
Modeling Security Automata with process algebras and
related results?

Fabio Martinelli1, Ilaria Matteucci1,2

{Fabio.Martinelli, Ilaria.Matteucci}@iit.cnr.it

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy1

Dipartimento di Matematica, Università degli Studi di Siena2

Abstract. We define a set of process algebra operators (controllers) that mimic
the security automata introduced by Schneider in [1] and by Ligatti and al. in [2],
respectively. We show how to automatically build these controllers for specific
security properties and then we extend these results to a discrete-time setting.

1 Overview

Recently, several papers tackled the formal definition of mechanisms for enforcing se-
curity policies (e.g., see [1,2,3,4,5]).

The focus of this paper is the study of the enforcement mechanisms introduced by
Schneider in [1] and security automata developed by Ligatti and al. in [2,4].

In [1], Schneider deals with enforcement security properties in a systematic way. He
discusses whether a given security property is enforceable and at what cost. To study
those issues, Schneider uses the class of enforceable mechanisms (EM) that work by
monitoring execution steps of some system, herein called thetarget, and terminating
the target’s execution if it is about to violate the security property being enforced. A
security automaton defined in [1] is a triple(Q, q0, δ) whereQ is a set of states,q0 is
the initial one andδ : Act × Q → Q, whereAct is a set of actions, is the transition
function. A security automata processes a finite or infinite sequences1s2 . . . of input
actions. At each step only one action is considered and for each action we calculate the
global stateQ′ that is the the set of the possible states for the current action, i.e. if the
automaton is checking the actionsi thenQ′ =

⋃
q∈Q′ δ(q, si). If the automaton can

make a transition on given input symbol, i.e.Q′ is not empty, then the target is allowed
to perform that step. The state of the automaton changes according to the transition
rules. Otherwise the target is terminated and we can deduce that security property can
be violated. The security properties that can be enforced in this way corresponds to
safety properties1.

? Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by
EU-funded project “Software Engineering for Service-Oriented Overlay Computers” (SEN-
SORIA) and by EU-funded project ”Secure Software and Services for Mobile Systems
”(S3MS).

1 There are several definition of safety: informally a property is a safety one, if whenever it does
not hold in trace then it does not hold in a finite prefix of it.

It is possible to note that such automata are non-deterministic, although it is possible
restricting ourselves to deterministic ones (e.g., when considering finite state automata).

Starting from the work of Schneider described above, Ligatti and al. in [2,4] have
defined four different deterministic security automata which deal with finite sequence
of actions. They definetruncation automata (similar to Schneider’s ones) which can
recognize bad sequences of actions and halts program execution before security prop-
erty is violated, but cannot otherwise modify program behavior. The behavior of these
automata is similar to the behavior of security automata of Schneider’s because both of
them read one input action at a time. Thesuppression automatonhas the ability to sup-
press individual program actions without terminating the program outright in addition
to being able to halt program execution. The third automata is theinsertion automa-
ton. It is able to insert a sequence of actions into the program actions stream as well as
terminate the program. The last one is theedit automaton. It combines the power of
suppression and insertion automaton hence it is able to truncate action sequences and
insert or suppress security-relevant actions at will.

These works have been extended [6] studying how truncation automata and edit
automata work on possible infinite sequence of input actions. In this way they ana-
lyze how certain non-safety properties may be enforced. This work comes back to the
original Schneider’s idea to deal with also possibly infinite sequences of actions.

In this paper we introduce process algebra operators able to mimic the behavior of
the security automata briefly described above. The process algebras operatorsY ¤K
X (whereK is the name of the corresponding automata) act as programmable (Y)
controllers of a target system (X).

We can then exploit a huge theory for security analysis based on these formalisms.
In particular, we show how to automatically build programs that allow to enforce se-
curity properties for whatever target system depending on the security automata one
chooses.

As a matter of fact, most of the related works deal with the verification rather than
with the synthesis problem. The synthesis is based on a satisfiability procedure for
the µ-calculus that allows to obtain a model for a logical formula (in our framework
a suitable property). We then exploit the previous work on timed process algebras for
security by defining controllers that work in a timed setting as well as the corresponding
synthesis techniques.

This paper is organized as follows. Section 2 presents the necessary background on
process algebras, logic and security automata. Section 3 shows some process algebra
operators (controllers) corresponding to the security automata under investigation. Sec-
tion 4 shows how to automatically build programs that enforce desired security policies,
in a given context and for each possible target system. Section 5 extends the results to a
timed setting and section 6 shows a simple example.

2 Background

2.1 Operational semantics and process algebra

We recall a formal method for giving operational semantics to terms of a given lan-
guages. This approach is called Generalized Structured Operational Semantics (GSOS)(see

[7]). It permits to reason compositionally about the behavior of program term, e.g. the
passage of time, timeouts, and so on.

