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ABSTRACT
Motivation: Microarray technology for profiling gene expression
levels is a popular tool in modern biological research. Applications
range from tissue classification to the detection of metabolic net-
works, from drug discovery to time-critical personalized medicine.
Given the increase in size and complexity of the data sets produced,
their analysis is becoming problematic in terms of time/quality trade-
offs. Clustering genes with similar expression profiles is a key initial
step for subsequent manipulations and the increasing volumes of data
to be analyzed requires methods that are at the same time efficient
(completing an analysis in minutes rather than hours) and effective
(identifying significant clusters with high biological correlations).
Results: In this paper we propose K-Boost, a novel clustering
algorithm based on a combination of the Furthest-Point-First (FPF)
heuristic for solving the metric k-centers problem, a stability-based
method for determining the number of clusters (i.e. the value of k),
and a k-means-like cluster refinement. K-Boost is able to detect the
optimal number of clusters to produce. It is scalable to large data-sets
without sacrificing output quality as measured by several internal and
external criteria.
Availability: http://bioalgo.iit.cnr.it/
Contact: marco.pellegrini@iit.cnr.it

1 INTRODUCTION
Several obstacles still lie on the path to exploiting the full poten-

tial of microarray technologies (Trent and Bexevanis, 2002). One
issue is the scalability of the data processing software. In particular
a critical initial phase is often the clustering of gene expression data
into groups with homogeneous expression profile. In this paper we
tackle this problem by proposingK-Boost, a clustering algorithm
based on a combination of the Furthest-Point-First (FPF) heuristic
for the k-centers problem (Gonzalez, 1985), a stability-based (SB)
method for determining the optimal number of clustersk (Tibshi-
rani et al., 2005), and ak-means-like refinement. The experiments
we report here demonstrate that our algorithm is scalable to large
data-sets without sacrificing output quality.

The Furthest-point-first (FPF) heuristic is known to attain a result
that is within a factor two of the optimum clustering according to the
k-center criterion (i.e., minimizing the maximum diameter of any
cluster). This theoretical guarantee, coupled with a small compu-
tational complexity and with a careful implementation, makes this
algorithm an ideal candidate for attaining scalability. The FPF algo-
rithm constructs the clusters incrementally (that is, thek-clustering
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is obtained by a refinement of the (k-1)-clustering), thus it works
without any need for an initial guess fork.

For detecting the optimal number of clusters we use a stability-
based technique for cluster validation byprediction strength(Tibs-
hirani et al., 2005) that guides the selection of the “best” number
of clusters in which the data-set should be partitioned. The stability
based criterion is well founded in an Information Theoretic frame-
work. Moreover, since we can interleave and make incremental the
computation of both FPF and SB, including the latter only adds a
small cost to the computation time.

In the last phase we use the centers previously computed in an ite-
rative loop that associates the other data-points to the closest center
and iteratively updates center representation of each cluster.

The FPF heuristic has been applied also in the context of micro-
array clustering for time-series by (Ernstet al., 2005). However
our approach is different. We apply the FPF algorithm directly to
real-world input data. In (Ernstet al., 2005) it is applied to a set
of artificially generated data points that are meant to uniformly
cover the parametric space of possible experimental outcomes. This
second approach suffers of scalability problems as the cardinality of
the discrete search space grows exponentially in the parameters of
the experiment.

The scalability of our algorithm can find applications in a num-
ber of different settings. One parameter is the sheer dimension of a
single data-set: the technology of Tiling Arrays is capable of pro-
ducing a complete profile of the transcript index of an individual
genome (up to 50,000 transcript sequences and 60 tissues and cell
lines can be mapped in a single chip experiment (Schadtet al.,
2004)). The second parameter is the trade-off between the number of
experiments and the response time. Microarray technology, adapted
towards the needs of personalized medicine, might be used to screen
a vast range of different pathological conditions over large populati-
ons. In some applications there is the need to repeat the experiments
many times and to have a prompt result. For example, data taken
at different times from the same patient in a healthy state and in
a pathological state could be clustered to highlight differences in
the metabolism due to the pathology, filtering out the background
effects of healthy individual metabolic profile.K-Boostmight be
useful in this context, where the great amount of data to be managed
is one of the main bottlenecks for the existing techniques.

