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Abstract. We define a set of process algebra operators (controllers) that mimic
the security automata introduced by Schneider in [1] and by Ligatti and al. in [2],
respectively. We show how to automatically build these controllers for specific
security properties and then we extend these results to a discrete-time setting.

1 Overview

Recently, several papers tackled the formal definition of mechanisms for enforcing se-
curity policies (e.g., see [1,2,3,4,5]).

The focus of this paper is the study of the enforcement mechanisms introduced by
Schneider in [1] and security automata developed by Ligatti and al. in [2,4].

In[1], Schneider deals with enforcement security properties in a systematic way. He
discusses whether a given security property is enforceable and at what cost. To study
those issues, Schneider uses the class of enforceable mechanisms (EM) that work by
monitoring execution steps of some system, herein calledatiget and terminating
the target’'s execution if it is about to violate the security property being enforced. A
security automaton defined in [1] is a tripl@, qo, ) whereQ is a set of stategy is
the initial one and : Act x Q@ — Q, whereAct is a set of actions, is the transition
function. A security automata processes a finite or infinite sequeree .. of input
actions. At each step only one action is considered and for each action we calculate the
global stateQ)’ that is the the set of the possible states for the current action, i.e. if the
automaton is checking the actien thenQ’ = |, d(g, s:). If the automaton can
make a transition on given input symbol, i®®. is not empty, then the target is allowed
to perform that step. The state of the automaton changes according to the transition
rules. Otherwise the target is terminated and we can deduce that security property can
be violated. The security properties that can be enforced in this way corresponds to
safety propertiés
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! There are several definition of safety: informally a property is a safety one, if whenever it does
not hold in trace then it does not hold in a finite prefix of it.



Itis possible to note that such automata are non-deterministic, although it is possible
restricting ourselves to deterministic ones (e.g., when considering finite state automata).

Starting from the work of Schneider described above, Ligatti and al. in [2,4] have
defined four different deterministic security automata which deal with finite sequence
of actions. They defingruncation automata (similar to Schneider’s ones) which can
recognize bad sequences of actions and halts program execution before security prop-
erty is violated, but cannot otherwise modify program behavior. The behavior of these
automata is similar to the behavior of security automata of Schneider’s because both of
them read one input action at a time. Thgpression automatorhas the ability to sup-
press individual program actions without terminating the program outright in addition
to being able to halt program execution. The third automata isnhertion automa-
ton. It is able to insert a sequence of actions into the program actions stream as well as
terminate the program. The last one is @it automaton. It combines the power of
suppression and insertion automaton hence it is able to truncate action sequences and
insert or suppress security-relevant actions at will.

These works have been extended [6] studying how truncation automata and edit
automata work on possible infinite sequence of input actions. In this way they ana-
lyze how certain non-safety properties may be enforced. This work comes back to the
original Schneider’s idea to deal with also possibly infinite sequences of actions.

In this paper we introduce process algebra operators able to mimic the behavior of
the security automata briefly described above. The process algebras opEraters
X (whereK is the name of the corresponding automata) act as programnigple (
controllers of a target systenX().

We can then exploit a huge theory for security analysis based on these formalisms.
In particular, we show how to automatically build programs that allow to enforce se-
curity properties for whatever target system depending on the security automata one
chooses.

As a matter of fact, most of the related works deal with the verification rather than
with the synthesis problem. The synthesis is based on a satisfiability procedure for
the p-calculus that allows to obtain a model for a logical formula (in our framework
a suitable property). We then exploit the previous work on timed process algebras for
security by defining controllers that work in a timed setting as well as the corresponding
synthesis techniques.

This paper is organized as follows. Section 2 presents the necessary background on
process algebras, logic and security automata. Section 3 shows some process algebra
operators (controllers) corresponding to the security automata under investigation. Sec-
tion 4 shows how to automatically build programs that enforce desired security policies,
in a given context and for each possible target system. Section 5 extends the results to a
timed setting and section 6 shows a simple example.