GSOSformat Let V be a set of variables, ranged over byx, y, . . . and letAct be a
finite set of actions, ranged over bya, b, c . . . A signatureΣ is a pair(F, ar) where:

– F is a set of function symbols, disjoints fromV ,
– ar : F 7→ N is arank functionwhich gives the arity of a function symbol; iff ∈ F

andar(f) = 0 thenf is called aconstant symbol.

Given a signature, letW ⊆ V be a set of variables. It is possible define the set of
Σ-termsover W as the least set s.t. every element inW is a term and iff ∈ F ,
ar(f) = n andt1, . . . , tn are terms thenf(t1, . . . , tn) is a term. It is also possible to
define anassignmentas a functionγ from the set of variables to the set of terms s.t.
γ(f(t1, . . . , tn)) = f(γ(t1), . . . γ(tn)).

Given a termt, let V ars(t) be the set of variables int. A term t is closed if
V ars(t) = ∅.

Now we are able to describe theGSOSformat. A GSOSrule r has the following
format:

{xi
aij−→ yij}1≤i≤k

1≤j≤mi
{xi 6 bij−→}1≤i≤k

1≤j≤ni

f(x1, . . . , xk) c−→ g(x, y)
(1)

where all variables are distinct;x and y are the vectors of allxi and yij variables
respectively;mi, ni ≥ 0 andk is the arity off . We say thatf is theoperatorof the rule
(op(r) = f) andc is the action. AGSOSsystemG is given by a signature and a finite
set ofGSOSrules. Given a signatureΣ = (F, ar), an assignmentγ is effectivefor a
termf(s1, . . . , sk) and a ruler if:

1. γ(xi) = si for 1 ≤ i ≤ k;

2. for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ mi, it holds thatγ(xi)
aij−→ γ(yij);

3. for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ ni, it holds thatγ(xi) 6 bij−→,

The transition relation among closed terms can be defined in the following way: we
havef(s1, . . . , sn) c−→ s iff there exists aneffectiveassignmentγ for a ruler with
operatorf and actionc s.t. s = γ(g(x, y)). There exists a unique transition relation
induced by aGSOSsystem (see [7]) and this transition relation isfinitely branching.

An example: CCS process algebraCCS of Milner (see [8]) is a language for describ-
ing concurrent systems. Here, we present a formulation of Milner’s CCS, in theGSOS
format.

The main operator is theparallel compositionbetween processes, namelyE‖F
because, as we explain better later, it permits to model theparallel compositionof pro-
cesses. The notion of communication considered is a synchronous one, i.e. both the
processes must agree on performing the communication at the same time. It is mod-
eled by a simultaneous performing of complementary actions that is represented by a
synchronization action (or internal action)τ .

Let L be a finite set of actions,̄L = {ā | a ∈ L} be the set of complementary
actions wherēis a bijection with̄̄a = a, Act beL∪L̄∪{τ}, whereτ is a special action

Prefixing:
a.x

a−→ x

Choice: x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

Parallel: x
a−→ x′

x‖y a−→ x′‖y
y

a−→ y′

x‖y a−→ x‖y′
x

l−→ x y
l̄−→ y′

x‖y τ−→ x′‖y′

Restriction: x
a−→ x′

x\L a−→ x′\L
Relabeling: x

a−→ x′

x[f]
a′−→ x′[f]

Table 1.GSOSsystem for CCS.

that denotes an internal computation step (or communication) andΠ be a set of constant
symbols that can be used to define processes with recursion. To give a formulation of
CCS dealing withGSOS, we define the signatureΣCCS = (FCCS , ar) as follows.

FCCS = {0, +, ‖}∪{a.|a ∈ Act}∪{\L|L ⊆ L∪L̄}∪{[f]|f : L∪L̄ 7→ L∪L̄}∪Π.

The functionar is defined as follows:ar(0) = 0 and for everyπ ∈ Π we havear(π) =
0, ‖ and+ are binary operators and the other ones are unary operators.

The operational semantics of CCS closed terms is given by means of theGSOS
system in table 1. Informally, a (closed) terma.E represents a process that performs
an actiona and then behaves asE. The termE + F represents the non-deterministic
choice between the processesE andF . Choosing the action of one of the two compo-
nents, the other is dropped. The termE‖F represents the parallel composition of the
two processesE andF . It can perform an action if one of the two processes can perform
an action, and this does not prevent the capabilities of the other process. The third rule
of parallel composition is characteristic of this calculus, it expresses that the communi-
cation between processes happens whenever both can perform complementary actions.
The resulting process is given by the parallel composition of the successors of each
component, respectively. The processE\L behaves likeE but the actions inL ∪ L̄ are
forbidden. To force a synchronization on an action between parallel processes, we have
to set restriction operator in conjunction with parallel one. The processE[f] behaves
like theE but the actions are renamedviaf .

2.2 Strong and weak bisimulations

It is often necessary to compare processes that are expressed using different terms in
order to understand if there exists some behavioral relation between two processes and
which one.

