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A Technical definitions

Table 1 quickly summarizes all the main technical definitions used in this paper.
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Name Definition

D = {a,c,g,t} DNA alphabet
S = {S1, . . . , SN} Set of N sequences over D∗

Transcription Factor (TF) Protein that binds to specific stretches of
DNA

Transcription Factor Binding Site
(TFBS)

Specific stretch of DNA sequence which TFs
bind to

Position Weight Matrices (PWM) Matrix describing potential TFBSs of a TF
Oligonucleotide (oligo) Short word in D∗

DNA motif ((simple) motif) TFBS model for just one TF
Motif mach (occurrence or hit) Substring of a sequence in S represented by

the motif (a potential binding site)
Motif class (used interchangeably with
Transcription Factor or factor)

Set of motifs (describing a set of potential
binding sites for a single TF)

Factor match Motif match of any of the motifs in the class
associated to that factor

Mapping alphabet R Arbitrary alphabet used to map single fac-
tors to symbols

Combinatorial group (group) Set of motif classes having close-by matches
in a large enough subset of S (represented by
multisets over R)

Group match Set of factor matches, one for each motif class
in a combinatorial group

Group quorum Fraction of the set of sequences containing
matches for the group

Group match width (span) Given a sequence, the number of bps between
the first and the last factor match of a group
match.

Composite Motif (CM) Set of motif classes having close-by matches

Table 1: Technical notions used/defined in the paper
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B Table of Algorithms

Algorithm Short year ref. Target Notes

CMStalker CMS 2014 This paper cm Set model
COMPO C 2008 [14] cm Set model
Cluster-Buster CB 2003 [4] cm HMM model
CisModule CM 2004 [18] cm HMM model
Cister CI 2001 [3] cm HMM model
Composite Module Analyst CMA 2006 [10] cm Set Model
MCAST MC 2003 [2] cm. HMM model
ModuleSearcher MS 2003 [1] cm Set Model
MSCAN MSC 2003 [9] cm Set Model
Stubb Stubb 2003 [15] cm / crm HMM model
MOPAT M 2008 [7] cm Set model
CPModule CP 2010 [6] cm Set model
CORECLUST CoC 2012 [13] cm HMM model
D2Z-set D2Z 2008 [8] crm Set model
CSam CSam 2008 [8] crm Set model

Table 2: Table of cited algorithms. For each one we report the full name, the short name,
year, reference, target output (either composite motifs (cm) or cis-regulatory modules
(crm)), and the underlying mathematical model.
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C Operations on multisets

In CMSTALKER multisets are represented as character sorted strings over the mapping
alphabet (that we can easily regard as being totally ordered). This means, for instance,
that both {a, b, a, c, c, a} and {c, a, c, b, a, a} are represented as aaabcc, given the standard
lexicographic ordering of the characters.

Let νM(a) denote the number of occurrences of a in the multiset M . Then, for two
multisets M and N we have M ⊆ N if and only if, for any a ∈M , νM(a) ≤ νN(a) holds.

The intersection I of multisets M and N includes all the elements a such that
both νM(a) > 0 and νN(a) > 0 hold. Moreover, for any such element, νI(a) =
min{νM(a), νN(a)}. As an example: aaabcc ∩ accd = acc.

The difference D between multisets M and N includes all the elements a such that
νM(a) > νN(a). Moreover, for any such element, νD(a) = νM(a)− νN(a). As an example:
aaabcc \ accd = aab.
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D Numerical results

In this appendix we first report tables containing numerical values used to draw graphics
in the main paper.

D.1 Numerical values for Figure 2 in Main Text

Dataset
CMSTALKER
Two PWM files

CMSTALKER
One PWM file

Dataset Separated PWMs Mixed PWMs
AP1-Ets 0.446 0.518

AP1-NFAT 0.109 0.106
AP1-NfkB 0.759 0.755

CEBP-NfkB 0.736 0.736
Ebox-Ets 0.587 0.587
Ets-AML 0.491 0.491
IRF-NfkB 0.917 0.917

