

– Differential analysis: for a given p–value threshold and absolute log2 fold
change threshold, using standard state–of–the–art tools (edgeR [10]), we de-
termine, among a target set of genes, those that are over/under–expressed
in the case/control populations;

– Pathway enrichment analysis: it is applied to Differentially Expressed
Genes (DEGs) using the package ReactomePA [11];

– GH–EXIN: In order to further determine co–expressed genes, starting
from previously selected up/down–regulated genes, we apply a bi–clustering
method [6], aimed at selecting both patients and genes, forming highly ho-
mogeneous bi–clusters;

– GO Enrichment: for each bi–cluster reaching a user–defined quality thresh-
old and a minimum number of patients, we collect the GO annotations —
namely, Biological Process (BP) and Molecular Function (MF) — for all
the included genes. A GO category, whose statistical enrichment is below
a user–selected p–value threshold, is assumed to be significantly associated
with such genes.
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2.3 Data differential analysis

Given a pool of patients and a source gene, of which we wish to detect the func-
tional implications of CNVs, we split the patients into two sub–populations: the
subpopulation with CNV values = 2, collecting those patients for whom the gene
hosts copy number amplifications, and the complementary pool of patients, with
CNV values = 0. These two sub–populations form the case/control split under
examination. In order to understand the impact and the role of CNVs of DERL1
in ovarian cancer progression we chose to select as a test only the samples with
high level of amplifications. Since public repositories of cancer molecular data
are often composed of data collected under diverse technical conditions, in order
to reduce false positives due to such variability, we performed a batch correction
of gene expression levels, using the approach proposed in [4] (also applied in [3]).
The differential expression analysis, obtained with the edgeR package, [12] al-
lowed us to identify, among 19990 genes included in our dataset, those genes
that are statistically differentially expressed with a p–value <0.01 at an FDR
(False Discovery Rate) of 5%.

2.4 The GH–EXIN Neural Network Bi–clustering

In order to further analyze which groups of genes may be affected by CNVs —
and based on the assumption that human copy number variations are strictly
related to gene expression [13] —, a bi–clustering technique has been applied.
Standard clustering algorithms group genes according to their expression on
the overall dataset. Bi–clustering algorithms, instead, are capable to find in-
teresting gene activation patterns that are typical only of a subset of patients.
Bi–clustering is implemented here in the form of a two–way clustering, in which
the clustering operation is alternated in the two dimensions, related to genes
and patients, respectively. Only those genes capable to determine cohesive bi–
clusters (also with respect to the patient space) must be retained. To this aim,
the GH–EXIN neural network clustering has been chosen, a divisive hierarchical
clustering algorithm [6, 14] — specifically developed for bi–clustering applica-
tions — that builds a tree in an incremental and self–organized way. Clustering
algorithms, usually, optimize classic indexes, as the Standard to Noise Ratio
(SNR) [2]. Instead, to control the quality of a bi–cluster, GH–EXIN, minimizes
the Hcc index (introduced in [15]), defined as:

Hcc =

∑Nr

i

∑Nc

j r2ij

NrNc

where Nr represents the total number of rows (or genes), Nc represents the total

number of columns (or patients), and rij = aij −
∑C

k aik/C −
∑R

h ahj/R +

(
∑R

i

∑C
j aij)/(CR). Matrix A collects the gene expression level for each gene

and with respect to each patient, so that aij is the expression level of gene i in
patient j. R and C are the number of rows and columns of the particular bi–
cluster, respectively. Hcc becomes lower as the bi–cluster tends to be cohesive.
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We retain only those groups of genes for which the majority of corresponding
Hcc indices are below a user–defined threshold.

3 Results

3.1 Identification of DEGs

A total of 3585 genes are identified to be significantly differently expressed be-
tween test and control groups, at 5% FDR. Among these DEGs, 219 are up–
regulated and 638 are down–regulated, based on a p–value < 0.01 and |log2 FC|
≥ 1 as the cut off criteria. Furthermore, our analysis revelead that DERL1 is
over–expressed in samples characterized by CNAs (logFC =1.116725, p–value =
2.758823e-46, p–adjust = 4.802008e-42, see Fig. 1).
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(a) Volcano plot of differentially ex-
pressed genes. Data are plotted as log2
fold change versus -log10 of the ad-
justed p–value. Blue dots represent up–
regulated genes with logFC ≥1 and
FRD <0.05; red dots represent genes
whose expression is down–regulated,
with logFC < -1 and FDR 0.05.

ctr

(b) Box plots of differential log2–
transformed DERL1 count.

Fig. 1. Differential expression analysis.