A LTS overAct is a pair(E , T) whereT is a ternary relationT ⊆ (E × Act× E),
known as atransition relation. We recall some useful relations between processes (see
[8]).

Definition 1. Let (E , T) be an LTS of concurrent processes, and letR be a binary
relation overE . ThenR is calledstrong simulation(denoted by≺) over(E , T) if and
only if, whenever(E,F) ∈ R we have:

if E
a→ E′ then∃F ′ ∈ E s. t.F

a→ F ′ and(E′, F ′) ∈ R

Moreover, a binary relationR overE is said astrong bisimulation(denoted by∼) over
the LTS of concurrent processes(E , T) if bothR and its converse are strong simulation.

Referring to [7], letG be aGSOS system, the strong bisimulation is a congruence w.r.t.
the operations inG, i.e., the strong bisimulation is preserved by allGSOSdefinable
operators.

Another kind of equivalence is theweak bisimulation. This relation is used when
there is the necessity of understanding if systems with different internal structure -
and hence different internal behavior - have the same external behavior and may thus
be considered observationally equivalent. The notion ofobservational relationis the
following: E

τ⇒ E′ (or E ⇒ E′) if E
τ→∗

E′ (where
τ→∗

is the reflexive and transitive
closure of the

τ→ relation); fora 6= τ , E
a⇒ E′ if E

τ⇒ a→ τ⇒ E′.
Let Der(E) be the set of derivatives ofE, i.e., the set of process that can be reached

through the transition relations. Now we are able to give the following definition.

Definition 2. Let (E , T) be an LTS of concurrent processes, and letR be a binary
relation over a set of processE . ThenR is said to be aweak simulation(denoted by¹)
if, whenever(E,F) ∈ R,

if E
a→ E′ then∃F ′ ∈ E s. t.F

a⇒ F ′ and(E′, F ′) ∈ R.

Moreover, a binary relationR overE is said aweak bisimulation(denoted by≈) over
the LTS of concurrent processes(E , T) if bothR and its converse are weak simulation.

It is important to note that every strong simulation is also a weak one (see [8]).

2.3 Equationalµ-calculus and partial model checking

Equationalµ-calculus is a process logic well suited for specification and verification of
systems whose behavior is naturally described using state changes by means of actions.
It permits to express a lot of interesting properties likesafetyandlivenessproperties, as
well as allowing to express equivalence conditions over LTS. In order to define recur-
sively the properties of a given systems, this calculus uses fixpoint equations. Leta be
in Act andX be a variable ranging over a finite set of variablesV . Given the grammar:
A ::= X | T | F | X1 ∧X2 | X1 ∨X2 | 〈a〉X | [a]X
D ::= X =ν AD | X =µ AD | ε
where the symbolT meanstrueandF meansfalse; ∧ is the symbol for the conjunction
of formulae, i.e. the conjunctionX1∧X2 holds iff both of the formulaeX1 andX2 hold,
and∨ is the disjunction of formulae andX1 ∨ X2 holds when at least one ofX1 and
X2 holds. Moreover the meaning of〈a〉X (possibility operator) is ’it is possible to do
ana-action to a state whereX holds’ and the meaning of[a]X (necessity operator) is
’for all a-actions performedX holds’.X =µ A is a minimal fixpoint equation, where
A is an assertion (i.e. a simple modal formula without recursion operator), andX =ν A
is a maximal fixpoint equation. Roughly, the semanticJDK of the list of equationsD is
the solution of the system of equations corresponding toD . According to this notation,
JDK(X) is the set of values of the variableX, andE |= D ↓ X can be used as a short
notation forE ∈ JDK(X). The formal semantic is in Table 2.

The following standard result ofµ-calculus will be useful in the reminder of the
paper.

JTK′ρ = S JFK′ρ = ∅ JXK′ρ = ρ(X) JA1 ∧A2K′ρ = JA1K′ρ ∩ JA2K′ρ
JA1 ∨A2K′ρ = JA1K′ρ ∪ JA2K′ρ J〈a〉AK′ρ = {s | ∃s′ : s

a→ s′ ands′ ∈ JAK′ρ}
J[a]AK′ρ = {s | ∀s′ : s

a→ s′ impliess′ ∈ JAK′ρ}

We uset to represent union of disjoint environments. Letσ be in{µ, ν}, thenσU.f(U) repre-
sents theσ fixpoint of the functionf in one variableU .
JεKρ = [] JX =σ AD′Kρ = JD′K(ρt[U′/X]) t [U ′/X]
whereU ′ = σU.JAK′(ρt[U/X]tρ′(U)) andρ′(U) = JD′K(ρt[U/X]).
It informally says thatthe solution to(X =σ A)D is theσ fixpoint solutionU ′ of JAK where the
solution to the rest of the lists of equationsD is used as environment.