2 Background

2.1 Operational semantics and process algebra

We recall a formal method for giving operational semantics to terms of a given lan-
guages. This approach is called Generalized Structured Operational Semantics (GSOS)(see



[7]). It permits to reason compositionally about the behavior of program term, e.g. the
passage of time, timeouts, and so on.

GSOSformat Let V be a set of variables, ranged over byy, ... and letAct be a
finite set of actions, ranged over byb, c. .. A signatureX’ is a pair(F, ar) where:

— Fis a set of function symbols, disjoints frobn,
— ar : F — Nis arank functionwhich gives the arity of a function symbol; ffc F
andar(f) = 0 thenf is called aconstant symbol

Given a signature, lelV C V be a set of variables. It is possible define the set of
Y-termsover W as the least set s.t. every elementlinis a term and iff € F,
ar(f) = n andty,...,t, are terms therf(¢1,...,t,) is a term. It is also possible to
define anassignmengs a functiony from the set of variables to the set of terms s.t.
’Y(f(tla e atn)) = f(v(tl)» s V(tn))'

Given a termt, let Vars(t) be the set of variables inh A term ¢ is closedif
Vars(t) = 0.

Now we are able to describe ti@&SOSformat. A GSOSrule » has the following
format:

aij <i<k bij \1<i<k
{w: ==y hsim, {w A2,
f(xla SRR 7xk) L) g(w7y)
where all variables are distinct; andy are the vectors of alt; andy;; variables
respectivelym;, n; > 0 andk is the arity off. We say thajf is theoperatorof the rule
(op(r) = f) andc is the action. AGSOSsystemg is given by a signature and a finite

set of GSOSrules. Given a signatur® = (F,ar), an assignment is effectivefor a
term f(s1,...,sx) and a ruler if:

(1)

1 y(z;) =s;forl <i<k;
2. foralli,j with 1 <i < kandl < j < m;, it holds thaty(z;) — ~(y:;);
3. foralli,j with1 <3 < kandl < j < n,, it holds thaty(z;) 7/b—7>

The transition relation among closed terms can be defined in the following way: we
have f(s1,...,s,) — s iff there exists areffectiveassignmenty for a ruler with
operatorf and actionc s.t.s = «v(g(x,y)). There exists a unique transition relation
induced by &G5SOSsystem (see [7]) and this transition relatiorirstely branching

An example: CCS process algebraCCS of Milner (see [8]) is a language for describ-
ing concurrent systems. Here, we present a formulation of Milner's CCS, i@ @S
format.

The main operator is thparallel compositionbetween processes, namdhy| F'
because, as we explain better later, it permits to modgbdinallel compositiorof pro-
cesses. The notion of communication considered is a synchronous one, i.e. both the
processes must agree on performing the communication at the same time. It is mod-
eled by a simultaneous performing of complementary actions that is represented by a
synchronization action (or internal action)

Let £ be a finite set of actions} = {a | a € L} be the set of complementary
actions whereis a bijection witha = a, Act be LU LU {7}, wherer is a special action



Prefixing: ——————

a.xr — X
a a !
Choice:—2 — 2’ vy—y
t+y -1 z4y-—y
a a 1 T
Parallel: — 2 — 2’ y—y r—z y—y
a / a / T ! ’
zlly —z'lly  zlly — zlly zlly — a'lly
a /
Restriction:—L—>%
2\L — z'\L
a !
Relabeling:-—% —>%

o[f] = '[{]

Table 1. GSOSsystem for CCS.
that denotes an internal computation step (or communication)/aoela set of constant
symbols that can be used to define processes with recursion. To give a formulation of
CCS dealing wittGSOSwe define the signatutBccs = (Fees, ar) as follows.

Fees =1{0,+, ||} U{a.Ja € Act}U{\L|L C LUL}U{[f]|f: LUL — LUL}UII.

The functionar is defined as followszr(0) = 0 and for everyr € IT we haveur () =
0, || and+ are binary operators and the other ones are unary operators.