3.2 Reactome pathway analysis

We further investigated the functional implication of up–regulated and down–
regulated genes, with |log2 FC| ≥ 1.0, by Reactome pathway analysis. Table
2 shows the top 10 enriched biological pathways with FDR below 0.05. Fig.
2 illustrates relationships between significant genes and the mainly enriched
biological pathways — glucuronidation and assembly collagen fibrils and other
multimeric structures pathways — as a network.
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Table 2. Reactome pathway enrichment analysis.

Pathway Description p.value p.adjust

R-HSA-156588 Glucuronidation 7.97e-13 5.45e-10

R-HSA-2022090 Assembly of collagen fibrils and other multimeric structures 1.89e-12 6.45e-10

R-HSA-1474244 Extracellular matrix organization 7.06e-12 1.61e-09

R-HSA-1442490 Collagen degradation 2.69e-11 3.93e-09

R-HSA-1474290 Collagen formation 2.87e-11 3.93e-09

R-HSA-1650814 Collagen biosynthesis and modifying enzymes 3.73e-11 4.26e-09

R-HSA-1474228 Degradation of the extracellular matrix 5.81e-11 5.43e-09

R-HSA-8948216 Collagen chain trimerization 6.36e-11 5.43e-09

R-HSA-211859 Biological oxidations 7.52e-09 5.71e-07

R-HSA-156580 Phase II - Conjugation of compounds 8.39e-09 5.74e-07
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Fig. 2. Pathway gene–network of top 2 enriched Reactome terms from up–regulated
and down–regulated genes.
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3.3 Bi–clustering results

Subsequently, we have analyzed up–regulated genes with the GH–EXIN bi–
clustering algorithm. As a result, a group of 12 genes has been selected. The
name of each gene together with the related annotation is reported in Table
3. This group of genes has the lowest Hcc value (0.135) among all the groups,
as shown in the bar–plot of Fig. 3(a). The expression levels of these genes are
also strongly correlated, as shown in the parallel coordinate plot of Fig. 3(b).
In this case, the x–axis corresponds to gene expression levels, while the y–axis
represents the patients.

Table 3. DERL1 cluster of up–regulated genes.

Gene annotation

FAP Prolyl endopeptidase FAP
ADAM12 Disintegrin and metalloproteinase
COL8A1 Collagen alpha-1(III) chain
COL1A1 Collagen alpha-1(I) chain
SLC35D3 Solute carrier family 35 member D3
COL3A1 Collagen alpha-1(III) chain
COL5A1 Collagen alpha-1(V) chain
INHBA Inhibin beta A chain
FN1 Fibronectin type III

ALPK2 Alpha-protein kinase
THBS2 Thrombospondin-2
COL5A2 Collagen alpha-2(V) chain

(a) Hcc values of all gene clusters pro-
duced by GH–EXIN. In the red circle,
the group of 12 selected genes.

(b) Parallel coordinates of the expression
levels of all up–regulated genes in the se-
lected clusters. In red, genes selected by
the GH–EXIN algorithm.

Fig. 3. Bi–clustering analysis on the up–regulated genes.
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Table 4. DERL1 cluster of down–regulated genes.

Gene Annotation

PCSK9 Proprotein convertase subtilisin/kexin type 9
SLC47A1 Multidrug and toxin extrusion protein 1;
NUDT11 Diphosphoinositol polyphosphate phosphohydrolase 3-beta

ADAMTS19 ADAM metallopeptidase with thrombospondin type 1 motif 19
BAMBI BMP and activin membrane-bound inhibitor homolog
MSX1 Homeobox protein MSX-1
FGF9 Fibroblast growth factor 9
FGF19 Fibroblast growth factor 19

UGT3A1 UDP-glucuronosyltransferase 3A1
SMTNL2 Smoothelin-like protein
CLDN2 cell-adhesion activity
NOTUM Palmitoleoyl-protein carboxylesterase

TMEM59L Transmembrane protein 59-like;
IHH Indian hedgehog protein
EN2 Homeobox protein engrailed-2

POMC Pro-opiomelanocortin; Endogenous opiate
SHISA6 Protein shisa-6 homolog
DKK4 Dickkopf-related protein; Antagonizes Wnt

RIMKLA N-acetylaspartylglutamate synthase A

(a) Hcc values of all gene clusters pro-
duced by GH–EXIN. In the red circle,
the group of 20 selected genes.

(b) Parallel coordinates of the expression
levels of all down–regulated genes in the
selected clusters.

Fig. 4. Bi–clustering analysis on the down–regulated genes.

Following the same approach, we have also analyzed down–regulated genes.
Results of this analysis are reported in Figs. 4(a)–4(b). As it is shown in Fig.
4(a), the group of gene we choose in this case is not the one at minimum Hcc.
Sure enough, the group of genes still has a low Hcc value, but there were groups
with lower values. Anyway, as shown in Section 3.4, the GO enrichment analysis
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revealed more interesting relationships within this group with regards to the
others. The selected genes are summarized in Table 4.