Table 2.Equationalµ-calculus

Theorem 1 ([9]). Given a formulaϕ it is possible to decide in exponential time in the
length ofϕ if there exists a model ofϕ and it is also possible to give an example of such
model.

Partial model checking (pmc) is a technique that was originally developed for compo-
sitional analysis of concurrent systems (processes) (see [10]). The intuitive idea under-
lying thepmcis the following: proving thatE‖F satisfies a formulaφ (E‖F |= φ) is
equivalent to proving thatF satisfies a modified specificationφ//E

(F |= φ//E), where
//E is the partial evaluation function for the parallel composition operator. The formula
φ is specified by use theequationalµ-calculus.

A useful result of partial model checking is the follow.

Lemma 1 ([10]). Given a processE‖F and a formulaφ we have:E‖F |= φ iff F |=
φ//E

The reduced formulaφ//E depends only on the formulaφ and on processE. No in-
formation is required on the processF which can represent a possible enemy. Thus,
given a certain systemE, it is possible to find the property that the enemy must sat-
isfy in order to make a successful attack on the system. It is worth noticing that partial
model checking functions may be automatically derived from the semantics rules used
to define a language semantics. Thus, the proposed technique is very flexible.

A lemma similar to lemma 1 holds for every operator ofCCS(see [10]) and also
for every new operator defined byGSOSrules. The partial model checking function for
parallel operator, relabeling and restriction is give in tables 3 and 4.

2.4 Enforcement mechanisms and Security automata

In this paper we chose to follow the semantic approach given by Ligatti and al. in [2] to
describe the behavior of four different kind of security automata. First of all we recall
the definition of security automata. Asecurity automatais a deterministic finite-state
or countably infinite-state machine that is defined with respect to some system with
action setAct. A program monitor can be formally modeled by a security automata.
The authors restrict themselves to finite but arbitrarily long executions. Now we report
all the definition and the semantics of automata that are given in [2]. We start giving

(D↓ X)//t = (D//t)↓ Xt

ε//t = ε
(X =σ AD)//t = ((Xs =σ A//s)s∈Der(E))(D)//t

X//t = Xt

〈a〉A//s = 〈a〉(A//s) ∨W
s

a−→s′ A//s′, if a 6= τ
〈τ〉A//s = 〈τ〉(A//s) ∨W

s
τ−→s′ A//s′ ∨W

s
a−→s′〈a〉(A//s′)

[a]A//s = [a](A//s)∧V
s

a−→s′ A//s′, if a 6= τ
[τ]A//s = [τ](A//s)∧V

s
τ−→s′ A//s′ ∧V

s
a−→s′ [a](A //s′)

A1 ∧A2//s = (A1//s) ∧ (A2//s)
A1 ∨A2//s = (A1//s) ∨ (A2//s)

T//s = T
F//s = F

Table 3.Partial evaluation function for parallel operatorE‖ .

Restriction: Relabeling:
X//\L = X X//[f] = X

〈a〉A//\L =

� 〈a〉(A//\L) if a 6∈ L ∪ L̄
F if a ∈ L

〈a〉A//[f] =
W

b:f(a)=b〈b〉(A//[f])

[a]A//\L =

�
[a](A//\L) if a 6∈ L ∪ L̄
T if a ∈ L

[a]A//[f] =
V

b:f(a)=b〈b〉(A//[f])

A1 ∧A2//\L = (A1//\L) ∧ (A2//\L) A1 ∧A2//[f] = (A1//[f]) ∧ (A2//[f])
A1 ∨A2//\L = (A1//\L) ∨ (A2//\L) A1 ∨A2//[f] = (A1//[f]) ∨ (A2//[f])
T//\L = T T//[f] = T
F//\L = F F//[f] = F

Table 4.Partial evaluation function for restriction and relabeling operator.

some notation: withσ we denote a sequences of actions,· is the empty sequence,τ2

models an internal action. It is important to note that it is used to indicate the action
of stop but it is not really performed. Then there is the transition functionδ that is a
partial functionδ : Act × Q → Q, it indicates that the automata should accept the
current input and move in a new state. The execution of each different kind of security
automaton is specified by a labeled operational semantics where the basic single-step
judgment has the form(σ, q) α−→ (σ′, q′) whereσ′ andq′ denote the actions sequence
and state after the automaton takes a single step, andα denotes the sequence of actions
produced by the automaton. The single-step judgment can be generalized to a multi-step
judgment((σ, q) α=⇒ (σ′, q′)) as follows.

(σ, q) .=⇒ (σ′, q′)
(Reflex)

(σ, q) α1−→ (σ′′, q′′) (σ′′, q′) α2=⇒ (σ′, q′)

(σ, q)
α1;α2=⇒ (σ′′, q′′)

(Trans)

The operational semantic for each security automaton is the following.

truncation automaton can recognize bad sequences of actions and halts program ex-
ecution before a security property is violated, but cannot modify program behavior.
These automata are similar to Schneider’s original security monitors (see [2,4]).