The operational semantics of CCS closed terms is given by means &Sk
system in table 1. Informally, a (closed) teum¥ represents a process that performs
an actiona and then behaves ds. The termE + F represents the non-deterministic
choice between the processésand F'. Choosing the action of one of the two compo-
nents, the other is dropped. The tefffj F’ represents the parallel composition of the
two processe& andF'. It can perform an action if one of the two processes can perform
an action, and this does not prevent the capabilities of the other process. The third rule
of parallel composition is characteristic of this calculus, it expresses that the communi-
cation between processes happens whenever both can perform complementary actions.
The resulting process is given by the parallel composition of the successors of each
component, respectively. The procdssL behaves likel but the actions il U L are
forbidden. To force a synchronization on an action between parallel processes, we have
to set restriction operator in conjunction with parallel one. The pro&#dgs behaves
like the E but the actions are renameth f.

2.2 Strong and weak bisimulations

It is often necessary to compare processes that are expressed using different terms in
order to understand if there exists some behavioral relation between two processes and
which one.

A LTS overAct is a pair(€, 7) where7 is a ternary relatio C (£ x Act x &),
known as dransition relation We recall some useful relations between processes (see
(8]).
Definition 1. Let (£,7) be an LTS of concurrent processes, andfebe a binary
relation over€. ThenR is calledstrong simulatior(denoted by<) over (£, 7T) if and
only if, wheneve(E, F') € R we have:

if % FE'then3F' ¢ £s.t.F % Fland(E',F') e R



Moreover, a binary relatiorR over€ is said astrong bisimulatiorfdenoted by-) over
the LTS of concurrent process@gs 7)) if both’R and its converse are strong simulation.

Referring to [7], letG be aGSOS system, the strong bisimulation is a congruence w.r.t.
the operations irg, i.e., the strong bisimulation is preserved by @bOSdefinable
operators.

Another kind of equivalence is the@eak bisimulationThis relation is used when
there is the necessity of understanding if systems with different internal structure -
and hence different internal behavior - have the same external behavior and may thus
be considered observationally equivalent. The notioolifervational relatioris the
following: E = E’ (or E = E')if E 5" E' (where > is the reflexive and transitive
closure of the’ relation); fora # 7, E = E'if E %5 F/,

Let Der(F) be the set of derivatives &, i.e., the set of process that can be reached
through the transition relations. Now we are able to give the following definition.

Definition 2. Let (£,7) be an LTS of concurrent processes, andRebe a binary
relation over a set of process ThenR is said to be aveak simulatior{denoted by<)
if, wheneve(E, F) € R,

if E% E'thendF' c £s.t.F = F'and(E',F') € R.

Moreover, a binary relatioR overé is said aweak bisimulatior(denoted byx) over
the LTS of concurrent processgg 7) if both R and its converse are weak simulation.

Itis important to note that every strong simulation is also a weak one (see [8]).

2.3 Equational u-calculus and partial model checking

Equational:-calculus is a process logic well suited for specification and verification of
systems whose behavior is naturally described using state changes by means of actions.
It permits to express a lot of interesting properties Beéetyandlivenesgroperties, as
well as allowing to express equivalence conditions over LTS. In order to define recur-
sively the properties of a given systems, this calculus uses fixpoint equationsbeet
in Act and X be a variable ranging over a finite set of variablesGiven the grammar:
A:X|T‘F|X1/\X2|X1\/X2 | <(L>X|[Q]X
D:=X=,AD| X =,AD |¢
where the symbdI’ meandrue andF meandalse A is the symbol for the conjunction
of formulae, i.e. the conjunctioX’; A X5 holds iff both of the formula&; and X5 hold,
andV is the disjunction of formulae and; v X5 holds when at least one d&f; and
X holds. Moreover the meaning ¢f) X (possibility operatoy is 'it is possible to do
ana-action to a state wher& holds’ and the meaning dfi] X (necessity operatiis
‘for all a-actions performed holds’. X =, A is a minimal fixpoint equation, where
Ais an assertion (i.e. a simple modal formula without recursion operator)Xaag A
is a maximal fixpoint equation. Roughly, the semaffifi] of the list of equationD is
the solution of the system of equations corresponding taAccording to this notation,
[D](X) is the set of values of the variah¥, andE = D | X can be used as a short
notation forE € [D](X). The formal semantic is in Table 2.

