
Partial model checking, process algebra operators and satisfiability
procedures for (automatically) enforcing security properties∗

Fabio Martinelli1, Ilaria Matteucci1,2

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy1

{Fabio.Martinelli, Ilaria.Matteucci}@iit.cnr.it
Dipartimento di Matematica, Università degli Studi di Siena2

Abstract

In this paper we show how the partial model checking approach for the analysis of secure systems may
also be useful for enforcing security properties. We define a set of process algebra operators that act as pro-
grammable controllers of possibly insecure components. The program of these controllers may be automatically
obtained through the usage of satisfiability procedures for a variant ofµ-calculus.

1 Overview

Many approaches for the analysis of security properties have been successfully developed in the last two decades.
An interesting one is based on the idea that potential attackers should be analyzed as if they were un-specified
components of a system; thus reducing security analysis to the analysis ofopensystems [11, 12, 14].

More recently there has been also interest on mechanisms and techniques to enforce security properties. A
notable example is the security automata in [19] and some extensions proposed in [9].

The paradigm of analysis of security as analysis of open systems has been extended to cope with security
protocols [14], fault tolerance [7] and recently access control based on trust management [15]. In this paper we
enrich this theory with a method for (automatically) enforcing several security properties.

Basically, we define a set of process algebra operators. They act as programmable controllers of a component
that must be managed in order to guarantee that the overall system satisfies a given security policy. Also, we de-
velop a technique to automatically synthesize the appropriate controllers. This represent a significant contribution
w.r.t. to the previous work in [9, 19], where this issue was not addressed. The synthesis is based on a satisfiability
procedure for theµ-calculus.

Moreover, under certain hypothesis on the observation power of the enforcing controllers, we are able to enforce
some non-interference properties (for finite-state systems) that were not intentionally addressed in [19], due to the
specific assumptions they had on the enforcing mechanisms.

Our logical approach is also able to cope with composition problems, that have been considered as an interesting
and challenging issue in [3].

This paper is organized as follows. Section 2 recalls the basic theory about the analysis of security properties,
especially non-interference as properties of open systems. Section 3 explains our approach and Section 4 extends
it to manage several kinds of enforcement mechanisms. Section 5 illustrates an example. Section 6 presents a
discussion on related work and eventually Section 7 concludes the paper.

∗Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by a CREATE-NET grant for the project
“Quality of Protection (QoP)”. A full version of this paper with the proofs appears as Technical report of IIT-CNR [16].

1

2 Background

In this section we briefly recall some technical machinery used in our approach and also a logical approach for
dealing with information flow properties (and security properties in general).

2.1 A language for describing concurrent and distributed systems

The Security Process Algebra(SPA) [6] is used to describe concurrent and distributed systems and is derived
from CCS process algebra of R. Milner [17]. The syntax of SPA is the following:

E ::= 0 | α.E | E1 + E2 | E1‖E2 | E\L | Z

whereα is an action inAct, L ⊆ L andZ is a process constant that must be associated with a definitionZ
.= E.

As usual, constants are assumed to beguarded[17], i.e. they must be in the scope of some prefix operatorα.E′.
The set ofSPA processes(i.e., terms with guarded constants), is denoted withE , ranged over byE,F, P,Q
We will often use some common syntactic simplifications, e.g., omission of trailing0’s as well as omission of
brackets on restriction on a single action.Sort(E) is used to denote the set of actions that occurs in the termE.

SPA operators have the following informal meaning:

• 0 is a process that does nothing;

• α.E is a process that can perform anα action and then behaves asE;

• E1 + E2 (choice) represents the nondeterministic choice between the two processesE1 andE2;

• E1‖E2 (parallel) is the parallel composition of two processes that can proceed in an asynchronous way ,
synchronizing on complementary actions, represented by an internal actionτ , to perform a communication.

• E\L (restriction) is the processE when actions inL ∪ L are prevented.

The operational semantics of SPA terms is given in terms of Labeled Transitions Systems (LTS).

Definition 2.1 A labeled transition system(E , T) (LTS) of concurrent processes overAct has the process ex-
pressionsE as its states, and its transitionsT are exactly which can be inferred from the transition rules for
processes.