2 In [2] internal actions are denoted by·. We useτ because we use CCS where internal actions
are commonly denoted byτ .

The operational semantic of truncation automata is:

(σ, q) a−→T (σ′, q′) (T-Step)

if σ = a;σ′

andδ(a, q) = q′

(σ, q) τ−→T (·, q) (T-Stop)

otherwise;
suppression automatonin addition to being able to halt program execution, has the

ability to suppress individual program actions without terminating the program out-
right. It is define as(Q, q0, δ, ω) whereω : Act ×Q → {−, +} indicates whether
or not the action in question should be suppressed (-) or emitted (+).

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a;σ′

andδ(a, q) = q′

andω(a, q) = +
(σ, q) τ−→S (σ′, q′) (S-StepS)

if σ = a;σ′

andδ(a, q) = q′

andω(a, q) = −
(σ, q) τ−→S (·, q) (S-Stop)

otherwise
insertion automaton is able to insert a sequence of actions into the program actions

stream as well as terminate the program. It is define as(Q, q0, δ, γ) whereγ :
Act ×Q → Act ×Q that specifies the insertion of an action into the sequence of
actions of the program. It is necessary to note that in [2,4] the automaton inserts
a finite sequence of actions instead of only one action, i.e., it controls if a wrong
action is performed by functionγ. If it holds, the automaton inserts a finite sequence
of actions, hence there exists a finite number of intermediate states. Without loss
of generality, we consider that it performs only one action. In this way we openly
consider all intermediate state. Note that the domain ofγ is disjointed from the
domain ofδ in order to have a deterministic automata;

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a;σ′

andδ(a, q) = q′

(σ, q) b−→I (σ, q′) (I-Ins)

if σ = a;σ′

andγ(a, q) = (b, q′)
(σ, q) τ−→I (·, q) (I-Stop)

otherwise

edit automaton combines the power of suppression and insertion automata. It is able
to truncate action sequences and to insert or to suppress security-relevant actions
at will. It is define as(Q, q0, δ, γ, ω) whereγ : A × Q → −→A × Q that specifies
the insertion of a finite sequence of actions into the program’s action sequence and
ω : A × Q → {−, +} indicates whether or not the action in question should be
suppressed (-) or emitted (+). Also here the domain ofγ is disjointed from the
domain ofδ in order to have a deterministic automata.

(σ, q) a−→E (σ′, q′) (E-StepA)

if σ = a;σ′

andδ(a, q) = q′

andω(a, q) = +
(σ, q) τ−→E (σ′, q′) (E-StepS)

if σ = a;σ′

andδ(a, q) = q′

andω(a, q) = −
(σ, q) b−→E (σ, q′) (E-Ins)

if σ = a;σ′

andγ(a, q) = (b, q′)
(σ, q) τ−→E (·, q) (E-Stop)

otherwise

3 Our goal

In this paper we give the semantic of some new process algebra operators that arecon-
troller operators, denoted byY .K X whereK ∈ {T, S, I, E}3. These can permit
to control the behavior of the unknown componentX, given the behavior of a control
programY .

These operators model the enforcement mechanism and security automata, whose
semantic we have given in the previous section. In this way it is possible to apply all
results of the logical approach to these automata. In particular we are able to automat-
ically synthesize the appropriate controlling programY , for each operator¤K using
the satisfiability procedure for theµ-calculus that allows to obtain a model for a logical
formula.

3.1 Our controller operators in process algebra

We introduce the following controller operators:.T , .S , .I and.E in order to model
truncation, suppression, insertion and edit automata, respectively. To be able to com-
pare security automata with our controllers, it is crucial to have a rigorous definition

3 We choose these symbols to denote four operators that have the same behavior of truncation,
suppression, insertion and edit automata respectively

of the semantic rules that describe the behavior of each operator. We denote withE
the program controller and withF the program whose behavior we have to control. We
work, without loss of generality, under the additional assumption thatE andF never
performs internal actionτ . It is important to remark that we consider finite-state process
in order to be able to apply the Theorem 1.

Truncation automata: .T

E
a→ E′ F a→ F ′

E .T F
a→ E′ .T F ′

This operator ([5]) model Schneider’s automaton (and truncation automaton). Its se-
mantic rule means that ifF performs the right actiona, i.e., the same action performed
by E, thenE .T F performs the actiona, otherwise it halts. The following proposition
holds.

Proposition 1. Every sequence of actions that is an output of atruncation automata
(Q, q0, δ) is also derivable from.T and vice-versa.

Suppression automata:.S

E
a→ E′ F a→ F ′

E .S F
a→ E′ .S F ′

E
−a−→ E′ F

a→ F ′

E .S F
τ→ E′ .S F ′

where−a is a control action not inAct, so it does not admit a complementary action.
This action is made by the processE in order to verify if the processF performs the
actiona which is a not admitted action (E does not performa). If F performs the same
action performed byE alsoE .S F performs it. On the contrary, ifF performs some
actiona that E does not perform thenE checks it performing a control action−a;
E .S F performs the actionτ that permits tosuppressthe actiona,i.e.a becomes not
visible from external observation. Thus it is trivially modeled by the internal actionτ .
In every other casesE .S F halts. The following proposition holds.