The following standard result gi-calculus will be useful in the reminder of the

paper.



[T], =5 [Fl, =0 [X],=p(X) [AAAz], =[Ad]} N [A:],
[A1V Ao, = [A1], U [A2], [{a)A], = {s|3s': s = s" ands’ € [A],}
[[alA], = {s | Vs' : s % s’ impliess” € [A],}

We uselLl to represent union of disjoint environments. kebe in{u, v}, thenoU.f(U) repre-
sents ther fixpoint of the functionf in one variabldJ.

lelo =0 [X =0 AD'], = [D'](puw/x) U [U'/X]

whereU" = oU.[A]{, v/ x)0, () @aNdp' (U) = [D'] ooy x))-

It informally says thathe solution toq X =, A)D is theo fixpoint solutionl/’ of [ A] where the
solution to the rest of the lists of equatiofsis used as environment

Table 2. Equationalu-calculus

Theorem 1 ([9]). Given a formulap it is possible to decide in exponential time in the
length ofy if there exists a model @f and it is also possible to give an example of such
model.

Partial model checkingofng is a technique that was originally developed for compo-
sitional analysis of concurrent systems (processes) (see [10]). The intuitive idea under-
lying the pmcis the following: proving that|| F satisfies a formula (E||F E ¢) is
equivalent to proving that’ satisfies a modified specificatign, . (F' = ¢,,z), where
// E is the partial evaluation function for the parallel composition operator. The formula
¢ is specified by use thequationalu-calculus

A useful result of partial model checking is the follow.

Lemma 1 ([10]). Given a proces# || F' and a formulap we have:E||F | ¢ iff F =
¢k

The reduced formula,,z depends only on the formutaand on proces&. No in-
formation is required on the procegswhich can represent a possible enemy. Thus,
given a certain systerfy, it is possible to find the property that the enemy must sat-
isfy in order to make a successful attack on the system. It is worth noticing that partial
model checking functions may be automatically derived from the semantics rules used
to define a language semantics. Thus, the proposed technique is very flexible.

A lemma similar to lemma 1 holds for every operator@ES(see [10]) and also
for every new operator defined BS0Sules. The partial model checking function for
parallel operator, relabeling and restriction is give in tables 3 and 4.

2.4 Enforcement mechanisms and Security automata

In this paper we chose to follow the semantic approach given by Ligatti and al. in [2] to
describe the behavior of four different kind of security automata. First of all we recall
the definition of security automata. gecurity automatas a deterministic finite-state

or countably infinite-state machine that is defined with respect to some system with
action setAct. A program monitor can be formally modeled by a security automata.
The authors restrict themselves to finite but arbitrarily long executions. Now we report
all the definition and the semantics of automata that are given in [2]. We start giving



(D] X)Zt =D/t X;
e//t =¢€
(X = AD)//t = (Xs =0 A//8)seper(m))(D)//t
(@)A//s = (a)(A)/s)V \y, oy A/, g # T
(NVAf/s =(T)(A))s)\, oo Al/S'V o (@)(A)/$)
[alA//s = [a](AlS) A Vsl AJls, if\g # 7
[T]A))s = [T)(AIS)N =, AJ/s' N o [al(A))s")
A1 N Asffs = (A1]/s) A (Az2//s)
A1V Asffs = (A1//5) V (A2//s)

T//s=T
F//s=F
Table 3. Partial evaluation function for parallel operatBj -.