Scalability should by no means be paid for by a decrease in output
quality. Ideally one would like new algorithms to be both faster and
more accurate at the same time. Clustering is an inherently appro-
ximate activity and the issue of validating the quality of clusterings
is an open area of research. Broadly speaking there are “internal”
quality criteria (based on an inter-point metric that is assumed to be
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significant), or “external” quality criteria based on cross-referencing
the produced clustering with a “golden standard” such as that deri-
ved by Gene Ontology annotations. We will use both methodologies
to measure and compare clustering quality.

1.1 State of the art.
The papers by Eisen et al. (Eisenet al., 1998), Alon et al. (Alon
et al., 1999) and Wen et al. (Wenet al., 1988) have shown the rich
potential of microarray gene expression data clustering as an explo-
ratory tool for finding relevant biological relationships amidst large
gene expression datasets. Since the late nineties a growing body
of knowledge has been built up on several algorithmic aspects of
the clustering task (see,e.g., general surveys in (Jianget al., 2004;
Shamir and Sharan, 2002)).

Among the most popular approaches we can broadly find those
“distance based” such ask-means (Tavazoieet al., 1999), Self
Organized Maps (SOM) (Tamayoet al., 1999), Hierarchical Agglo-
merative Clustering (HAC) (Eisenet al., 1998), and several variants
thereof. A second broad class of algorithms is graph-based (CLICK
(Sharanet al., 2003), CAST (Ben-Doret al., 1999) and CLIFF
(Xing and Karp, 2001) all use weighted graph min cuts (with vari-
ants among them)). Excavator (Xuet al., 2002) is based instead
on Minimum Spanning Tree clustering. Other large families are
those models-based (Ramoniet al., 2002), fuzzy-logic-based (Bela-
cel et al., 2004), or based on principal component analysis (PCA)
(Hastieet al., 2000).

Among the main issues related to clustering there are 1) the pro-
blem of guessing the optimal number of clusters (Tibshiraniet al.,
2001; Giurcaneanuet al., 2003; Tibshiraniet al., 2005) and 2)
cluster validation (Gibbons and Roth., 2000; Yeunget al., 2001;
Gat-Vikset al., 2003). In biological data analysis a further issue is to
provide metrics supported by ad hoc external biological knowledge
(Huang, 2006; Hanischet al., 2002). A large and promising are of
research is that of feature selection (Dugaset al., 2004; J Taylor,
2006) leading to the more general concept of bi-clustering (Tanay
et al., 2006; Madeira and Oliveira, 2004). Special attention has been
recently paid to particular kinds of micro-array experiments, nota-
bly time-series, in which there is a natural ordering and correlation
for the conditions tested (Ernstet al., 2005; Bar-Joseph, 2004).

At the present state of the art there is no clear overall winner in
the area of clustering algorithms for gene expression data as any
method has strong and weak points. However, one can safely say
that the drive for higher quality results is always paid for by higher
computational costs; therefore all these methods exhibit poor sca-
lability or need educated guesses as to the setting of some critical
parameter. In our approach we show that the two goals are not in
contrast: scalability need not entail lower quality.

In a previous paper (Geraciet al., 2007) we have proposed a sca-
lable method for clustering gene expression data calledFPF-SBthat
combines stability based computation of the optimal cluster number
with the FPF heuristic for the k-center problem. Although FPF-SB
was very effective in detecting the optimal number of clusters (a
feature inherited byK-Boost) the final cluster decomposition was
not tight enough to compete with traditional methods likek-means
and SOM.K-Boostrepresents a non-trivial evolution of FPF-SB and
attains much better performance.

