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ABSTRACT
We provide an alternative simpler and more general deriva-
tion of the Clarkson-Shor probabilistic technique [4] and use
it to obtain in addition several extensions and new combi-
natorial bounds.

1. INTRODUCTION
In abstract and general setting, the Clarkson-Shor tech-

nique [4] deals with the following type of problems. Let S
be a set of n objects, and C a set of con�gurations, each de-
�ned by d objects of S, for some constant integer parameter
d. We are also given a conict relationship between objects
a 2 S and con�gurations c 2 C, where it is assumed that
the d objects that de�ne c are not at conict with it. The
weight of a con�guration c is the number of objects that are
in conict with c.
As a concrete example, let S be a set of n lines (the ob-

jects) in the plane. A con�guration is a vertex of the ar-
rangement A(S), de�ned by d = 2 lines. A line is at conict
with a vertex if it passes below the vertex. The zero-weight
vertices are those that appear on the lower envelope of the
lines, and their number is at most n� 1. Vertices of weight
k belong to the k-th level of the arrangement.
Let C0(S) denote the set of 0-weight con�gurations, let

Ck(S) denote the set of con�gurations of weight exactly k,
and let C�k(S) denote the set of con�gurations of weight
at most k, where k is any integer between 0 and n � d.
Put N0(S) = jC0(S)j, Nk(S) = jCk(S)j, and N�k(S) =
jC�k(S)j. We also denote by N0(n) (resp. Nk(n), N�k(n))
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the maximum of N0(S) (resp. of Nk(S), N�k(S)), over all
sets S of n objects of this kind.
The Clarkson-Shor technique provides the following upper

bound for N�k(S):

Theorem 1.1 (Clarkson and Shor [4]).

N�k(n) = O(kdN0(n=k)): (1)

We derive a somewhat di�erent bound, which can then be
manipulated to yield the Clarkson-Shor's bound|see below.

Theorem 1.2.

N�k(S) �
E(N0(Rp))

pd(1� pk)
; (2)

for any 0 < p < 1=k, where Rp is a random sample of ob-
jects from S, where each object is chosen independently with
probability p, and N0(Rp) is the number of con�gurations,
all of whose de�ning objects are in Rp and none of whose

conicting objects are in Rp.

Remark: Theorem 1.1 can in fact also be stated in terms
of expectation: It asserts that N�k(S) is upper bounded by
O(kd) times the expected value of N0(R

0
n=k), where R0

n=k

is a random sample of n=k objects from S, where all such
samples are chosen with equal probability.
By now, the Clarkson-Shor technique needs no praise|

it has become a cornerstone of many of the developments
in computational and combinatorial geometry in the past
decade, for example, in the analysis of randomized incremen-
tal algorithms [9], and in the derivation of sharp bounds on
the complexity of lower envelopes and other substructures
in higher-dimensional arrangements [11]. This paper serves
two main purposes:

(i) It puts the Clarkson-Shor's technique in a somewhat dif-
ferent context, leading to a simpler proof and perhaps
also to a better understanding of the technique.

(ii) It facilitates the extension of the context in which the
technique can be applied. We obtain in fact several re-
sults which do not seem to be derivable by the original
technique.

Our proof technique is a simple extension of the probabilistic
proof of the Crossing Lemma of Leighton [8] and of Ajtai et
al. [2]. (This technique is so elegant that it has achieved
a status of `a proof from the Book' in [1].) On one hand,
this technique is quite general, but, on the other hand, in
almost all applications to date it has been administered to
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crossings between edges of graphs drawn in the plane (see
[3, 5] for some exceptions). It is our hope that the results
reported here constitute a �rst step towards a wider range
of applications of the technique.

2. ANALYSIS
Before proceeding to the proof of Theorem 1.2, we �rst

establish the following more general result.
Let C0 be any subset of con�gurations. Let X be the

number of conicts with the con�gurations of C0. That is,

X =
��f(a; c) j c 2 C0; a is at conict with cg

��
We then have

X � jC0j �N0(S): (3)

Indeed, if jC0j > N0(S) then C0 contains at least one con-
�guration c that has at least one conict, contributing at
least 1 to the count X. Remove c from C0 and repeat this
argument, and keep doing so as long as jC0j > N0(S).
Draw a random sample R of objects from S, by drawing

each a 2 S independently, with the same probability p. Let
C0
R denote the set of con�gurations in C0 that appear in R,

that is, those con�gurations for which all d de�ning objects
are chosen in R, and let XR denote the number of conicts
of these con�gurations in R, that is, the number of pairs
(a; c) such that c 2 C0

R, a 2 R and a is at conict with c.
By (3), we have

XR � jC0
Rj �N0(R);

so the same holds for the expectation of this inequality:

E(XR) � E(jC0
Rj)�E(N0(R)):

It follows from the construction that

E(jC0
Rj) = jC0jpd and E(XR) = Xpd+1:

Hence we obtain

Theorem 2.1. For any set C0 of con�gurations, which
have a total of X conicts, and for any probability 0 < p � 1,
one has

Xp � jC0j �
E(N0(Rp))

pd
; (4)

where Rp is as in the statement of Theorem 1.2.