Restriction: Relabeling:
X//\L =X _ ) Xp=x
@A/\L= AN Rad LUL @AY ="y DAL
aajpL= ANLTag LUL @A/ = gars DAL
Av N Az f/\L = (A1//\L) A (A2//\L) Av N Azf[[f] = (Av// 1) A (A2//1])
ALV Az //\L = (A1//\L) V (A2//\L) AV A f/1f] = (/LD V (A2// (1)
T//\L =T T//[f] =T
F/\L=F F//lfl=F

Table 4. Partial evaluation function for restriction and relabeling operator.

some notation: withr we denote a sequences of actionis, the empty sequence?

models an internal action. It is important to note that it is used to indicate the action
of stop but it is not really performed. Then there is the transition funciitimt is a

partial functiond : Act x Q@ — @, it indicates that the automata should accept the
current input and move in a new state. The execution of each different kind of security
automaton is specified by a labeled operational semantics where the basic single-step
judgment has the forrfv, ) = (¢’, ¢') wheres’ andq’ denote the actions sequence

and state after the automaton takes a single stepyawhotes the sequence of actions
produced by the automaton. The single-step judgment can be generalized to a multi-step
judgment(c, ¢) == (¢, ¢')) as follows.

(0,9) == (0",4") (0".4') =% (o', 4)
(Reflex) s

T
(0,9) == (o', q) (0,q9) == (¢",q") (Trans)

The operational semantic for each security automaton is the following.

truncation automaton can recognize bad sequences of actions and halts program ex-
ecution before a security property is violated, but cannot modify program behavior.
These automata are similar to Schneider’s original security monitors (see [2,4]).

2n [2] internal actions are denoted hyWe user because we use CCS where internal actions
are commonly denoted by.



The operational semantic of truncation automata is:

(Ua Q) i>T (0,7 q/) (T-Step)
if o =a;o0’
andé(a, q) = ¢’
(0,9) 1 (-,9) (T-Stop)
otherwise;

suppression automatonin addition to being able to halt program execution, has the
ability to suppress individual program actions without terminating the program out-
right. It is define a3 Q, qo, J, w) wherew : Act x Q@ — {—, +} indicates whether
or not the action in question should be suppressed (-) or emitted (+).

(0,9) —s (o', q) (S-StepA)

if o =a;0’
andd(a,q) = ¢’
andw(a,q) = +
(Uu q) L’S (0/7 ql> (S—StepS)

if o =a;0’
andd(a,q) = ¢
andw(a,q) = —
(0,9) —s5 (- q) (S-Stop)

otherwise

insertion automaton is able to insert a sequence of actions into the program actions
stream as well as terminate the program. It is definé@sjo, d,~v) where~ :
Act x Q@ — Act x Q that specifies the insertion of an action into the sequence of
actions of the program. It is necessary to note that in [2,4] the automaton inserts
a finite sequence of actions instead of only one action, i.e., it controls if a wrong
action is performed by function. If it holds, the automaton inserts a finite sequence
of actions, hence there exists a finite number of intermediate states. Without loss
of generality, we consider that it performs only one action. In this way we openly
consider all intermediate state. Note that the domair &f disjointed from the
domain ofd in order to have a deterministic automata;

(07 q) L)I (OJ, q/) (I'Step)
if o =a;o0’
andé(a,q) = ¢
(0,q) 21 (0.q") (I-Ins)
if o =a;0’
andy(a,q) = (b,¢)
(Uv q) ;)1 ('7 CI) (l-StOp)

otherwise



edit automaton combines the power of suppression and insertion automata. It is able
to truncate action sequences and to insert or to suppress security-relevant actions
at will. It is define as(Q, qo, J,v,w) wherey : A x Q — A x Q that specifies
the insertion of a finite sequence of actions into the program’s action sequence and
w: Ax Q@ — {—,+} indicates whether or not the action in question should be
suppressed (-) or emitted (+). Also here the domainy 6 disjointed from the
domain ofé in order to have a deterministic automata.

(0,9) =5 (0',q) (E-StepA)

if o =a;0’
andd(a,q) = ¢’
andw(a,q) = +
(0,9) =& (0',4) (E-StepS)

if o =a;o0’
andd(a,q) = ¢
andw(a,q) = —

(0,q) 5 (0,4) (E-Ins)
if o =a;0’
andv(a,q) = (b,¢')

(0,9) —£ (- 9) (E-Stop)

otherwise

3 Our goal

In this paper we give the semantic of some new process algebra operators tat-are
troller operators denoted byY >k X whereK € {T,S, I, E}3. These can permit
to control the behavior of the unknown componéhtgiven the behavior of a control
programy’.

