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Abstract

This thesis concerns the study, the development and the synthesis of mechanisms for
ensuring the security of complex systems, i.e., systems composed by several interactive
components.

A complex system under analysis is described as an open system, in which a certain
component has an unspecified behavior (not fixed in advance). Regardless of the unspec-
ified behavior, the system should work properly, e.g., should satisfy a certain property.
Within this formal approach, we propose techniques to enforce properties and synthesize
controller programs able to guarantee that, for all possible behavior of an unspecified
agent, the system results secure. In particular, we focus on this last aspect. We look for
the existence of an implementation that, by monitoring the behavior of the unspecified
component, guarantees the fulfillment of some secure requirements.

We give necessary and sufficient conditions on the behavior of this unspecified com-
ponent. Then, we describe run-time enforcement mechanisms to force its behavior, as
prescribed by the conditions. Hence, we automatically synthesize controller programs.

We contribute within the area of the enforcement of security properties by proposing
a parametric and automated framework that goes beyond the definition of how a system
should behave to work properly. Indeed, while the majority of related work focuses on
the definition of monitoring mechanisms, we do not only present enforcing techniques,
but we also aid in their synthesis. The presented approach can be applied to different
scenarios. For instance, we define controller operators to enforce security properties for
system in a timed setting and we deal with parameterized systems. As a further result, we
present a tool for the synthesis of secure systems.
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Chapter 1

Introduction

The term “security” refers to something that provides freedom from danger or anxiety, i.e.,
it provides safety. This is an abstract concept. However, whenever it is accompanied with
terms as “computer” or “information”, the term security means protecting information and
information systems from unauthorized access, use, disclosure, disruption, modification
or destruction.

Security has to do with confidentiality, integrity and availability (CIA triad) of elec-
tronic information that is processed by or stored on computer systems. In particular:

Confidentiality is assurance of data privacy. Only the intended and authorized recipients,
e.g., individuals, processes or devices, may read the data. Disclosure to unautho-
rized entities, for example using unauthorized network sniffing, is a confidentiality
violation.

Integrity is assurance of data non-alteration. Data integrity means ensuring that the in-
formation has not been altered in transmission, from origin to reception. Source
integrity is the assurance that the sender of that information is who it is supposed
to be. Data integrity can be compromised when information has been corrupted or
altered, willfully or accidentally, before it is read by its intended recipient. Source
integrity is compromised when an agent spoofs the source identity and supplies
incorrect information to a recipient.

Availability is assurance in the timely and reliable access to data services for authorized
users. It ensures that information or resources are available when required. Most
often this means that the resources are available at a rate which is fast enough for
the wider system to perform its task as intended. It is certainly possible that con-
fidentiality and integrity are protected, but an attacker causes resources to become
less available than required, or not available at all, by actuating a so called Denial
of Service attack (DoS).

Moreover, security has to do also with non-repudiation, that is the concept of ensuring that
a contract cannot be denied by either of the parties involved, authenticity and information
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flow, which aims at controlling the way the information may flow among different entities,
and even more, depending on the application one has in mind.

The diffusion of distributed systems and networks has increased the number of inter-
esting scenarios in which security has a significant role. In particular, in the last few years,
the amount of information and sensible data that circulate on the net has been growing up.
This is one of the important reasons that have contributed to stimulate research towards
security, by studying new techniques for specifying, verifying and synthesizing secure
systems.

1.1 The goal of this thesis
This thesis concerns the synthesis of secure systems.

In this work we consider a secure system as a system that satisfies some security
properties specifying acceptable executions of programs. For example, a security prop-
erty might concern either access control, that specifies what operations individuals can
perform on objects, or information flow, that specifies what individuals can infer about
objects by observing a system behavior, or availability, that prohibits to an entity the use
of a source, as a result of execution of that source by other entities.

The problem of synthesis, first addressed by Merlin and Bochman in [99], occurs
when one deals with a system in which there are some unspecified components, e.g., a
not completely implemented software. When considering a partially specified system,
one may wonder if there exists an implementation that can be plugged into the system,
replacing the unspecified one, by satisfying some properties of the whole system. Hence
the problem that must be solved is the following one:

∃Y S(Y ) |= φ

where φ is a logic formula representing the property to be satisfied.
The problem of the synthesis of secure systems is slightly different. Let us consider

a system that we want to be secure. We can study it as a partially specified system. The
unspecified part is a component whose behavior is not known a priori, and we want the
system to be secure, whatever the behavior of the unspecified components is. With S the
system, X the unspecified component, S(X) the partially specified system, we require
that:

∀X S(X) |= φ

where, again, φ is a logic formula representing the property. This formalization has been
introduced in [85, 89] as a paradigm to do security analysis by considering that the un-
specified component as a possible malicious agent. In this way, requiring that for all X
the system S(X) satisfies φ means requiring that the system is secure regardless whatever
the behavior of a possible intruder is.