Proposition 2. Every sequence of actions that is an output of asuppression automata
(Q, q0, δ, ω) is also derivable from.S and vice-versa.

Insertion automata: .I

E
a→ E′ F

a→ F ′

E .I F
a→ E′ .I F ′

E 6 a→ E′ E
+a.b−→ E′ F

a→ F ′

E .I F
b→ E′ .I F

4

where+a is an action not inAct, so it doesn’t admit a complementary action. The
processE performs+a to verify if the processF is going to perform the actiona or
not. Informally this two rules mean that ifF performs the same action performed byE
alsoE.I F performs it. IfF performs some action thatE does not perform,E detects it
performing a control action+a and subsequently performs an actionb. Thus the entire
system performs the actionb. It is possible to note that in the description of insertion

4 This meansE
+a−→ Ea

b−→ E′. However we consider+a.b as a single action, i.e. the state
Ea is hide and we do not consider it inDerE.

automata in [2] the domain ofγ andδ is disjoint. In our case this is guarantee by the

premise of the second rule in which we have thatE 6 a−→ E′, E
+a.b−→ E′. In fact for the

insertion automata, if a pair(a, q) is not in the domain ofδ and it is in the domain ofγ
it means that the actiona and the stateq are not compatible so in order to change state
a sequence of actions must be performed. It is important to note that it is able to insert
new actions but it is not able to suppress any action performed byF . The following
proposition holds.

Proposition 3. Every sequence of actions that is an output of ainsertion automata
(Q, q0, δ, γ) is also derivable from.I and vice-versa.

Edit automata: .E In order to do insertion and suppression together we define the
following controller operator. Its rule is the union of the rules of the.S and.I .

E
a→ E′ F

a→ F ′

E .E F
a→ E′ .E F ′

E
−a−→ E′ F

a→ F ′

E .E F
τ→ E′ .E F ′

E 6 a→ E′ E
+a.b→ E′ F

a→ F ′

E .E F
b→ E′ .E F

This operator combines the power of the previous two ones. The following proposition
holds.

Proposition 4. Every sequence of actions that is an output of anedit automata
(Q, q0, δ, γ, ω) is also derivable from.E and vice-versa.

It is important to note that we introduced the control action−a in the semantic of.S

and+a in the semantic of.I in order to find operators that were as similar as possible
to suppression and insertion automata, respectively. Other definitions could be possible,
although some attempts we made failed on defining and tractable semantics (especially
when trying to extend them to the timed setting).

4 Synthesis of controller programs

In our logical approach we are able to build a program controllerY using the Theorem
1. SuchY allows to enforce a desired security property for any target systemX. We
present here an extension of the reasoning we have done in [5]. In this case we have
different operators and in particular we have to deal with control actions.

Let S be a system, and letX be one component that may be dynamically changed
(e.g., a downloaded mobile agent) that we consider an unknown agent, i.e. we do not
know what is the behavior ofX. At the beginning we have the systemS‖X, and
we want that it enjoys a security property expressed by a logical formulaφ,i.e., ∀X
(S‖X)\L |= φ.

By using the partial model checking approach proposed in [11,12], we can focus on
the properties of the possibly un-trusted componentX, i.e.,∀X X |= φ′ whereφ′ =
φ//S,\L

.
We wonder if there exists an implementation that can plugged into the system re-

placing the unspecified one, by satisfying some properties of the whole system. For this

reason we use the controller operators. We consider the previous equation where instead
of X we putY .K X as follows

∃Y ∀X (Y .K X) |= φ′ (2)

So we want to find a control programY . In order to manage the universal quantification
in (2), we prove the following proposition.

Proposition 5. For everyK ∈ {T, S, I, E} Y .K X ¹ Y [fK] holds, wherefK is a
relabeling function depending onK. In particular,fT is the identity function and

fS(a) =
{

a if a ∈ Act
τ if a = −a

fS(a) =
{

a if a ∈ Act
τ if a = −a

fI(a) =
{

a if a ∈ Act
τ if a = +a

Moreover we consider equationalµ-calculus formulae without〈 〉 modality, namely
Frµ. It is easy to prove that this set of formulae is close for partial model checking
function. The interest in this subclass ofµ-calculus formulas is that it corresponds to
the safety one. The following result holds.

Proposition 6. LetE andF be two finite state processes andφ ∈ Frµ. If F ¹ E then
E |= φ ⇒ F |= φ

Hence the equation (2) becomes∃Y s.t.Y [fK] |= φ′. Applying partial model checking
for relabeling function, we obtain

∃Y Y |= φ′′ whereφ′′ = φ′//[fK]
(3)

for everyK. The formulation (3) is easier to be managed than (2). In particular, it is a
satisfiability problem inµ-calculus and so it can be solved by obtaining a modelY .