The interested reader may find the formal definition of the semantics below:

α.E
α−→ E

E1
a−→ E′

1

E1 + E2
a−→ E′

1

E2
a−→ E′

2

E1 + E2
a−→ E′

2

E1
a−→ E′

1

E1‖E2
a−→ E′

1‖E2

E2
a−→ E′

2

E1‖E2
a−→ E1‖E′

2

E1
l→ E′

1 E2
l→ E′

2

E1‖E2
τ→ E′

1‖E′
2

Z
.= E E

α−→ E′

Z
α−→ E′

E1
α−→ E′

1

E1\L α−→ E′
1\L

(α 6∈L∪L)

2

2.2 Strong and weak bisimulations

It is often necessary to compare processes that are expressed using different terms but have the same behavior. We
recall some useful relations on processes.

Definition 2.2 Let (E , T) be an LTS of concurrent processes, and letR be a binary relation overE . ThenR is
calledstrong simulation(denoted by≺) over(E , T) if and only if, whenever(E, F) ∈ R we have:

if E
a→ E′ then there existsF ′ ∈ E s. t.F

a→ F ′ and(E′, F ′) ∈ R

Now, we can definestrong bisimulation:

Definition 2.3 A binary relationR overE is said astrong bisimulation(denoted by∼) over the LTS of concurrent
processes(E , T) if bothR and its converse are strong simulation.

Another kind of bisimulation is theweak bisimulation. This relation is used when there is the necessity of un-
derstanding if systems with different internal structure - and hence different internal behavior - have the same
external behavior and may thus be considered observationally equivalent. The notion ofobservational relationsis
the follow: E

τ⇒ E′ (or E ⇒ E′) if E
τ→∗

E′ (where
τ→∗

is the reflexive and transitive closure of the
τ→ relation);

for a 6= τ , E
a⇒ E′ if E

τ⇒ a→ τ⇒ E′. Let DerE be the set of derivatives ofE, i.e., the set of process that can be
reached through the transition relations. Now we are able to give the two following definitions.

Definition 2.4 LetR be a binary relation over a set of processE . ThenR is said to be aweak simulation(denoted
by-) if, whenever(E, F) ∈ R,

if E
a→ E′ then there existsF ′ ∈ E s. t.F

a⇒ F ′ and(E′, F ′) ∈ R.

Definition 2.5 A binary relationR overE is said aweak bisimulation(≈) over the LTS of concurrent processes
(E , T) if bothR and its converse are weak simulation.

Every strong simulation is also a weak one (see [17]).

2.3 Equationalµ-calculus

Modal µ-calculus is a process logic well suited for specification and verification of systems whose behavior is
naturally described using state changes by means of actions. It is a normal modal logicK augmented with
recursion operators. It permits to express a lot of interesting properties likesafetyandlivenessproperties, as well
as allowing us to express equivalence conditions over LTS.

In equationalµ-calculus recursion operators are replaced by fixpoint equations. This permits to recursively
define the properties of a given systems.

We use the equationalµ-calculus instead of modalµ-calculus because the former is very suitable for partial
model checking, that is described later (see [1], [2]).

Let a be inAct andX be a variable ranging over a finite set of variablesV ars.
Given the grammar:

A ::= X | T | F | X1 ∧X2 | X1 ∨X2 | 〈a〉X | [a]X
D ::= X =ν AD | X =µ AD | ε

where the meaning of〈a〉X is ’it is possible to do ana-action to a state whereX holds’ and the meaning of[a]X
is ’for all a-actions that are performed thenX holds’. X =ν A is a minimal fixpoint equation, whereA is an
assertion (i.e. a simple modal formula without recursion operator), andX =µ A is a maximal fixpoint equation.
Roughly, the semanticJDK of the list of equationsD is the solution of the system of equations corresponding to

3

D. According to this notation,JDK(X) is the value of the variableX, andE |= D ↓ X can be used as a short
notation forE ∈ JDK(X). The following result can be proved by putting together standard results for decision
procedures forµ-calculus (see [20]).

Theorem 2.1 Given a formulaγ it is possible to decide in exponential time in the length ofγ if there exists a
model ofγ and it is also possible to give an example of it.