These operators model the enforcement mechanism and security automata, whose
semantic we have given in the previous section. In this way it is possible to apply all
results of the logical approach to these automata. In particular we are able to automat-
ically synthesize the appropriate controlling progr&mfor each operator-k using
the satisfiability procedure for thecalculus that allows to obtain a model for a logical
formula.

3.1 Our controller operators in process algebra

We introduce the following controller operators:, >g, >y andrg in order to model
truncation, suppression, insertion and edit automata, respectively. To be able to com-
pare security automata with our controllers, it is crucial to have a rigorous definition

% We choose these symbols to denote four operators that have the same behavior of truncation,
suppression, insertion and edit automata respectively



of the semantic rules that describe the behavior of each operator. We denot& with
the program controller and with the program whose behavior we have to control. We
work, without loss of generality, under the additional assumption khahd F' never
performs internal action. It is important to remark that we consider finite-state process
in order to be able to apply the Theorem 1.

Truncation automata: >
ELEFSF
E > F i> E’ > F’
This operator ([5]) model Schneider’'s automaton (and truncation automaton). Its se-
mantic rule means that i performs the right action, i.e., the same action performed

by E, thenE > F' performs the action, otherwise it halts. The following proposition
holds.

Proposition 1. Every sequence of actions that is an output dafumcation automata
(9, qo, 9) is also derivable fron»; and vice-versa.

Suppression automatar g

ELSFEFSF E-SE FSF
El>sFi>E/l>3F/ E[>3FL>E'[>5F/

where—a is a control action not imct, so it does not admit a complementary action.
This action is made by the processin order to verify if the proces$’ performs the
actiona which is a not admitted actiorf{ does not performa). If F' performs the same
action performed by also F >¢ F' performs it. On the contrary, if' performs some
actiona that £ does not perform the® checks it performing a control actiona;

E >g F performs the actionr that permits tasuppresghe actiona,i.e. a becomes not
visible from external observation. Thus it is trivially modeled by the internal action
In every other casek g F' halts. The following proposition holds.

Proposition 2. Every sequence of actions that is an output sbippression automata
(9, qo, J,w) is also derivable fromg and vice-versa.

Insertion automata: >y

E4XE F4F EAHE E™E FSF,
Ev>i F 5 E'br FY Es;FLE b F

where+a is an action not inAct, so it doesn’'t admit a complementary action. The
processE performs+-a to verify if the procesd” is going to perform the actioa or
not. Informally this two rules mean that i performs the same action performed By
alsoEr; F performs it. If ' performs some action th&t does not performZ detects it
performing a control action-a and subsequently performs an actiomhus the entire
system performs the actidn It is possible to note that in the description of insertion

* This meanst % E, -2 E’. However we conside#-a.b as a single action, i.e. the state
E, is hide and we do not consider it Der E.



automata in [2] the domain of and/ is disjoint. In our case this is guarantee by the

premise of the second rule in which we have tBay E', E tab B in fact for the

insertion automata, if a pafr, ¢) is not in the domain of and it is in the domain of

it means that the actiomand the statg are not compatible so in order to change state

a sequence of actions must be performed. It is important to note that it is able to insert
new actions but it is not able to suppress any action performe#.byhe following
proposition holds.

Proposition 3. Every sequence of actions that is an output dhsertion automata
(9, qo, 9, ) is also derivable fromy; and vice-versa.

Edit automata: >g In order to do insertion and suppression together we define the
following controller operator. Its rule is the union of the rules ofitheandr;.

ESE F%F FE%F F%F EBELE ESE FSF
EvpF % EvgyF EvpF L EuvgF EvpFA Eop F

This operator combines the power of the previous two ones. The following proposition
holds.

Proposition 4. Every sequence of actions that is an output oédit automata
(9, qo,0,7,w) is also derivable from»; and vice-versa.

It is important to note that we introduced the control actiemin the semantic ofg

and-+a in the semantic of; in order to find operators that were as similar as possible

to suppression and insertion automata, respectively. Other definitions could be possible,
although some attempts we made failed on defining and tractable semantics (especially
when trying to extend them to the timed setting).