In the case our requirement does not holds, we wonder if there exists an implemen-
tation that, by monitoring the behavior of the unspecified component X , guarantees the
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system satisfies the required security property, i.e.,

∃Y ∀X S(Y . X) |= φ

where . is a symbol denoting the fact that Y monitors the behavior of X .
In this thesis, run-time enforcement mechanisms (or monitors) are studied and devel-

oped to guarantee the correct behavior of a system. They work by controlling the be-
havior of possible un-trusted components. These monitors permit to check only possible
un-secure part of the system.

Moreover, we do not only define monitors and enforcement mechanisms but also we
generate an implementation able to guarantee that the analyzed system results secure,
i.e., we definitely obtain an implementation Y that solves the problem of secure system
synthesis.

1.2 Formal methods
In computer science and software engineering, formal methods are mathematically-based
techniques for the specification, development and verification of software and hardware
systems. The use of formal methods is motivated by the expectation that, by performing
appropriate mathematical analysis, system design may be proved reliable and robust.

Process Algebras

A process is a series of actions or events, and an algebra is a calculus of symbols com-
bined according to certain defined laws.

A process algebra is a formal description technique for complex computer systems,
especially those with communicating, concurrently executing components. A number of
different process algebras have been developed, e.g., the Algebra of Communicating Pro-
cesses (ACP , see [23]), the Calculus of Communicating Systems (CCS, see [103]), the
Theoretical Communicating Sequential Processes (TCSP , see [28]) and the π-calculus
(see [104]), et al. and they all share the following key ingredients:

Compositional modeling. Process algebras provide a small number of constructs for
building larger systems up from smaller ones. CCS, for example, contains only
six operators, including one for composition of systems in parallel and others for
choice and scoping.

Operational semantics. Process algebras are typically equipped with Plotkin-style (see
[111] and Section 2.3.1) structural operational semantics (SOS) that describes the
single-step execution capabilities of a system. Using SOS, systems represented as
terms in the algebra can be “compiled” into Labeled Transition Systems (see Section
2.2.1).
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Behavioral reasoning via equivalences and preorders. Process algebras also feature the
use of behavioral relation (see Section 2.3.3) as a mean for relating systems. These
relations are usually equivalences, which capture a notion of “same behavior”, or
preorders, which capture notions of “refinement”.

We use process algebras to study security aspects of systems that are specified as pro-
cesses. Processes are obtained by exploiting operators of the algebras. In particular, in
this thesis, we mainly concentrate on CCS. In this calculus, the notion of communication
between processes is crucial. In fact, the main operator is the parallel one, denoted by ‖,
that permits two processes to communicate by performing complementary actions, e.g.,
send-receive operations.

Compositional Analysis

Compositional analysis techniques have been developed for many concurrent languages
(see, e.g., [2, 62, 77, 79, 134]). These techniques are based on the structure of the pro-
cesses. Compositional analysis consists in applying a sequence of reductions, each of
them transforming a satisfaction problem of a composite process, i.e., deciding whether
a given model M satisfies a given assertion φ (in symbols, M |= φ), into an equivalent
satisfaction problem for an intermediate subcomponent.

For instance, let A and B be two processes and let ‖ be the parallel operator of the
CCS process algebra. Let we suppose to require that the system A‖B satisfies a logic
formula φ. A typical rule for compositional reasoning is the following:

A |= φ1 B |= φ2

A‖B |= φ

In this way, the problem to check whether the composed process A‖B satisfies φ is re-
duced to check whether process A satisfies φ1 and process B satisfies φ2, where φ1 and
φ2 are two logic formulas in which φ could be decomposed, i.e., φ1 ◦ φ2 ⇒ φ where ◦ is
a certain composition operator. The choice of the right decomposition of the property φ
in the two sub-properties is usually a difficult task.

In [77], Larsen and Xinxin tackle a problem related to the correct decomposition of
properties (see Section 2.4.2). They study how to compute the properties that unspecified
subcomponents of a system must satisfy in order to obtain that the whole system satisfies
a certain requirement. Moreover, they address the problem of finding properties of sub-
components that are as weak as possible, in order not to unnecessarily restrict the choice
of further implementation steps. In this way, after defining a partial implementation, it is
possible to find the minimal set of properties that the unspecified components must ensure
in order to build a complete system with particular requirements.