2.4 Partial model checking

Partial model checking (pmc) is a technique that was originally developed for compositional analysis of concurrent
systems (processes) (see [2]). The intuitive idea underlying the pmc is the following: proving thatE‖F satisfies a
formulaφ is equivalent to prove thatF satisfies a modified specificationφ//E

, where//E is the partial evaluation
function for the parallel composition operator(see [2]).In formula:

E‖F |= φ (1)

In order to describe how pmc function acts, we discuss, for instance, the partial evaluation rules for the formula
〈τ〉A w.r.t. the‖ operator. By inspecting the inference rules, we can note that the processE‖F (with F unspecified
component) can perform aτ action by exploiting one of the three possibilities:

• the processF performs an actionτ going in a stateF ′ andE‖F ′ satisfiesA; this is taken into account by
the formula〈τ〉(A//E

);

• the processE performs an actionτ going in a stateE′ andE′‖F satisfiesA and this is considered by the
disjunctions

∨
E

τ→E′ A//E′ , where every formulaA//E′ takes into account the behavior ofF in composition
with a τ successor ofE;

• the last possibility is that theτ action is due to the performing of two complementary actions by the two
processes. So for everya-successorE′ of E there is a formula〈ā〉(A//E′).

With partial model checking we can reduce the previous property to:

F |= φ//E (2)

Lemma 2.1 Given a processE‖F and a formulaφ we have:

E‖F |= φ iff F |= φ//E

A similar lemma holds for every operator ofSPA (see [1]).
In this way, it can be noticed that the reduced formulaφ//E depends only on the formulaφ and on processE.

No information is required on the processF which can represent a possible enemy. Thus, given a certain system
E, it is possible to find the property that the enemy must satisfy in order to make a successful attack on the system.
It is worth noticing that partial model checking functions may be automatically derived from the semantics rules
used to define a language semantics (Structured Operational Semantics). Thus, the proposed technique is very

4

flexible. Here, we give thepmcfunction for parallel operator (that can be also found in [1, 2]).

(D↓X)//t = (D//t)↓Xt

ε//t = ε

(X =σ AD)//t = ((Xs =σ A//s)s∈Der(t))(D)//t

X//t = Xt

[a] A//s = [a](A//s)∧
∧

s
a→s′

A//s′ if a6=τ

[τ] A//s = [τ](A//s)∧
∧

s
τ→s′

A//s′∧
∧

s
a→s′

[ā](A//s′)

(A1∧A2)//s = ((A1)//s)∧((A2)//s)
T//s = T

2.5 Characteristic formulae

A characteristic formulais a formula in equationalµ-calculus that completely characterizes the behavior of a
(state in a) state-transition graph modulo a chosen notion of behavioral relation. It is possible to define the notion
of characteristic formula for a given finite state processE w.r.t. weak bisimulation as follows (see [18]).

Definition 2.6 Given a finite state processE, its characteristic formula (w.r.t. weak bisimulation)DE ↓ XE is
defined by the following equations for everyE′ ∈ Der(E), a ∈ Act:

XE′ =ν (
∧

a;E′′:E′ a→E′′

〈〈a〉〉XE′′) ∧ (
∧
a

([a](
∨

E′′:E′ a⇒E′′

XE′′)))

where〈〈a〉〉 of the modality〈a〉 which can be introduce as abbreviation (see [18]):

〈〈ε〉〉φ def
= µX.φ ∨ 〈τ〉X 〈〈a〉〉φ def

= 〈〈ε〉〉〈a〉〈〈ε〉〉φ

The following lemma characterizes the power of these formulae.

Lemma 2.2 LetE1 andE2 be two different finite-state processes. IfφE2 is characteristic forE2 then:

1. If E1 ≈ E2 thenE1 |= φE2

2. If E1 |= φE2 andE1 is finite-state thenE1 ≈ E2.

2.6 A logical approach for specifying and analyzing information flow properties

Information flowis a main topic in the theoretical study of computer security. We can find several formal definitions
in the literature (see [10]). To describe this problem, we can consider two users,High andLow interacting with
the same computer system. We ask if there is any flow of information fromHigh to Low. The central property is
theNon Deducibility on composition(NDC, see [6]): the low level users cannot infer the behavior of the high level
user from the system because for the low level users the system is always the same. This idea can be represented
as follow:

∀Π ∈ High usersE | Π ≡ E w.r.t. Low users

(where| represents a suitable composition operator.) We study this property in term ofSPAparallel composition
operator andbisimulationequivalence.

We denote withBNDC a security property calledBisimulation Non Deducibility on Compositions(see [6]).