4 Synthesis of controller programs

In our logical approach we are able to build a program contrélleising the Theorem

1. SuchY allows to enforce a desired security property for any target systeme
present here an extension of the reasoning we have done in [5]. In this case we have
different operators and in particular we have to deal with control actions.

Let S be a system, and let be one component that may be dynamically changed
(e.g., a downloaded mobile agent) that we consider an unknown agent, i.e. we do not
know what is the behavior oX. At the beginning we have the systefij|.X, and
we want that it enjoys a security property expressed by a logical forpuk, VX
(SIX\L [ ¢.

By using the partial model checking approach proposed in [11,12], we can focus on
the properties of the possibly un-trusted compong€nt.e.,vX X | ¢ where¢’ =
¢ SA\L"

//V\>e wonder if there exists an implementation that can plugged into the system re-
placing the unspecified one, by satisfying some properties of the whole system. For this



reason we use the controller operators. We consider the previous equation where instead
of X we putY bk X as follows

WY VX (Yo X) o )

So we want to find a control prograin In order to manage the universal quantification
in (2), we prove the following proposition.

Proposition 5. For everyK € {T,S,I,E} Y bk X = Y|[fk] holds, wherefk is a
relabeling function depending di. In particular, fr is the identity function and

fs(a):{aifaeAct fs(a):{aifaeAct fj(a):{aifae’%t

Tifa=—a Tifa=—a Tifa=+4a

Moreover we consider equationatcalculus formulae withou{-) modality, namely
Fr,. Itis easy to prove that this set of formulae is close for partial model checking
function. The interest in this subclass fcalculus formulas is that it corresponds to
the safety one. The following result holds.

Proposition 6. Let £ and F' be two finite state processes and Fr,. If F < E then
EF¢=FE¢

Hence the equation (2) becomes s.t.Y[fk]| = ¢'. Applying partial model checking
for relabeling function, we obtain

Y Y [ ¢" whereg” = ¢ S (3)

for everyK. The formulation (3) is easier to be managed than (2). In particular, it is a
satisfiability problem ins-calculus and so it can be solved by obtaining a madel

5 Timed setting

In this section we extend to a timed setting the theory that we have developed above.
First of all we show some notions useful to describe a very simple timed setting.

5.1 GSOSand CCS process algebra with time

We follow a simple approach, where time is discrete, actions are durationless and there
is one speciatick action to represent the elapsing of time (see [13]). These are the
feature of the so callefictitious clockapproach of, e.g. [14,15,16]. A global clock
is supposed to be update whenever all the processes of the system agree on this, by
globally synchronizing an actiotick. Hence, between the two global synchronizations
on actiontick all the processes proceed asynchronously by performing durationless
actions. So, theéick action is important in parallel operator whose semantic, in this
case, is enriched of this one more rule in addition of rules given in Table 1.

B 25 B By B R

tick

E\||Ey — Ej||Ey




5.2 Behavioral equivalence

As done in [13], where security (in particular) information flow properties were defined
in a timed setting, we consider the class of processes that do allow time proceed, the
so-calledweakly time alivgprocesses. These represeaitrectattackers w.r.t. time. (As

a matter of fact, it is not realistic that an intruder or a malicious agent can block the flow
of time.)

Definition 3. A procesds¥ is directly weakly time alive iffE tick 5, while it isweakly
time alive ifffor all E’ € Der(E), we haveE’ is directly weakly time alive.

SinceE - E’ implies Der(E’) C Der(E), it directly follows that if £ is weakly
time alive, then any deriveB’ of E is weakly time alive as well. Moreover, it is worth-
while noticing that the above property is preserved by the parallel composition.

The behavioral relation considered is the timed versions of weak bisimulation [8].
This equivalence permits to abstract to some extent from the internal behavior of the
systems, represented by the invisiblactions 8

Definition 4. Let (£,7) be an LTS of concurrent processes, andRebe a binary
relation over€. ThenR is calledtimed weak simulationdenoted by, over(E,7) if
and only if, whenevefE, F') € R we have:

— if E % E’ then there exist§” s.t. F == " and(E', F’) € R,

— it B2 E’ then there exist” s.t. F 2% F and (E',F') e R.