In general we can split the algorithms for clustering field into
two large groups: methods that take a suggested number of clusters
as input and methods that are able to determine an optimal num-
ber of clusters (according to some internal criterion). Our proposal
K-Boostis in the second category thus we will compare its perfor-
mance with methods like CLICK and FPF-SB that are in the same
class. We also do comparisons with methods like k-means and SOM,
where we feed them a plausible number of clusters (as suggested by
K-Boostor CLICK), thus giving them an advantage they do not have
when applied in a stand-alone fashion.

According to several measures of quality both internal and exter-
nal for a variety of data sets,K-Boost shows significantly better
performance than CLICK and FPF-SB. The time complexity ofK-
Boost, while being higher than that of FPF-SB, it is still orders of
magnitude faster than CLICK even on relatively small data sets.

2 PRELIMINARIES

2.1 Clustering
Let N = {e1, . . . , en} be a set ofn vectors inRm, a partition
Ñ = {N1, . . . , Nk} of N is a clustering, where eachNt, for
t ∈ {1, 2, . . . , k}, is called acluster. Given a clusteringÑ , two
elementsei, ej ∈ N arematesaccording toÑ if they belong to the
same clusterNt ⊆ Ñ , ”non-mates” otherwise.

2.2 Distance function
We want mates to be ”similar” in some measurable sense that cap-
tures their common biological behavior (co-expression). It turns out
that, by duality, one can define a ”distance” function among points.
Given two vectorsei, ej ∈ N (with componentses,t, s ∈ {i, j}
and1 ≤ t ≤ m), we denote withdi,j their distance and we say that
they aresimilar (respectively,different) if di,j is small (respectively,
large). Our definition ofdi,j is based on thePearson Coefficient,
P (ei, ej), given by

P (ei, ej) =

Pm
t=1 (ei,t − µi) (ej,t − µj)q�Pm

t=1 (ei,t − µi)
2� �Pm

t=1 (ej,t − µj)
2�

whereµi andµj are the means ofei andej , respectively.
The Pearson Coefficient is a very popular measure of similarity

in the context of gene expression micro-array data clustering but
it is not a distance. To come up with a measure suitable for the
metric space method, we first defineδi,j = 1 − P (ei, ej), with
0 ≤ δi,j ≤ 2 (since−1 ≤ P (ei, ej) ≤ 1). This quantity, which
is in turn a widely accepted valid dissimilarity measure in gene
expression analysis, violates the triangle inequality constraint, and
thus is not a metric in a strict sense. However, the square root of
δi,j is proportional to the Euclidean distance betweenei and ej

(see (Clarkson, 2006)), and hence can be adopted within algorithms
(such as FPF) designed for metric spaces. Our definition ofdi,j is
precisely this, i.e.,

di,j =
p

δi,j .

2.3 Thek-center problem
We approach the problem of clustering microarray data as the one
of finding a solution to thek-center problem, defined as follows:
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Given a set of pointsN on a metric spaceM , a distance function
d(p1, p2) ≥ 0 satisfying the triangle inequality, and an integerk, a
k-center set is a subsetC ⊆ N such that|C| = k. The k-center pro-
blem is to find ak-center set that minimizes the maximum distance
of each pointp ∈ N to its nearest center inC,i.e., minimizes the
quantitymaxp∈N minc∈C d(p, c).

The problem is known to be NP-hard. The optimum value is
approximable within a factor 2 by FPF (Gonzalez, 1985), but not
within a factor 2-ε, for any ε > 0, unlessP = NP (Feder and
Greene, 1988).

In our problem,N is represented as an ×m matrix, wheren is
the number of gene probes in the dataset andm is the number of
conditions tested on each probe, the metric spaceM isRm with the
distance functiondi,j defined above. Once the centers are defined,
the natural induced cluster decomposition is obtained by associating
each point to its closest center.