5

Definition 2.7 Let EH = {Π | Sort(Π) ⊆ H ∪ {τ}} be the set of High users.E ∈ BNDC if and only if
∀Π ∈ EH we have(E‖Π)\H ≈ E\H.

By using the characteristic formulaφ of the processE\H, we may express information flow property in a logical
way.

E ∈ BNDC iff ∀Π ∈ S : (E‖Π)\H |= φ (3)

Partial model checking function gives we have a method for reducing the verification of the previous property to a
validity checking problem inµ-calculus (see [11]). As a matter of fact, the property 4 turns out to be equivalent to

E ∈ BNDC iff ∀Π ∈ S : Π |= φ′ (4)

whereφ′ is the formula obtained fromφ afterpmcw.r.t the processE (and the restriction operator). Thus, due the
decidability of the validity problem forµ-calculus we have.

Proposition 2.1 BNDC is decidable for all finite state processesE.

Our logical approach has been extended to cope with several security properties. Thus the approach we are
going to introduce is applicable to a wide set of security properties.

3 Our approach for enforcing security properties

Let S be a system, and letX be one component that may be dynamically changed (e.g., a downloaded mobile
agent). We say that the systemS‖X enjoys a security property expressed by a logical formulaφ if and only if for
every behavior of the componentX, the behavior of the systemS enjoys that security property:

∀X(S‖X)\H |= φ (5)

whereH = Sort(X).
By using the partial model checking approach proposed in [12], we can focus on the properties of the possibly

un-trusted componentX, i.e.:
∀X X |= φS,\H (6)

Thus, we may study whether a potential enemy could exists and, in particular, which are necessary and sufficient
conditions that an enemy should satisfy for the purpose to alter the correct behavior of the system.

In order to protect the system we may simply check each processX before executing it or, if we do not have
this possibility, we may define a controller that in any case forces it to behave correctly.

We may distinguish several situations1 depending on the control one may have on the processX:

1. if X performs an action we may detect and intercept it;

2. in addition to 1), it is possible to know which are the possible next steps ofX;

3. X whole code is known and we are able to model check it2.

In the scenarios 1) and 2) we may imagine to develop some controllers that force the intruder to behave correctly,
i.e. as prescribed by the formulaφS,\H .

1The last two pose several decidability issues.
2We do not consider here the possibility of manipulate the code.

6

3.1 Enforcing security properties with programmable controllers

We wish to provide a framework where we are able to enforce specific security properties defining a new operator,
sayY .∗ X, that can permit to control the behavior of the componentX, given the behavior of a control program
Y .

Example 3.1 LetE andF be two processes, and leta ∈ Act be an action. We define a new operator.′ (controller
operator) by these two rules:

E
a→ E′ F

a→ F ′

E .′ F a→ E′ .′ F ′ (7)

E
a→ E′

E .′ F a→ E′ .′ F
(8)

This operator forces the system to make always the right action also if we do not know what action the agentX
is going to perform.

Eventually, we would like that the overall systemS‖(Y .∗ X) always enjoys the desired security properties
regardless of the behavior of the componentX. Thus, we want to find a control programY such that:

∀X(S‖Y .∗ X)\H |= φ (9)

Equivalently, bypmc, we get:
∃Y ∀X (Y .∗ X) |= φ′ (10)

whereφ′ = φ//(S,\H).
Note that differently from other approaches the control target and the controller are expressed in a similar

formalism.
While the equation 10 should be the property to manage, it might not be easy. However, we note that if the

controller operator satisfies the following additional property

Assumption 3.1 For everyX andY , we have:

Y .∗ X ∼ Y

then the property10 is equivalent to:
∃Y Y |= φ′ (11)

As a matter of fact, the previous assumption permits us to conclude thatY .∗ X andY are strongly equivalent on
so they satisfy the same formulas. The formulation 11 is easier to be managed.

Refer to example 3.1, we are able to prove that the operator.′ enjoys Assumption 3.1.

Proposition 3.1 The operator.′ enjoys Assumption 3.1.

Note that for some properties, e.g. BNDC, it is sufficient thatY .∗ X andY are weakly bisimilar. According to
definition of weak bisimulation,Y .∗ X ≈ X (since every strong simulation is also a weak one [17]) and thus it
could be applied to enforce information flow properties (although in the scenario 1) it would not be very useful,
since it could often override the high user instructions).