5 Timed setting

In this section we extend to a timed setting the theory that we have developed above.
First of all we show some notions useful to describe a very simple timed setting.

5.1 GSOSand CCS process algebra with time

We follow a simple approach, where time is discrete, actions are durationless and there
is one specialtick action to represent the elapsing of time (see [13]). These are the
feature of the so calledfictitious clockapproach of, e.g. [14,15,16]. A global clock
is supposed to be update whenever all the processes of the system agree on this, by
globally synchronizing an actiontick. Hence, between the two global synchronizations
on actiontick all the processes proceed asynchronously by performing durationless
actions. So, thetick action is important in parallel operator whose semantic, in this
case, is enriched of this one more rule in addition of rules given in Table 1.

E1
tick−→ E′

1 E2
tick−→ E′

2

E1‖E2
tick−→ E′

1‖E′
2

5.2 Behavioral equivalence

As done in [13], where security (in particular) information flow properties were defined
in a timed setting, we consider the class of processes that do allow time proceed, the
so-calledweakly time aliveprocesses. These representcorrectattackers w.r.t. time. (As
a matter of fact, it is not realistic that an intruder or a malicious agent can block the flow
of time.)

Definition 3. A processE is directly weakly time alive iffE
tick=⇒ 5, while it isweakly

time alive iff for all E′ ∈ Der(E), we haveE′ is directly weakly time alive.

SinceE
α−→ E′ impliesDer(E′) ⊆ Der(E), it directly follows that ifE is weakly

time alive, then any derivedE′ of E is weakly time alive as well. Moreover, it is worth-
while noticing that the above property is preserved by the parallel composition.

The behavioral relation considered is the timed versions of weak bisimulation [8].
This equivalence permits to abstract to some extent from the internal behavior of the
systems, represented by the invisibleτ actions.6

Definition 4. Let (E , T) be an LTS of concurrent processes, and letR be a binary
relation overE . ThenR is calledtimed weak simulation, denoted by¹t, over(E , T) if
and only if, whenever(E,F) ∈ R we have:

– if E
a−→ E′ then there existsF ′ s.t.F

a=⇒ F ′ and(E′, F ′) ∈ R,

– if E
tick−→ E′ then there existsF ′ s.t.F

tick=⇒ F ′ and(E′, F ′) ∈ R.

Moreover, a binary relationR overE is said atimed weak bisimulation(denoted by
≈t) over the LTS of concurrent processes(E , T) if bothR and its converse are timed
weak simulation.

5.3 Partial model checking with time

Introducing the newtick action to model the elapsing of time, we have one more case
to consider in the definition of partial model checking function. Thetick action cannot
be consider as the other actions inAct. Hence we extend thepmcfunction to deal with
time by adding the following rules

〈tick〉A//s =

{
〈tick〉A//s′ s

tick−→ s′

F otw
[tick]A//s =

{
[tick]A//s′ s

tick−→ s′

T otw
It is

easy to note that the insertion oftick action affects only thepmc for parallel operator.
The partial evaluation function for relabeling and restriction are not affected.

5.4 Our controller operators in a timed setting

In this section we study how the controller operators that we have define in Section 3.1
work in a timed setting. We want thatY .K X, for eachK, are processes that do allow
time to proceed, so we prove that it isweakly time alive. Here we use the following
notation:E andF are finite state processes.E is the program controller andF the
program whose behavior we want to control. The following proposition holds.

5 This means that we are no interested to the final state of the transition.
6 Other equivalences are in between trace and bisimulation semantics. We do not intend to dis-

cuss here their relative merits.

Proposition 7. LetE andF be two finite-state processes. If bothE andF are weakly
time alive, alsoE .K F is weakly time alive.

Dealing with time we do not change or modify the semantic of our controllers. Hence
a proposition similar to proposition 5 holds. In particular, looking at the definition of
weak timed simulation and at the proof of the proposition 5, given in appendix, the
following proposition holds.

Proposition 8. For everyK ∈ {T, S, I, E} the following relation holdsE .K F ¹t

E[fK] wherefK is a relabeling function definition of which depend onK.

We can then recast the results of the previous section in a timed setting.