3 K-BOOST ALGORITHM
In this section, we present theK-boost algorithm which is essentially struc-
tured in two main steps. In the first phase it attempts to guess the hidden
number of classes in which elements are divided in. After which, for each
class,k-boost initializes a cluster containing its most representative ele-
ment. In the second phaseK-boost incrementally updates clusters by adding
each of the remaining elements to the closest cluster, each time updating its
centroid accordingly.

To determine the numberk of clusters,k-boost extracts a small represen-
tative sample from the input set and obtains two partitions: the sample set
and the target set. After that, both sets are clustered with an enhanced ver-
sion of thefurthest-point-first(FPF) algorithm (Geraciet al., 2006). At each
iteration FPF generates a new cluster for the sample and a new one for the
target, and a stability-based technique ((Tibshiraniet al., 2005)) is used to
compute the ability of the sample clustering to predict the target clustering
(prediction strength). K is the dimension of the clustering correspondent to
the first local maximum of the prediction strength values.

Before to enter in the details ofK-boost we describe the enhanced
FPF algorithm and our implementation of the stability-based method for
determiningk.

3.1 Furthest-Point-First clustering algorithm
FPF is based on a greedy approach: it increasingly computes the set of cen-
tersC1 ⊂ C2 ⊂ . . . ⊂ Ck, whereCk is the solution to the problem. The
first setC1 contains only one randomly chosen pointc1 ∈ N . Each iteration
i, with 1 ≤ i ≤ k − 1, has the set of centersCi at its disposal and works as
follows:

1. for each pointp ∈ N\Ci compute its closest centercp, i.e., the point
cp satisfying:

d(p, cp) = min
c∈Ci

d(p, c);

2. determine the pointp ∈ N\Ci that is farthest form its closest center
cp and let it beci+1; clearly,ci+1 satisfies:

d(ci+1, cci+1 ) = max
p∈Ci

d(p, cp);

3. Ci+1 = Ci ∪ Ci+1.

At each iteration a new center is added to the set of centers that is being
computed. The algorithm stops afterk − 1 iterations giving as result the set
Ck. Observe that, at stepi + 1, there is no need to recalculate the distance
of p to all centers, but just the distanced(p, ci), the distance to the uni-
que centerci added during the previous iteration. Then, just compare this

distance withd(p, cp), the minimum distance to centers ofCi. According
to the result of this comparison,cp can be updated or not. Hence, if for each
p the valued(p, cp) is stored, then each iteration can be executed inO(n)
space and ak-center set can be computed inO(kn) distance computations.

To actually compute a clustering associated to such ak-center set,N
is simply partitioned intok subsetsN1, . . . , Nk, each corresponding to a
center inCk and such that

Nj = {p ∈ N |cp = cj} (1)

In other words, the clusterNj is composed of all points for whichcj

is the closest center, for eachj = 1, . . . , k. Here we use the FPF algo-
rithm with the technique improvement described in (Tibshiraniet al., 2005).
Taking advantage of the triangle inequality, the modified algorithm avoids
considering points that cannot change their closest center. To this aim, at
each iterationi we maintain, for each centercj ∈ Ci, the setNj of points
for whichcj is the closest center, defined as in (1), forj = 1, . . . , i (i.e., we
build the clusters associated to intermediate solutions). We store the points
in Nj in order of decreasing distance fromcj . When we scan the set of
points to find the closest center, we follow the order given by theNj ’s:
given p ∈ Nj , with 1 ≤ j < i, if d(p, ci) ≤ 1

2
d(cj , ci) then we stop

scanningNj , as there cannot be any other point closer toci than tocj . The
distances between centers must be stored, requiring additionalO(k2) space.
As a consequence, storage consumption is linear inn only provided that
k ≤ √

n.