While designing such a processY could not be difficult in principle, we can take advantage of our logical
approach and obtain an automated procedure as follows.

7

3.2 Automated synthesis of controllers

In this subsection, we discuss how it is possible to find a program controllerY that is a model ofφ′, the formula
in 11.

As a matter of fact, our logical approach is very useful.
The formulaφ′ is aµ-calculus formula, so, referring to the theorem 2.1, it is possible to decide if there exists a

model of suchφ′. The procedure returns also a model that will be our program for our controllers.
Unfortunately, the satisfiability procedure has complexity that is, in the worst case, exponential in the size of

the formula.

3.3 Composition of properties

Our logical approach is able to struggle successfully with composition problems. If we should force many different
security policies, we have only to force the conjunction of this policies. In formulas: letφ1, · · · , φn ben different
security policies,S be our system andX be an external agent, we have:

∀X(S‖X)\H |= φ1 . . . ∀X(S‖X)\H |= φn

The following step to solve is reduce thisn proposition to one in the following way:

∀X(S‖X)\H |=
∧

i=1,··· ,n
φi (12)

If we assume
∧

i=1,···n φi = φ, we have the same situation that we have described by the formula 10.

4 Other controllers

We can define other controller operators as follows.
The controller.′′ have two rules:

E
a→ E′ F a→ F ′

E .′′ F a→ E′ .′′ F ′ (13)

E
a→ E′ F

a
6→ F ′

E .′′ F a→ E′ .′′ F
(14)

This controller is the most complete: if the programE and the targetF agree on the next action both can do it in a
lock step, ifF does not have a correct behavior, the processE issues an action, so the system maintains a correct
behavior. Being able to give priorities to rule applications, definitely the first rule should have higher priority than
the second one.

The following result holds.

Proposition 4.1 The preposition 3.1 holds also for two operator:.′ and.′′.

Another interesting operator is described by the following rule:

E
a→ E′ F a→ F ′

E .′′′ F a→ E′ .′′′ F ′ (15)

However, it is useful to note that for this operator a weaker proposition holds.

8

Proposition 4.2 BetweenY .′′′ X andY holds the following relations:

Y .′′′ X ≺ Y

i.e. Y .′′′ X andY are strong similar but not bisimilar.

As a matter of fact, with this operator, we can ensure that the system is secure only w.r.t. security properties that
are safety properties. Such properties are preserved under weak simulation (e.g. see [7]). Thus, we cannot enforce
liveness properties through this controller.

4.1 Feasibility issues for our controllers

The introduction of a controller operator helps to guarantee a correct behavior of the entire system.
We discuss in this subsection, how and also if, these controllers (.′, .′′ and.′′′) can be effectively implemented.
However, the actual feasibility of these controllers depends on the scenarios we consider. In particular, we focus

on scenarios 1) and 2).
For the first controller operator,.′, we can note that this operator need to check the next action or it can directly

execute one correct action. Thus, it would be easily implementable in all the two scenarios.
The operator.′′ cannot be implemented in the scenario 1): if we cannot decide a priori which are the possible

next steps that the external agent is not able to perform, we cannot implement the second rule (14). In the scenario
2), such an operator would be implementable. It would be also possible in the scenario 2), if we could also know
whether X is forced to make a specific action, to give priority to the first rule in order to allow always the correct
actions of the target. Thus, controller.′′ would be the most appropriate in this scenario.

The last controller operator can be implemented in any scenarios. As a matter of fact, it coincides with the
monitors defined in [19].

5 A simple example

Consider the processE = l.0 + h.h.l.0. The system E where no high level activity is present is weakly bisimilar
to l.0.

Consider the following equational definition (please note thatF is a variable here):

F =ν ([τ]F) ∧ [l]T ∧ 〈〈l〉〉T

It asserts that a process may and must perform the visible actionl.
As for the study ofBNDC-like properties we can apply the partial evaluation for the parallel operator we

obtain after some simplifications:
FE =ν ([τ]FE) ∧ [h]〈〈h〉〉T

which, roughly, expresses that after performing a visibleh action, the system reaches a configuration s.t. it must
perform another visibleh action.

The information obtained through partial model checking can be used to enforce a security policy which pre-
vents a system from having certain information leaks. In particular, if we use the definition of the controller as.′′,
we simply need to find a process that is a model for the previous formula, sayY = h.h.0.