NfkB-HMGIY 0.221 0.255
PU1-IRF 0.921 0.921
Sp1-Ets 0.203 0.203

Table 3: Numerical values for Figure 2 in Main TexT : (left) nCC when PWMs are given
in separated files by TFs membership; (right) nCC when all PWMs in a file.
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D.2 Numerical values for Figure 3 in Main Text

Dataset/Alg CMS C CB CI MSC MS MC Stubb CMA CM M CP CoC

AP1-Ets 0.52 0.19 0.24 0.00 0.11 0.30 0.20 0.15 0.22 -0.03 0.23 0.20

AP1-NFAT 0.11 0.06 0.04 0.00 0.00 0.05 0.14 -0.01 0.15 -0.02 0.30 0.14

AP1-NFkB 0.76 0.59 0.49 0.19 0.36 0.29 0.26 0.35 0.55 0.05 0.06 0.27

CEBP-NFkB 0.74 0.70 0.72 0.45 0.56 0.56 0.60 0.36 0.60 -0.03 0.40 0.89

Ebox-Ets 0.59 0.55 0.16 0.26 0.44 0.20 0.23 0.14 0.18 0.05 0.31 0.24

Ets-AML 0.49 0.42 0.30 0.07 0.31 0.38 0.26 0.23 0.33 0.03 0.26 0.22

IRF-NFkB 0.92 0.73 0.77 0.62 0.91 0.85 0.41 0.41 0.69 0.04 0.61 0.73

NFkB-HMGIY 0.26 0.31 0.35 0.10 0.30 0.40 0.23 0.07 0.15 -0.03 0.07 0.23

PU1-IRF 0.92 0.28 0.16 0.27 0.00 0.43 0.16 0.17 0.24 -0.01 0.37 0.37

Sp1-Ets 0.20 0.05 0.09 0.20 0.00 0.00 0.13 0.19 0.15 0.02 0.02 0.00

Liver 0.49 0.56 0.59 0.31 0.51 0.42 0.50 0.48 0.36 -0.01 0.34 0.31

Muscle 0.56 0.47 0.41 0.36 0.50 0.46 0.30 0.24 0.46 0.29 0.28 0.20 0.56

Avg nCC 0.54 0.41 0.36 0.24 0.33 0.36 0.29 0.23 0.34 0.03 0.27 0.32

Table 4: Numerical values for Figure 3 in Main Text (nCC meaures), with best results
reported in bold-face. Legend for algorithms: CMS=CMStalker, C = COMPO, CB =
Cluster-Buster, CI = Cister, MSC= MSCAN, MS = ModuleSearcher, MC = MCAST,
CMA = Composite Module Analyst, CM = CisModule, M=MOPAT, CP = CPModule,
CoC = CORECLUST.
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D.3 Numerical values for Figure 4 in Main Text

Datasets Tool PPV Sensitivity PC ASP CC

TRANSCompel
CMSTALKER 0.67 0.54 0.42 0.60 0.58

COMPO 0.40 0.47 0.28 0.43 0.41

Liver
CMSTALKER 0.67 0.43 0.35 0.55 0.49

COMPO 0.85 0.42 0.55 0.64 0.57

Muscle
CMSTALKER 0.60 0.65 0.45 0.62 0.56

COMPO 0.52 0.69 0.42 0.60 0.52

Table 5: Nucleotide level numerical results for Figure 4 in Main Text.
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E Comparing COMPO and CMStalker at increasing

levels of noise

The authors of [11] provide additional PWM files for the TRASCompel datasets, which
are characterized by an increasing number of “noise” (or “decoy”) matrices. This is very
similar to the approach already analyzed for the XIE benchmark (Section 5.4 in Main
Text). In each file of the so-called noise 50 benchmark, the authors include an equal
number of good matrices and decoy matrices. For instance, the AP1-Ets PWM files
include 33 matrices known to be associated with either AP1 or Ets Transcription Factors
as well as additional 33 randomly selected TRANSFAC matrices that have no annotated
binding sites in the AP1-Ets dataset. Similarly, in each file of the noise 75 benchmark,
there are three decoy matrices for each good one.

To make it possible to average over the possibly very different effects of the random
selections, for each dataset and noise level the authors provide ten PWMs files that include
different random selections from TRASNFAC matrices.