Proof of Theorem 1.2: Let us specialize Theorem 2.1 to
the case C0 = C�k(S). In this case we have, by de�nition,
X � kN�k(S), which implies:

(1� pk)N�k(S) �
E(N0(Rp))

pd
;

and therefore completes the proof. 2
A quick illustration. Consider the case of lines and ver-
tices mentioned in the introduction. We have E(N0(Rp)) =
E(jRpj � 1) � np, so

N�k(S) �
np

p2(1� pk)
� 4nk;

by choosing p = 1=(2k).
The Clarkson-Shor bound. Let us turn (2) into the
more familiar bound given in Theorem 1.1. Suppose that
N0(S) � A

�
n


�
, for any set S of n objects and for some in-

teger parameter  � 1 and constant A > 0. Using the fact

that jRpj has an (n; p)-binomial distribution, it is routine to
verify that

E

" 
jRpj



!#
=

 
n



!
p :

Hence (2) becomes

N�k(S) �
A
�
n


�
pd�(1� pk)

:

Now choose p = �=k, for some parameter � 2 (0; 1), to
obtain

N�k(S) �
A
�
n


�
kd�

�d�(1� �)
:

The denominator is maximized when � = (d�)=(d�+1),
which is easily seen to yield

N�k(n) � A(d�  + 1)e

 
n



!
kd� : (5)

This is essentially the Clarkson-Shor result.

3. EXTENSIONS—SIMPLE CONSTRAINTS
Recall that the inequality (4) of Theorem 2.1 is fairly gen-

eral, and does not impose any speci�c assumptions on the set
C0. We next apply this theorem to several other problems
involving sets of con�gurations C0 whose overall number of
conicts can be upper bounded by some other simple argu-
ment, which will lead to various new upper bounds on the
size of such sets C0. In the following section, we will ex-
tend the technique further, by considering conicts between
a con�guration and several objects.
Con�gurations for which no object is at conict with

many. Here we consider an `inverse problem', where we
wish to bound the maximum possible size of a set C�

�k of
con�gurations so that no object is at conict with more than
k con�gurations in C�

�k.
For such sets we have trivially X � nk. Assume also,

as above, that N0(n) � A
�
n


�
, for some integer  � 1 and

constant A > 0. Then choose p in (2) so that

jC�
�kj =

2A
�
n


�
p

pd
;

or

p =

 
2A
�
n


�
jC�

�kj

!1=(d�)

;

which makes sense only when jC�
�kj > 2A

�
n


�
. Assuming

this to be the case, (4) implies that

jC�
�kj � 2nkp = 2nk

 
2A
�
n


�
jC�

�kj

!1=(d�)

;

from which it follows that

jC�
�kj = O

�
nd=(d�+1)k(d�)=(d�+1)

�
:

We thus have

Theorem 3.1. Assume the above abstract setup of ob-
jects, con�gurations, and conicts, and suppose that the num-

ber of con�gurations with no conicts in any set of n objects
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is O(n). Let 1 � k � n be a given parameter. Then the

maximum cardinality of any set of con�gurations with the
property that no object is at conict with more than k of
them is

O
�
n + nd=(d�+1)k(d�)=(d�+1)

�
: (6)

Examples. (1) Suppose that, as in the introduction, the
objects are n lines in the plane, con�gurations are vertices
of their arrangement, and a vertex is at conict with a line
if the vertex lies above the line. In this case we have d = 2,
 = 1, and we obtain

Corollary 3.2. The maximum number of vertices in an
arrangement of n lines in the plane such that none of the
lines passes below more than k of them is O(nk1=2). This
bound is tight in the worst case. Dually, the maximum num-
ber of lines connecting pairs of points in an n-element point
set in the plane, such that none of the given points lies be-

low more than k connecting lines is O(nk1=2), which again
is worst-case tight.

The lower bound is obtained as follows. Take n=k1=2 lines,
all appearing along their lower envelope. replace each line
by a bundle of k1=2 parallel lines suÆciently close to each
other. Each vertex of the lower envelope of the original lines
is replaced by k new vertices. Collecting all these vertices,
we obtain a set of nk1=2 vertices, and it is clear that no line
passes below more than 2k of them.
(2) A similar problem can be stated and analyzed for hy-

perplanes in IRd, where the con�gurations are vertices in an
arrangement of n hyperplanes, with the parameter d equal
to the dimension, and  = bd=2c:

Corollary 3.3. The maximum number of vertices in an

arrangement of n hyperplanes in IRd for which no hyperplane
passes below more than k of them is

O
�
nbd=2c + nd=(dd=2e+1)kdd=2e=(dd=2e+1)

�
;

and this bound is tight in the worst case. The same bound
holds for the maximum number of hyperplanes spanned by a
set of n points in IRd so that no point lies below more than
k of them.