Then, for any componentX, we have(E‖(Y .′′ X)) \ {h} satisfiesF .
For instance, considerX = h.0. The system

(E‖(Y .′′ X)) \ {h} τ−→ (h.l.0‖(h .′′ 0)) \ {h}

9

Thus, using the second rule the controller may force to issue anotherh and thus we eventually get

(h.l.0‖(h .′′ 0)) \ {h} τ−→ (l.0‖(0 .′′ 0)) \ {h} ≈ l.0

and so the system still preserve its security since the actions performed by the componentX have been prevented
from being visible outside. On the contrary, if the controller would not be present, there would be a deadlock after
the first internal action.

6 Discussion on related work

In [13], we presented preliminary work based on different techniques for automatically synthesizing systems
enjoying a very strong security property, i.e. SBSNNI (e.g., see [6]). That work did not deal with controllers.

Much of prior work is about the study of enforceable properties and related mechanisms.
In [19], Schneider deals with enforceable security properties in a systematic way. He discusses whether a given

property is enforceable and at what cost. To study those questions, Schneider uses the class of enforceable mech-
anisms (EM) that work by monitoring execution steps of some system, herein called thetarget, and terminating
the target’s execution if it is about to violate the security property being enforced. The author asserts there isn’t
any EM (Execution Monitoring) that can enforce information flow because it can’t be formalized like a safety
property. The security automata defined in [19] have the follow behavior:

• If the automaton can make a transition on given input symbol, then the target is allowed to perform that step.
The state of the automaton changes according to the transition rules.

• otherwise the target is terminated and we can deduce that security property can be violated.

He explicitly assumes to be in the scenario that we call 1).
We can note that our controller operator,.′′′, have the same behavior of the security automata for enforcement

that Schneider defines in his article.
The operator.′′′ have only the following rule:

E
a→ E′ F a→ F ′

E .′′′ F a→ E′ .′′′ F

Roughly speaking, if processF does the correct action thenE .′′′ F does a correct transaction else the system
stops.

This fact is very important because, as we say in the proposition 4.2,Y .′′′X andY are strongly similar but not
bisimilar. So this two processes are not strongly equivalent and they don’t satisfy all the same formulas. So, also
with our formalism, we can not enforce information flow with this operator.

We can however define an operator in scenario 1) that enforces information flow property. The cost of this
operation is that the behavior of the controller component may be completely neglected. Thus, from a practical
point of view, our operator is not very useful.

However, we may notice that our work is a contribution w.r.t. the work of Schneider since it allows the automatic
construction of the correct monitor.

Also in [3, 9] there is the idea that information flow can not be forced by an automaton. In both of these articles,
many types of automata are illustrated. All of them are in the scenario 1). The automata waits for an action of the
target. In particular, in [9] there are four different automata:

truncation automata it can recognize bad sequences of actions and halt program execution before the security
property is violated, but cannot otherwise modify program behavior. These automata are similar to Schnei-
der’s original security monitor;

10

suppression automatain addition to being able to halt program execution, it has the ability to suppress individual
program actions without terminating the program outright;

insertion automata it is able to insert a sequence of actions into the program action stream as well as terminate
the program;

edit automata it combines the powers of suppression and insertion automata. It is able to truncate action se-
quences and insert or suppress security-relevant actions at will.

The interested reader may find in the full version of this paper (see [16]) the description of process algebras
operators that mimic as such automata. (Since that truncation automata is the same automata is described in [19],
we already defined a controller operator which has the same behavior.)

We use controller synthesis in order to force a system to verify security policy. The synthesis of controllers is,
however, studied also in other research areas. We describe here two papers that deal with synthesize of controller
in real-time.

In [4] the author describes an algorithm for synthesize controller from real-time specification. He presents an
algorithm for specified in a subset of the internal temporal logic Duration calculus. The synthesized controllers
are given as PLC-Automata. These are an abstract representation of a machine that periodically polls the input
and has the possibility of measuring time.

In [5] the authors tackles the following problem: given a timed automaton restrict its transition relation in a
systematic way so that all remaining behaviors satisfy certain properties. The problem is formulated using the
notion of real-time game. A strategy for a given game is a rule that tells the controller how to choose between
several possible actions in any game position.A strategy is winning if the controller, by following these rules,
always wins (according to a given definition of winning) no matter what the environment does. There is the
definition of Game automata and the authors gives a relation and using this relation is able to define a winning
strategy for the game.