6 A simple example

Consider the processS = a.b.0 and consider the following equational definitionZ =ν

[τ]Z ∧ [a][[c]]7F. It asserts that after every actiona cannot be perform an actionb. Let
Act = {a, b, c, τ, ā, b̄, c̄} be the set of actions. We can apply the partial evaluation for
the parallel operator we obtain after some simplifications the following system of equa-
tion, that we denoted withD
Z//S

=ν [τ]Z//S
∧ [ā]Z//S′ ∧ [a]W//S

∧W//S′
W//S′ =ν [τ]W//S′ ∧ [b̄]T ∧ [c]F
Z//S′ =ν [τ]Z//S′ ∧ [b̄]T ∧ [a]W//S′
W//S

=ν [τ]W//S
∧ [ā]W//S′ ∧ [c]F

The information obtained through partial model checking can be used to enforce a se-
curity policy. In particular, choosing one of the four operators and using its definition
we simply need to find a processY [fK], whereK depend on the chosen controller, that
is a model for the previous formula. In this simple example we choose the controller
operator.S . Hence we apply the partial model checking for relabeling functionfS to
the previous formula and we obtain thatD//fS

is

Z//S,fS
=ν [−c]Z//S,fS

∧ [ā]Z//S′,fS
∧ [a]W//S,fS

∧W//S′,fS

Z//S′,fS
=ν [−c]Z//S′,fS

∧ [b̄]T ∧ [a]W//S′,fS

W//S,fS
=ν [−c]W//S,fS

∧ [ā]W//S′,fS
∧ [c]F

W//S′,fS
=ν [−c]W//S′,fS

∧ [b̄]T ∧ [c]F
It is easy to note the processY = a.− c.0 is a model ofD//fS

. Then, for any compo-
nentX, we haveS‖(Y .S X) satisfiesD. For instance, considerX = a.c.0. Looking
at the first rules of.S , we have

(S‖(Y .S X)) = (a.b.0‖(a.− c.0 .S a.c.0)) a−→ (a.b.0‖(−c.0 .S c.0))

Using the second rule we eventually get

(a.b.0‖(−c.0 .S c.0)) τ−→ (a.b.0‖0 .S 0)

and so the system still preserve its security since the actions performed by the compo-
nentX have been prevented from being visible outside.

7 We define[[c]]φ as¬〈〈c〉〉¬φ which is the formula that captures in the strong logic the diamond
modality in the weak transition systems (see [17]).

AcknowledgementWe thank the anonymous referees of WITS06 for valuable com-
ments that helped us to improve this paper.

References

1. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-
tem Security3(1) (2000) 30–50

2. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In Cervesato, I., ed.:
Foundations of Computer Security: proceedings of the FLoC’02 workshop on Foundations
of Computer Security, Copenhagen, Denmark, DIKU Technical Report (2002) 95–104

3. Bartoletti, M., Degano, P., Ferrari, G.: Policy framings for access control. In: Proceedings
of the 2005 workshop on Issues in the theory of security table of contents, Long Beach,
California (2005) 5 – 11

4. Ligatti, J., Bauer, L., Walker, D.: Edit automata: Enforcement mechanisms for run-time
security policies. International Journal of Information Security4(1–2) (2005) 2–16

5. Martinelli, F., Matteucci, I.: Partial model checking, process algebra operators and satisfi-
ability procedures for (automatically) enforcing security properties (2005) Presented at the
International Workshop on Foundations of Computer Security (FCS05).

6. Ligatti, J., Bauer, L., Walker, D.: Enforcing non-safety security policies with program mon-
itors. In: 10th European Symposium on Research in Computer Security (ESORICS). (2005)

7. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J.ACM42(1) (1995)
8. Milner, R.: Communicating and mobile systems: theπ-calculus. Cambridge University

Press (1999)
9. Street, R.S., Emerson, E.A.: An automata theoretic procedure for the propositionalµ-

calculus. Information and Computation81(3) (1989) 249–264
10. Andersen, H.R.: Partial model checking. In: LICS ’95: Proceedings of the 10th Annual IEEE

Symposium on Logic in Computer Science, IEEE Computer Society (1995) 398
11. Martinelli, F.: Partial model checking and theorem proving for ensuring security properties.

In: CSFW ’98: Proceedings of the 11th IEEE Computer Security Foundations Workshop,
IEEE Computer Society (1998)

12. Martinelli, F.: Towards automatic synthesis of systems without informations leaks. In: Pro-
ceedings of Workshop in Issues in Theory of Security (WITS). (2000)

13. R.Focardi, R.Gorrieri, F.Martinelli: Real-time Information Flow Analysis. IEEE JSAC
(2003)

14. Corradini, F., D’Ortenzio, D., Inverardi, P.: On the relationships among four timed process
algebras. Fundam. Inform.38(4) (1999) 377–395

15. Hennessy, M., Regan, T.: A temporal process algebra. In: FORTE ’90: Proceedings of
the IFIP TC6/WG6.1 Third International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, North-Holland (1991) 33–48

16. Ulidowski, I., Yuen, S.: Extending process languages with time. In: AMAST ’97: Proceed-
ings of the 6th International Conference on Algebraic Methodology and Software Technol-
ogy, London, UK, Springer-Verlag (1997)

17. Müller-Olm, M.: Derivation of characteristic formulae. In: MFCS’98 Workshop on Concur-
rency. Volume 18 of Electronic Notes in Theoretical Computer Science (ENTCS)., Elsevier
Science B.V. (1998)