3.2 Stability-based technique
The FPF algorithm must be fed with the numberk of clusters into whichN
has to be partitioned. To appropriately estimate this number, here we use an
efficient variant of the prediction strength method developed by Tibshirani et
al. (Tibshiraniet al., 2005). Here we briefly describe the original prediction
strength method, and in next section we give details of how we embed it in
k-boost. To obtain the estimate, the method proceeds as follows. Given the
setN of n elements, randomly choose a sampleNr of cardinalityη. Then,
for increasing values oft (t = 1, 2, . . .) repeat the following steps: (i) using
the clustering algorithm, cluster bothNds = N\Nr andNr into t clusters,
obtaining the partitionsCt(ds) andCt(r), respectively; (ii) measure how
well the t-clustering ofNr predicts co-memberships of mates inNds (i.e.,
count how many pairs of elements that are mates inCt(ds) are also mates
according to the centers ofCt(r)).

Formally, the measure computed in step (ii) is obtained as follows. Given
t, clusteringsCt(ds) andCt(r), and elementsei andej belonging toNds,
let D[i, j] = 1 if ei andej are mates according to bothCt(ds) andCt(r),
otherwiseD[i, j] = 0. Let Ct(ds) = Ct,1(ds), . . . , Ct,t(ds), then the
prediction strengthPS(t) of Ct(ds) is defined as:

PS(t) = min
1≤`≤t

1

#pairs in Ct,`(ds)
=

X
i,j∈Ct,`(ds)

i<j

D[i, j] (2)

where the number of pairs inCt,`(ds) is given by its binomial coefficient
over 2. In other words,PS(t) is the minimum fraction of pairs, among
all clusters inCt(ds), that are mates according to both clusterings, hence
PS(t) is a worst case measure. The procedure outlined above terminates at
the largest value oft such thatPS(t) is above a given threshold, settingk
equal to sucht.

3.3 k-boost clustering algorithm
In our implementation, we extract fromN a random sampleNr by fixing
the parameterη to

√
n. Then we run the FPF algorithm onNr until k = η.

This makes each obtained cluster contains just the center of the cluster. Note
that, if one consider the order in which centers are extracted by FPF, this clu-
stering operation is equivalent to rank pointsNr = {Nr,1, . . . , Nr,η} such
thatNr,i is the center made at thei-th iteration of FPF. The computational
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cost of this procedure isO(η2). For convenience from here we denote asNt
r

the set of the firstt elements in the rankedNr .
We then run FPF heuristic with input setNds = N\Nr . Suppose at step

t we have computed the clustersCt,1(ds), . . . , Ct,t(ds), and suppose, for
eache ∈ Nds, we keep the indexi = i(e, t) of its closest point inNt

r . Such
index can be updated in constant time by comparingd(e, Nr,i(e,t−1)) with

d(e, Nr,t), i.e., the distance ofe from the “current” closest point inNt−1
r

and that to the pointNr,t.
Now, for eachCt,`(ds), ` = 1, . . . , t, we can easily count in time

O(|Ct,`(ds)|) the number of elements that are closest to the same point
Nr,j , j = 1, . . . , t, and finally compute the summations in formula (2) in
timeO(|Nds|).

Differently from the original stability-based technique, we stop this pro-
cedure at the first value oft such thatPS(t) < PS(t−1) or whent =

√
n

and setk = t− 1.
After the last iteration, the simplest solution to obtain the clustering ofN

could be associate the points inNr to their closest centers inCk(ds). This
is what we did in (Geraciet al., 2007). DespiteCk(ds) give a good predic-
tion of the value ofk, the main disadvantage of this approach is that both the
centers ofNds andNr give rise to a still not enough good clustering. This is
due to the fact the use of centers for microarray data is not the best possible
choice. We experimentally observed thatcentroidscan be more representa-
tive than centers in this data domain. The concept of centroid is well known
in the information retrieval community. In this content a centroid is a vector
with as many components as the number of probes that genes have in the
microarray. Thei-th component of the centroid of clustercj is the average
of the values of thei-th probe of the genes incj . Thus we modified the
approach of (Geraciet al., 2007) to take advantage from this observation.
We create ak-clustering by initializing a new cluster with an element of
Nk

r . Each element inN\Nk
r is assigned to the cluster with closest centroid

one at time, then centroid is updated accordingly. Note that the update of the
centroid can be made in constant time without recompute the mean over all
the elements of the cluster, since, given a setP = {p1, . . . , pn} of n probes
we have: Pn

i=1 pi

n
=

Pn−1
i=1 pi

n− 1

n− 1

n
+

pn

n
(3)

Thus this last clustering operation can be done in time(n − √
n)k =

O(nk). The overall cost ofk-boost procedure isO(n + 2k(n − √n)) =
O(nk).