7 Conclusion and future work

We illustrated some preliminary results towards a uniform theory for enforcing security properties. With this
work, we contribute to extend a framework based on process calculi and logical techniques that have been shown
to be very suitable to model and verify several security properties. With respect to prior work, we also add the
possibility to automatically build enforcing mechanisms.

Much work need to be done in order to make our approach more feasible in practice. We argue that there are
many security properties whose corresponding controller may be built more efficiently. For instance, there are
some cases in which the complexity of satisfiability problem is linear in the size of the formula (e.g., see [8]).

We argue that extending our approach to consider timed security properties should be possible and worth of
investigation.

8 Acknowledgement

We thank the anonymous referees of FCS05 for valuable comments that helped us to improve this paper.

References

[1] H. Andersen. Verification of Temporal Properties of Concurrent Systems. PhD thesis, Department of Computer
Science, Aarhus University, Denmark, June 1993.

11

[2] H. R. Andersen. Partial model checking. InLICS ’95: Proceedings of the 10th Annual IEEE Symposium on Logic in
Computer Science, page 398. IEEE Computer Society, 1995.

[3] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In I. Cervesato, editor,Foundations of Computer
Security: proceedings of the FLoC’02 workshop on Foundations of Computer Security, pages 95–104, Copenhagen,
Denmark, 25–26 July 2002. DIKU Technical Report.

[4] H. Dierks. Synthesising controllers from real-time specifications. InISSS ’97: Proceedings of the 10th international
symposium on System synthesis, pages 126–133, Washington, DC, USA, 1997. IEEE Computer Society.

[5] A. P. E. Asarin, O. Maler and J. Sifakis. Controller synthesis for timed automata. InProc. System Structure and Control.
Elsevier, 1998.

[6] R. Focardi and R.Gorrieri. A classification of security properties.Journal of Computer Security, 3(1):5–33, 1997.

[7] S. Gnesi, G. Lenzini, and F. Martinelli. Logical specification and analysis of fault tolerant systems through partial
model checking.International Workshop on Software Verification and Validation (SVV), ENTCS., 2004.

[8] D. Janin and I. Walukiewicz. Automata for the modalµ-calculus and related results. InProc. of the 20th International
Foundations of Computer Science 1995 (MFCS), pages 552–5662, Prague, 1995.

[9] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for run-time security policies.Interna-
tional Journal of Information Security, 4(1–2):2–16, Feb. 2005.

[10] G. Lowe. Semantic models for information flow.Theor. Comput. Sci., 315(1):209–256, 2004.

[11] F. Martinelli. Formal Methods for the Analysis of Open Systems with Applications to Security Properties. PhD thesis,
University of Siena, Dec. 1998.

[12] F. Martinelli. Partial model checking and theorem proving for ensuring security properties. InCSFW ’98: Proceedings
of the 11th IEEE Computer Security Foundations Workshop, page 44. IEEE Computer Society, 1998.

[13] F. Martinelli. Towards automatic synthesis of systems without informations leaks. InProceedings of Workshop in
Issues in Theory of Security (WITS), 2000.

[14] F. Martinelli. Analysis of security protocols asopensystems.Theoretical Computer Science, 290(1):1057–1106, 2003.

[15] F. Martinelli. Towards an integrated formal analysis for security and trust.FMOODS 2005, LNCS 3535, 2005.

[16] F. Martinelli and I. Matteucci. Partial model checking, process algebra operators and satisfiability procedures for
(automatically) enforcing security properties. Technical report, IIT-CNR, March 2005.

[17] R. Milner. Communicating and mobile systems: theπ-calculus. Cambridge University Press, 1999.

[18] M. Müller-Olm. Derivation of characteristic formulae. InMFCS’98 Workshop on Concurrency, volume 18 ofElectronic
Notes in Theoretical Computer Science (ENTCS). Elsevier Science B.V., August 1998. 12 pages, MFCS’98 Workshop
on Concurrency.

[19] F. B. Schneider. Enforceable security policies.ACM Transactions on Information and System Security, 3(1):30–50,
2000.

[20] R. S. Street and E. A. Emerson. An automata theoretic procedure for the propositionalµ-calculus. Information and
Computation, 81(3):249–264, 1989.

12