Figure 6 reports the results obtained by CMSTALKER and COMPO (by far the best
performing tools, among those considered in this paper, on the TRANSCompel data) on
input the PWM sets with 50% and 75% noise levels.

At level of noise 50% CMSTALKER leads on 7 data set over 10, as well as on average.
At level of noise 75% The behavior of the two algorithms is quite similar (5 over 10 each)
on the average (actually, a double average, since the results for each dataset are in turn
the average of the results obtained on input the ten PMW sets with the corresponding
noise level) but COMPO seems less sensitive (on these two benchmark) to noise level
increase.

F Further Comparisons on the XIE et al. Benchmark

In Figure 1 we report the results obtained by CMStalker and the tools analyzed in [6]
in a shorter range of noise matrices, namely from 10 to 40. We observe that, in this
range, CMStalker is roughly equivalent to the two best performing methods (Cister, Cis-
terBuster).
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Noise 50 Noise 75
Dataset CMSTALKER COMPO CMSTALKER COMPO
AP1-Ets 0.409 0.200 0.366 0.157
AP1-NFAT 0.098 0.064 0.031 0.064
AP1-NFkappaB 0.354 0.543 0.108 0.411
CEBP-NFkappaB 0.724 0.699 0.724 0.699
Ebox-Ets 0.545 0.548 0.440 0.488
Ets-AML 0.488 0.428 0.294 0.394
IRF-NFkappaB 0.917 0.734 0.842 0.734
NFkappaB-HMGIY 0.086 0.299 0.031 0.253
PU1-IRF 0.830 0.255 0.566 0.244
Sp1-Ets 0.184 0.077 0.135 0.045

Average 0.424 0.385 0.354 0.349

Table 6: nCC values obtained by CMSTALKER and COMPO at noise level 50 and noise
level 75 on the TRANSCompel benchmarks.

Figure 1: Nucleotide level CC results on the XIE benchmark.
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G Experimental setup for MOPAT and CPModule

The results reported for the MOPAT[7] and CPModule[6] tools on the COMPOSITE
benchmark were obtained according to the protocols described below.

G.1 MOPAT

For each of the twelve possible input datasets in the COMPOSITE benchmark, we run
MOPAT with the following parameter setting: (1) windowsize = 50, (2) gene number =
50% of the input sequences, (3) pvalue = 0.001. Moreover, for each possible input PWM
file, we performed ten runs. For the noise 50 and noise 75 sets of matrices, this amounts
to 100 runs for each possible dataset (since, as descibed in Appendix C, there are 10
possible input PWM files for each noisy set, which are constructed by randomly sampling
TRANSFAC matrices).

In certain cases MOPAT did not return any results. If, for a given dataset, MOPAT
remained silent in 50% of the runs (or more), we discarded all the results for that dataset
and proceeded by relaxing some input parameter. First we relaxed the window size (to 100
and 150, when required), then the pvalue (to 0.005), and last the gene number (actually,
this was never necessary).

G.2 CPModule

We run CPModule using standard parameters. The crucial aspect that may influence the
tool’s performance, which we discuss here, is the choice of the background sequences used
by CPModule to calculate an enrichment score of the motifs found in the input sequences.

We used different sets of background sequences. For the liver and muscle datasets we
used the following ones:

Random.Hs.1000 a set of 1000 human promoter sequences (composed of 1100 bps each)
sampled uniformly at random from the set of promoters in the Mammalian Promoter
Database of the Cold Spring Harbor Laboratory [12];

Hs.Hg.18 a set of control sequences extracted from non-coding regions of the human
genome [5] with lengths in the range 500-1000.

For the TRANSCompel datasets, we used ten additional background sequences, one
for each dataset. More specifically, for any given dataset, say AP1-Ets, we formed the
AP1-Ets.bkgd file by using those input sequences that were present in some other input
file (e.g., IRF-NFkappaB.fasta) but not in AP1-Ets.fasta.