The lower bound follows from a construction similar to that
for the planar case, which is based on the upper bound the-
orem for convex polytopes.
In d = 3 dimensions, we get the bound O(nk2=3). By

using a standard lifting transform from the plane to three
dimensions [7] and by specializing the preceding corollary to
d = 3, we also obtain:

Corollary 3.4. The maximum number of circles spanned
by n points in the plane, such that none of the given points
lies in more than k circles is O(nk2=3), and this bound is

tight in the worst case.

4. EXTENSIONS—MORE GENERAL CON-
FLICTS

So far, we have only considered conicts, each involving
one con�guration and one single object, but the technique
is suÆciently powerful to allow us to consider more elabo-
rate types of conicts, each involving one con�guration and
several objects. We illustrate this in two examples:

In the �rst example, the objects are lines in the plane, the
con�gurations are triangles bounded by triples of the lines,
and a triangle � is at conict with two other lines `1; `2 i�
the vertex `1 \ `2 lies in the interior of �.
In the second example, the objects are points in 3-space,

the con�gurations are triangles spanned by triples of the
points, and a triangle � is at conict with two other points
u; v i� the segment uv crosses the relative interior of �.
Handling conicts of this kind can be done by a straight-

forward modi�cation of the method of Section 2. Speci�-
cally, suppose that a conict involves one con�guration and
b objects. Starting from the inequality X � jC0j � N0(S),
and passing to a random sample Rp as above, we have

E(jC0
Rj) = jC0jpd and E(XR) = Xpd+b;

so we obtain:

Theorem 4.1. For any set C0 of con�gurations, which

have a total of X conicts, each involving one con�guration
and b objects, and for any probability 0 < p � 1, one has

Xpb � jC0j �
E(N0(Rp))

pd
; (7)

where Rp is as in the statement of Theorem 1.2.

We next apply this theorem to the examples mentioned
above.

4.1 Triangles and vertices in a line arrange-
ment

Theorem 4.2. In an arrangement of n lines in the plane,
there are at most O(n2k1=2) triangles whose edges lie on
three of the given lines and which contain at most k vertices

of the arrangement in their interiors. This bound is tight in
the worst case.

Proof: Let L be the given set of lines. Here the objects are
the lines of L and the con�gurations are triangles bounded
by triples of lines in L. Conicts are more involved: A
triangle is at conict with a vertex of A(L) if it contains the
vertex in its interior. Thus a conict is de�ned in terms of
5 lines: three de�ning the triangle and two the vertex.
Claim: The number N0(L) of triangles spanned by three
lines of L and containing no vertex of A(L) in their interior
is O(n2).
Indeed, let T0 be the set of these triangles that are bounded

by three lines of L and do not contain any vertex in their
interior. The number of triangles in T0 that are not crossed
by any line of L is clearly O(n2)|they are faces of the ar-
rangement.
Suppose then that a triangle � of T0 is crossed by at least

one line ` but contains no vertex in its interior. Charge � to
an intersection point v of ` with @�, say with some line `0
bounding �. We claim that there does not exist any other
triangle �0 in T0 that is bounded by `0, lies on the same side
of `0 as �, and contains v on its boundary. Indeed, suppose
that such a �0 exists. The intersection � \�0 is a convex
polygon that contains v on its boundary and is crossed by
`. Hence ` must intersect the boundary of this region at a
second point w. Without loss of generality, assume that w
lies on @�. But then w is a vertex of A(L) that lies in the
interior of �0, contradicting the fact that �0 is in T0. This
implies that the number of triangles in question is at most
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proportional to the number of vertices v of the arrangement,
so their number is O(n2). This completes the proof of the
claim.
Let N�k(L) denote the number of triangles with weight at

most k, and let X denote the total number of conicts that
they have, which is clearly upper bounded byX � kN�k(L).
Using Theorem 4.1, we thus obtain

kp2N�k(L) � N�k(L)�
E(N0(Rp))

p3
;

so

N�k(L) �
E(N0(Rp))

p3(1� kp2)
:

Choosing p = �=k1=2, for an appropriate � < 1, and us-
ing the fact that N0(n) = O(n2), the upper bound of the
theorem follows readily. The lower bound is obtained for
an arrangement consisting of n=3 equally-spaced horizontal
lines, n=3 equally-spaced vertical lines, which together form
part of the integer grid, and n=3 additional equally-spaced
lines of slope 1, passing very near the grid points formed by
the �rst two subfamilies. We leave the easy veri�cation of
the lower bound to the reader. 2

Theorem 4.3. In an arrangement of n lines in the plane,
there are at most O(n2k1=3) triangles whose edges lie on
three of the given lines and for which no vertex of the ar-
rangement is contained in the interiors of more than k of
the triangles. This bound is tight in the worst case.