Moreover, a binary relationR over £ is said atimed weak bisimulatiorffdenoted by
~2) over the LTS of concurrent processés 7) if both R and its converse are timed
weak simulation.

5.3 Partial model checking with time

Introducing the newick action to model the elapsing of time, we have one more case
to consider in the definition of partial model checking function. Fie& action cannot
be consider as the other actionsdnt. Hence we extend themcfunction to deal with

time by adding the following rules
. tick . tick
(tick)AJ)s = { Sick)AJ[s"s = 8" iy = ) [ticklA/]s"s == 8" g
F otw T otw
easy to note that the insertion @tk action affects only themc for parallel operator.

The partial evaluation function for relabeling and restriction are not affected.

5.4 Our controller operators in a timed setting

In this section we study how the controller operators that we have define in Section 3.1
work in a timed setting. We want that >k X, for each/C, are processes that do allow
time to proceed, so we prove that itweakly time aliveHere we use the following
notation: £ and F' are finite state processek. is the program controller and' the
program whose behavior we want to control. The following proposition holds.

5 This means that we are no interested to the final state of the transition.
8 Other equivalences are in between trace and bisimulation semantics. We do not intend to dis-
cuss here their relative merits.



Proposition 7. Let £ and I be two finite-state processes. If bdihand F' are weakly
time alive, alsall bk F' is weakly time alive.

Dealing with time we do not change or modify the semantic of our controllers. Hence
a proposition similar to proposition 5 holds. In particular, looking at the definition of
weak timed simulation and at the proof of the proposition 5, given in appendix, the
following proposition holds.

Proposition 8. For everyK € {T, S, I, E} the following relation holdsF bk F <
E[fx] wherefx is a relabeling function definition of which dependKn

We can then recast the results of the previous section in a timed setting.

6 A simple example

Consider the process = a.b.0 and consider the following equational definitigh=,,

[7]Z A [a][[]]"F. It asserts that after every actiarcannot be perform an actidn Let

Act = {a,b,c,7,a,b,¢} be the set of actions. We can apply the partial evaluation for
the parallel operator we obtain after some simplifications the following system of equa-
tion, that we denoted wit®

Z)1s =v (1127 Nal 2y, NalWyys AW,

W//s/ =y [T]W//S, /\Jb]T A [C]F

Z)1s =v (11275 N[OIT A a]W) ),

W//s =y [T]W//S A [EL]W//S, A [C}F

The information obtained through partial model checking can be used to enforce a se-
curity policy. In particular, choosing one of the four operators and using its definition
we simply need to find a proce’y fk |, whereK depend on the chosen controller, that

is a model for the previous formula. In this simple example we choose the controller
operaton-g. Hence we apply the partial model checking for relabeling funcfigmo

the previous formula and we obtain thag, . is

Zy)sss =v =25 g N2y, NaW) g o AW,

Z//S"fs =, [—C]Z//S/J_S A\ [b]T N [a]W//S’,fs

Wsie =v =dWyys o NMalWyyg, o NF

VV//S,st =, [_C]W//S’,.fs A [b]T A [(’]F

It is easy to note the proce3s= a. — ¢.0 is a model ofD//fs. Then, for any compo-
nentX, we haveS||(Y »s X) satisfiesD. For instance, conside¥ = a.c.0. Looking

at the first rules of g, we have

(S)|(Y bs X)) = (a.b.0[/(a. — .05 a.c.0)) = (a.b.0]|(—c.0>5 c.0))
Using the second rule we eventually get
(a.b.0||(—c.0>5 c.0)) — (a.b.0]|0>5 0)

and so the system still preserve its security since the actions performed by the compo-
nentX have been prevented from being visible outside.

" We defing][c]] ¢ as—({c))—¢ which is the formula that captures in the strong logic the diamond
modality in the weak transition systems (see [17]).
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