3.4 Experiments
3.4.1 Evaluation We performed experiments on data sets derived
from yeast and other species. We compareK-Boost(and also FPF-
SB or FPF when appropriate) with some of the most used and robust
clustering algorithms for microarray gene expression data, namely
CLICK, k-means, and SOM. The CLICK,k-means and SOM algo-
rithms have been run under EXPANDER1 (EXpression Analyzer
and DisplayER) (Sharanet al., 2003), a java-based tool for analysis
of gene expression data, that is capable of clustering and visualizing
the correspondent results. Among the clustering algorithms used for
comparison, CLICK is the only one that does not need to know the
number of clusters in advance, while bothk-means and the basic
FPF need the value ofk as input. The SOM method requires the
grid dimension (not always corresponding to the required number
of clusters2). SinceK-Boostand CLICK usually suggest a different

1 http://www.cs.tau.ac.il/ rshamir/expander.
2 Note, for example, that in Table 3 the grid for Spellman et al. dataset was
set to9× 3 but the execution returned only 18 clusters instead of 27.

value ofk, we run experiments in tables 3 and 4 with both values of
k.

In order to assess the validity of our method with an external
measure we evaluate the clusterings by means of thezscore compu-
ted by ClusterJudge tool (Gibbons and Roth., 2000), also available
on line3. This tool scores yeast (Saccharomyces cerevisiae) genes
clusterings by evaluating the mutual information between a gene’s
membership in a cluster, and the attributes it possesses, as annota-
ted by the Saccharomyces Genome Database (SGD4) and the Gene
Ontology Consortium5. In particular, ClusterJudge first determines
a set of gene attributes among those provided by Gene Ontology,
that are independent and significant; then it computes the mutual
information of the proposed clustering and that of a reference
random clustering. Finally it returns thezscore:

zscore =
MIreal −MIrandom

σrandom
,

whereMIrandom is the mean of the mutual information score for
the random clustering used, andσrandom is the standard deviation.
The higher thezscore the better the clustering. Given the randomized
nature of the test, different runs produce slightly different numerical
values, however the ranking of the methods is stable and consistent
across different applications of the evaluation tool. For this reason,
for each data set used we repeated three times the evaluation of the
output of all the different algorithms, here reporting the average
zscore. Even if the ClusterJudge methodology is available only for
yeast genes, it is independent of both the algorithm and the metric
used to produce the clustering, and thus is in effect validating both
choices.

. As an internal measure of quality we usehomogeneityandsepa-
ration as defined in (Sharanet al., 2003). More precisely, calling
M the set of indices of points forming unordered mate pairs, the
average homogeneityis

Have =
1

|M |
X

(i,j)∈M

P (ei, ej).

Theaverage separationis:

Save =
1�

n
2

�− |M |
X

(i,j) 6∈M

P (ei, ej).

Both homogeneity and separation have values in the range [-1,1].
Higher value of homogeneity indicate higher quality. Lower values
of separation indicate higher quality. Note that singletons do not
contribute to the average homogeneity, but do contribute to the sepa-
ration. Since both measures are greatly influenced by the number of
clusters, they are most significant in comparing solutions having the
same value ofk.

We tested our algorithm on some of the most used yeast datasets
in literature (Choet al., 1998; Eisenet al., 1998; Spellmanet al.,
1998) and our results show that, on the average, we achieve a better
score than that obtained by the other clustering algorithms, while
using far fewer resources, especially time.