3.4 GO enrichment Cluster

Biological significance of selected clusters are explored by the GO term enrich-
ment analysis, including molecular function (MF) and biological process (BP),
by using a p–value < 0.01 and an FDR below 0.05, as the cut off criteria.
Up–regulated genes included in the DERL1 cluster are enriched in 13 terms
in the category MF and in 25 in the category BP. In the molecular function
group, up–regulated genes are mainly enriched in extracellular matrix structural
constituent (p–value= 8.84E-12, p–adjust= 4.33E-10) and in platelet–derived
growth factor binding (p–value=1.45E-10,p–adjust= 3.56E-09). In the biologi-
cal process group, up–regulated genes are mainly enriched in extracellular matrix
organization (p–value = 4.66E-11, p–adjust= 2.22E-08) and in endodermal cell
differentiation (p–value = 2.02E-10, p–adjust= 3.21E-08).

Based on the same approach, down–regulated genes included in the DERL1
cluster are enriched in 3 terms in the category MF and in 4 in the category BP.
In the molecular function group, down–regulated genes are mainly enriched in
receptor regulator activity (p–value= 7.332415e-05, p–adjust= 0.004472773) and
in fibroblast growth factor receptor binding (p–value= 1.950151e-04, p–adjust=
0.005947961). In the biological process group, down–regulated genes are mainly
enriched in regulation of canonical Wnt signaling pathway (p–value= 1.126880e-
05, p–adjust= 0.005490312) and in mesenchymal cell proliferation (p–value =
1.854439e-05, p–adjust= 0.005490312)

4 Discussion and conclusions

Ovarian cancer is the fifth leading cause of cancer death among women aged 35 to
74. In particular, high–grade serous ovarian cancer (HGSOC) is the most aggres-
sive type, showing the lowest survival rate and low response to standard therapy.
The genomic analyses carried out by the TCGA research network revealed that
HGS–OVCa is characterized by 113 significant focal DNA copy number aberra-
tions. Interestingly, the SNP copy–number analysis performed by TCGA iden-
tified an amplification region at 8q24.3, that includes the oncogene DERL1, a
component of ERAD pathway. From these evidence, in this study, we applied our
pipeline to shed light on the indirect effect of copy number amplifications of the
oncogene DERL1 in HGSOC development. We found that samples characterized
by the CNAs of DERL1 showed 3585 differently expressed genes in respect to
the control group, including DERL1. According to Reactome enrichment anal-
ysis, the DEGs are mainly enriched in glucuronidation and assembly collagen
fibrils and other multimeric structures pathways, fundamental processes for the
cancer development. Deregulation of glucuronidation process, through the down–
regulation of all components of UDP–glucuronosyl transferase (UGTs) protein
family, could lead to the accumulation of cellular compounds and improve the
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cellular fitness, allowing the tumour to growth and cells to proliferate under
stressful conditions. Within the pathway of ”assembly collagen fibrils and other
multimeric structures” there are both down–regulated and up–regulated genes
which can contribute to tumour malignancy and increase cancer cells prolifera-
tion. Indeed, several studies have demonstrated that, in pathological conditions,
the down–regulation of Collagen alpha–1(II)chain(COL2A1) gene, responsible
for the production of the alpha1(II) chain of type II collagen, could promote
cellular proliferation and migration [16]. At the same time, the over–expression
of Matrix metallopeptidase 13 (MMP13), implicated in the breakdown of extra-
cellular matrix, could induce cancer metastasis through known mechanisms as
tumour cell invasion [17]. In addition, the bi–clustering approach allowed us to
identify the co–expression profiles among significantly genes. These genes have
important roles in biological processes which, if deregulated, could contribute to
cancer progression. In particular, the evidenced clusters are involved in extra-
cellular matrix organization and in regulation of Wnt signal transduction, key
mechanisms in cancer biology. These results suggest us that the copy number
amplifications of oncogene DERL1 and its over–expression between the two con-
ditions could influence the expression of other genes involved in fundamental
pathways for ovarian cancer progression.
Different genes other than DERL1 are included in the focal amplification region
8q24.3 and they could also influence our analyses, making difficult to under-
stand the real impact of DERL1 aberration in ovarian cancer. Further analysis
will be necessary to clarify the contribute of DERL1 amplification in this type
of cancer. Concluding, a deeper bioinformatic and gene co–expression network
analysis is required to confirm the impact of CNVs of DERL1 and to investigate
the function of clusters associated with the development of HGSOC.
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