We note that the observed differences in the overall performance on the Transfac
benchmark were minimal, if any, across the various background sets. In any case, the
results reported in the paper are the ones obtained using the Random.Hs.1000 sequences,
the most favourable to CPModule.
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CPModule adopts the Any Number motif distribution model, as opposed to ZOOPS.
However, we computed the statistics for both models, using the top scoring composite
motif (i.e., the one with smallest p-value) for the latter. Once again, the results reported
are the most favourable to CPModule, which were obtained precisely under the ZOOPS
model.
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H Measures used to assess the tool’s output quality

at the motif level

In [16] data is analyzed at the motif level by taking into account only the labels of the TF
predicted to be part of the composite modules. The information relative to the position
of the TFBS in the sequences is not used. Thus in this context, given the set of predicted
TF and the set of true TF for each experiment:

mTP is the size of the intersection of the two sets of TF labels.

mFP is the size of the difference set of the predicted labels and the real labels.

mTN is the size of the complement of the union of the two sets of TF labels with respect
to all the TF labels in Transfac.

mFN is the size difference set of the real labels and the predicted labels.

Starting from these basic classification all derived measures cited in Section 5.2 can be
derived for the motif-level analysis. This type of analysis is adopted in [6].
In [17] the motif level analysis is defined differently, since it is based on the concept of a
hit which involves the positions of the TSBS. A predicted TFBS hits a real TFBS when
the length of their overlap is at least one quarter of the length of the real TFBS. In this
context we can define:

mTP is the number of real TFBS with at least one hit.

mFP is the number of predicted TFBS that do not participate in any hit.

mFN is the number of real TFBS that do not participate in any hit.

In this context the notion of True Negative is problematic and for this reason no such
definition is given in [17]. In our context, the difficulty in defining true negatives becomes
evident when there are many input PWMs, the vast majority of which are not relevant
to the experimental data at hand. Accounting for this very lage number of true negatives
would clearly make the CC statistics less discriminant as the number of “irrelevant”
matrices increases.

We can still use the, Sensitivity (Sn), Positive Predicted Values (PPV ), Performance
Coefficient (PC ), and Average Site Performance (ASP) which do not depend on the
value for TN. We cannot use the correlation coefficient (CC ) which instead depends on
the value of TN. In our measures at the motif level we uses the scheme in [17].
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Figure 2: Motif level results for CMStalker and COMPO on TRANSCompel as well as
liver and muscle datasets.

I Motif level analysis for CMStalker vs COMPO

We report here (Figure 2) the results of a comparison between CMStalker and COMPO
using motif level statistics. The goal of such analysis is to evaluate prediction accuracy
with respect to module composition, i.e., the ability of a tool to correctly tell the matrices
(possibly within an equivalence set) whose matches belong to the predicted modules in
any given sequence/gene. As already pointed out above, we do not base our compar-
isons on statistics that involve the notion of true negative predictions. Hence, we only
consider Sensitivity, Positive Predicted Value, Performance Coefficient, and Average Site
Performance as motif level statistics.

Figure 2 shows the results obtained, which seem to suggest an essentially comparable
behavior at the motif level between the two algorithms (perhaps with the exception of
the muscle dataset, where CMStalker leads in both PC and ASP).
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I.1 Numerical values for Figure 1 in Suppl. Materials

Datasets Tool PPV Sensitivity PC ASP

TRANSCompel
CMSTALKER 0.861 0.574 0.525 0.718

COMPO 0.932 0.506 0.488 0.719

Liver
CMSTALKER 0.727 0.500 0.421 0.613

COMPO 0.443 0.844 0.409 0.643

Muscle
CMSTALKER 0.661 0.740 0.536 0.700

COMPO 0.283 0.780 0.262 0.531

Table 7: Motif level numerical results for Figure 2.
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J Motif level analysis for CMStalker on on Xie et al.

Data

Figure 3 shows the motif level statistics for the results computed by CMStalker. As
expected, as the number of input PWMs increases, we observe a negative trend of the PC
and ASP statistics.

Figure 3: Motif level statistics for CMStalker on XIE benchmark.
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K Hardware and Sofware

The code for CMStalker, CPModule and MOPAT have been executed on an Apple Mac
Mini with Intel core i7 processor (4 cores) at 2.6GHz, with 16Gb RAM memory. The
Operating System is Mac OS X 10.8.5. The HD holds 1Tb (with 128SSD). The software
has been developed in Python 2.7 (with some external calls to Perl code).
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