3 http://llama.med.harvard.edu/cgi/ClusterJudge/clusterjudge.pl.
4 http://www.yeastgenome.org.
5 http://www.geneontology.org.

4



K-Boost

3.4.2 Datasets for yeastThe algorithms were tested on three
well studied yeast datasets. The first is the yeast cell cycle data-
set described by Cho et al. in (Choet al., 1998). In their work
the authors monitored the expression levels of 6218 Saccharomyces
cerevisiae putative gene transcripts (ORFs). Probes were collected
at 17 time points taken at 10 min intervals (160 minutes), covering
nearly two full cell cycles6. The second dataset, described by Spell-
man et al. in (Spellmanet al., 1998), is a comprehensive catalog
of 6178 yeast genes whose transcript levels vary periodically within
the cell cycle (for a total of 82 conditions)7. The third dataset, des-
cribed by Eisen et al. (Eisenet al., 1998), contains 2467 probes
under 79 conditions, and consists of an aggregation of data from
experiments on the budding yeast Saccharomyces cerevisiae (inclu-
ding time courses of the mitotic cell division cycle, sporulation, and
the diauxic shift)8. Table 1 summarizes the properties (number of
probes and number of conditions) of the three datasets.

Dataset Cho et al. Eisen et al. Spellman et al.
Probes 6601 2467 6178
Conditions 17 79 82

Table 1. Summary of dataset properties.

3.4.3 Experimental resultsThe results reported here have been
obtained on an 1.4 GHz AMD ATHLON XP workstation with 1.5
GB RAM running Linux kernel 2.6.11.4.

Experimental results are reported in Tables 2, 3 and 4. For each
experiment we report (all or some of) the following parameters: the
number of clustersk (either computed or fed as input), the num-
ber of singletons left out from the clusters, the computation time
in seconds, thezscore (external measure), the homogeneity and
separation (internal measures).

Note that CLICK is the only algorithm, among those that we have
tested, that sometimes produces singletons in its clustering (136 in
Cho et al. dataset, 17 in Spellman et al. dataset and none in Eisen et
al. dataset) and put them into a single cluster labelled cluster zero.
Hence, to correctly evaluate CLICK results we created a new cluster
for each of these singletons..

In Table 29 we observe thatK-Boostachieves a significantly bet-
ter zscore on all three yeast datasets using far less computation time
(by a factor from 5 to 10) than CLICK. FPF-SB is still faster but
it attains lowerzscore than K-Boost, though sometimes it beats
CLICK. On larger data sets the time-gap is due to increase since
CLICK asymptotically runs inO(n2m+n3). The actual number of
clusters computed by CLICK has little influence on its speed since

6 The complete dataset, now containing 6601 Saccharomy-
ces cerevisiae putative gene transcripts (ORFs), is available at
http://genomics.stanford.edu/yeastcell cycle/cellcycle.html.
7 The complete dataset and description are available at http://cellcycle-
www.stanford.edu.
8 The data is fully downloadable from http://genome-
www.stanford.edu/clustering.
9 We report the number of singletons generated by each clustering algorithm
only in this table. This is because CLICK, in these sets of experiments, is the
only algorithm tested generating singletons.

the bulk of the cost is paid for in the set up and the initial iterati-
ons. In contrastK-Boost(and FPF-SB) has a lower asymptotic cost
O(nmk).

In two out of three cases CLICK andK-Boostmake different choi-
ces as to the optimal value fork. A hint to the fact that our choice
of k might be closer to the natural value for the data sets considered
can be drawn comparing thezscore of k-means and SOM in Tables 3
and 4: when fed withK-Boost’s estimate they attain equal or higher
zscore value. Note that internal measures are not suitable for such a
comparison since both homogeneity and separation have drift due
to the number of clusters.