Proof: Here X � k
�
n
2

�
, so, using Theorem 4.1, the number

of such triangles is at most O(n2kp2 + n2=p). The theorem

follows by choosing p = 1=k1=3. The lower bound can be
obtained from the same construction used in the preceding
proof. 2
Remark: The claim in the proof of Theorem 4.2 does not
seem to extend to vertical trapezoids in the arrangement.

4.2 Triangles and crossing segments in a 3-
dimensional point set

Theorem 4.4. Given a set of n points in IR3, the max-
imum number of triangles spanned by the points of S that
are crossed by at most k segments connecting the points is
O(n2k1=2).

Proof: Let T�k denote the set of these triangles, and let
X denote the number of conicts between triangles in T�k
and segments. We have X � kjT�k(S)j. By the results of
[5, 13], we have N0(S) = O(n2). Hence, by Theorem 4.1, we
have

kp2jT�k(S)j � jT�k(S)j �
E(N0(Rp))

p3
;

so

jT�k(S)j �
E(N0(Rp))

p3(1� kp2)
:

Choosing p = �=k1=2, for an appropriate � < 1, and using
the fact that N0(n) = O(n2), the theorem follows readily. 2

Theorem 4.5. Given a set of n points in IR3, the max-
imum number of triangles spanned by the points of S, so
that no segment connecting two points crosses more than k
of them is O(n2k1=3).

Proof: Here we have X � k
�
n
2

�
, so the proof proceeds as in

the proof of Theorem 4.3. 2

Corollary 4.6. The number of halving triangles in an
n-element point set in 3-space is O(n8=3).

Proof: By Lov�asz lemma, a segment crosses at most O(n2)
halving triangles. 2
Note that this bound is weaker than the best known bound

O(n5=2) [13].

Corollary 4.7. The maximum number of distinct trian-
gles that lie on the boundaries of k convex polytopes spanned

by a set of n points in 3-space is O(n2k1=3).

Proof: Clearly, no segment crosses more than 2k of these
triangles. 2
This result has been obtained by Aronov and Dey [3] using

a more involved argument. A simple alternative proof is
given in [12].

5. DISCUSSION
Clearly, this paper only scratches the surface of the realm

of applications of this (extended) technique. For example, in
the original setup of the Crossing Lemma of [2, 8], a conict
occurs between two con�gurations (a conict is a crossing
between two edges, that is, between two con�gurations), a
situation that we haven't considered at all here, but one that
should be amenable to the new technique just as the other
cases studied here.
We believe that the ideas developed here will have ad-

ditional applications. For example, our next planned step
in this research is to �nd algorithmic applications for the
new bounds, extending similar applications of the standard
Clarkson-Shor's bounds, e.g., to the analysis of randomized
incremental algorithms.
We end the paper by presenting an alternative interpreta-

tion of the analysis employed in this paper. Let S be a set of
objects, and let A be a subset of Sq , for some q. Put dA = q,
and refer to it as the dimension of A. For any R � S, let
AR = A \Rq.
Suppose now that we have a �nite collection A1; : : : ; A�

of such sets of ordered tuples, possibly with di�erent dimen-
sions dAi , with corresponding (positive or negative) con-
stants c1; : : : ; c� , so that the linear relation

�X
i=1

cAjARj � f(jRj)

holds for any R � S, where f(�) is some function of jRj.
Then, for any p 2 (0; 1), we have

�X
i=1

cip
dAi jAij � E[f(jRpj)]: (8)

The proof of the Crossing Lemma of [2, 8] is an instance
of this observation, using three sets A1; A2; A3 of respective
dimensions 1; 2; 4, where A1 is S, the set of vertices of the
given graph, A2 is the set of its edges, and A3 is the set
of edge crossings (each represented by the quadruple of the
vertices incident to the pair of crossing edges). The linear
relation is jA3j � jA2j+ 3jA1j � 0, and (8), with an appro-
priate choice of p, yields the lemma.
The derivation of, say, Theorem 2.1 can also be inter-

preted as an application of (8) to the inequality (3), as the
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reader can easily verify. This interpretation applies also to
other theorems derived in this paper.
This view of the analysis presented here shows that it is

indeed strongly related to the original Crossing Lemma.
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