In Table 3 we use for all five methods the value fork estimated
by CLICK. For the data set of Cho et alK-Boostscores better than
all the other methods. For the data set of Eisen et al.K-Boostand
SOM tie in terms ofzscore, while K-Boostexhibit slightly better
homogeneity. For the data set of Spellman et al.K-Boostand CLICK
tie in terms ofzscore and homogeneity.

In Table 4 (and Table 3 for the data set Eisen et al.) we can com-
pare four algorithms (K-Boost, FPF-SB, k-means and SOM) when
fed with the same estimate fork (computed byK-Boost). K-Boost
attains better results in terms ofzscore and homogeneity on all data
sets (except for thezscore on Eisen et al. where SOM andK-Boost
tie). On the the datas et of Cho et al. k-means come very close to
K-Boostin terms ofzscore but is far below in terms of homogeneity.

In terms of separation in tables 3 and 4K-Boostexhibit often the
best or second best (lower) value among the algorithms tested (with
the exception of the data set Cho et al. in table 3 where CLICK and
k-means and SOM are slightly better thanK-Boost).

Overall, on the tree yeast data sets, whenk is to be determinedK-
Boostis superior in terms of time and quality. In the case when the
advantage of an educated guess is allowed (either using one from
CLICK or one fromK-Boost) K-Boost is always superior or ties
with one of the competitors in one or two of the quality measures.
Almost alwaysK-Boostis significantly faster even for the relatively
small data sets employed.

4 CONCLUSIONS

Efficient and effective analysis of large datasets from microarray
gene expression data is one of the keys to time-critical personalized
medicine. The issue we address here is the scalability and quality
of the data processing software for clustering gene expression data
into groups with homogeneous expression profile. In this paper we
proposeK-Boost, a new clustering algorithm that efficiently applies
to microarray data analysis, being scalable to large datasets without
sacrificing output quality.

In order to validate both the choice of the algorithm and the metric
used to produce the clusterings we used ClusterJudge, an indepen-
dent tool that only scores yeast (Saccharomyces cerevisiae) genes
clusterings. Therefore, one of our future tasks will be to find metho-
dologies for the evaluation of clusterings of gene datasets from other
species (human, mouse, rat, etc.).
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Dataset Cho et al. Eisen et al. Spellman et al.
Method k Sg Time z-score k Sg Time z-score k Sg Time z-score
K-boost 8 0 68 85.77 8 0 63 58.70 16 0 421 84.57
Click 30 136 660 62.77 8 0 240 41.40 27 17 4200 65.17
FPF-SB 8 0 12 70.53 8 0 15 53.93 16 0 94 54.53

Table 2. Experimental results comparing algorithms that compute the optimalk. The results shown are the average of three independent runs. For each
algorithm and data set we report the numberk of clusters, the numberSg of singleton data points, the running time in seconds, and thezscore computed by
ClusterJudge.

Dataset Cho et al. Eisen et al. Spellman et al.
Method k Time z-score Hom Sep k Time z-score Hom Sep k Time z-score Hom Sep
Kboost 30 41 72.63 0.696 0.000 8 63 60.97 0.547 -0.019 27 224 69.13 0.539 0.045
Click 30 660 59.70 0.681 -0.035 8 240 42.07 0.505 -0.174 27 4200 71.17 0.545 0.027
Kmeans 30 720 68.17 0.331 -0.019 8 120 27.63 0.390 0.121 27 1140 54.0 0.436 0.084
SOM 29* 300 64.40 0.329 -0.050 8 60 61.93 0.513 0.030 18* 240 49.73 0.477 0.077
FPF 30 22 50.13 0.638 0.005 8 15 55.57 0.514 -0.018 27 80 52.27 0.487 0.065

Table 3. Experimental results comparing algorithms that takek as input with the value computed by CLICK. The results shown are the average of three
independent runs. For each algorithm and data set we report the numberk of clusters, the numberSg of singleton data points, the running time in seconds, the
z-score computed by ClusterJudge, Homogeneity and Separation. * denotes the number of clusters generated by SOM.
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