Also Andersen in [2, 3] presents compositional approach to verifying whether pro-
cesses satisfy assertions from the logic where processes are drawn from a process lan-
guage. He describe the partial model checking techniques. The method is compositional
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in the structure of the processes and works purely on the syntax of processes. It con-
sists in applying a sequence of reductions. In this way, given a system with undefined
subcomponents it is possible to find the necessary and sufficient conditions that these
subcomponents must satisfied to be sure that the system works properly.

Open systems for security analysis
A system is said to be open if it has some unspecified components. The analysis of an
open system consists in studying the behavior of the whole system with respect to all the
possible behavior of the unspecified components.

An open system satisfies a property if and only if, whatever a specified component is
substituted to the unspecified one, the whole system satisfies this property.

According to the approach proposed in [85, 86, 89], it is possible to use the open system
paradigm to do security analysis by considering the unspecified components of the system
as potential attackers.

Several situations, which commonly arise in computer security analysis, may be re-
garded as instances of open systems verification, e.g., :

• Security protocols involve several parties sending and receiving information over a
possibly insecure network. We can then imagine a hostile intruder being “present
into” the network and being able to listen, tap into and fake messages to attack the
protocol. We can also imagine that some of the “legitimate” parties start to behave
maliciously, trying to achieve an advantage for themselves. These two different
scenarios can both be modelled by open systems.

– In the first scenario, in the system there are, e.g., two parties A and B that are
communicating. This situation is usually described through the term A‖B (see
Section 2.3.2). If we want to consider a possible “listener”, it would be better
to consider instead the open system A‖B‖( ), where the unknown component
(the hole) may be used to take into account the presence of the listener, whose
behavior we are not able to predict. Note that A and B are not necessarily
aware of the presence of the intruder.

– In the second scenario, there is a party that does not behave as declared. Let
B be this party. The situation should be properly modeled by analyzing the
context A‖( ). Here, we remove the information about the “intended” behav-
ior of a certain user, i.e., B. However, A still assumes the presence of B with
such “intended” behavior.

• Suppose to be the owner of a mobile phone and to have downloaded a tool for it. If
the origin of this tool is unknown, one cannot know about the correct functioning
of the phone, upon the tool installation. We can model this scenario by considering
the tool as the hole in the system, i.e., as the unspecified component.
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Thus, when analyzing security-sensitive systems, neither the enemy’s behavior nor the
malicious users’ behavior should be fixed beforehand. This will prevent us from mak-
ing unjustified assumptions which could lead to erroneous (and dangerous) verification
results. To sum up, a system should be secure regardless of whatever behavior the ma-
licious users or intruders may have. This is what we want to guarantee in this thesis, by
developing enforcement mechanisms able to control the behavior of the possible mali-
cious components and to prevent the system to be unsecure.

1.3 Our main line of research
Given a system S and a security property expressed by a logic formula φ we want to guar-
antee that S is secure, i.e., S satisfies the formula φ, against whatever possible intruder or
malicious user, hereafter denoted by X .

Following the open system approach, we study a system composed by a known part
S and an unspecified component X . They operate together. Let φ be a logic formula that
expresses a security policy. The verification goal is to check

∀X S‖X |= φ

Since it is not always possible to check all possible behavior of the component X , we
develop mechanisms that monitor the behavior of the component X and eventually force
it in order to guarantee the system works properly. First of all, we apply the partial
model checking function (see [2, 3] and Section 2.6) to the above equation, in order to
evaluate the formula φ by the behavior of S. In this way we obtain a new formula φ′ =
φ//S

and we have to monitor only the un-trusted part of the system, here X . Thus, we
study whether a potential attacker exists and, in particular, which are the necessary and
sufficient conditions that this enemy should satisfy for altering the correct behavior of the
system. Hence, in order to force X to behave correctly, i.e., as prescribed by φ′, we define
controller operators, denoted Y . X .

Our approach allows to automatically synthesize a controller program Y for a given
controller operator Y . X , by exploiting satisfiability procedures for temporal logic.

To sum up, in this thesis we define controller operators and present a technique to
guarantee that a system is secure by, whatever the behavior of a possible intruder is,
allowing the system to behave as prescribed by its specification. In particular we show a
method to synthesize a controller program Y for a specified controller operator ..

Contribution
In this thesis we propose a general framework to enforce security properties that is able
to deal with several problems. By using this technique, we can treat systems in a timed
setting, parameterized systems, distributed systems and composition of properties. Some
application fields of our work are mobile phones and web services.
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Another advantage of our approach for enforcing is that we are able to control only
the possible un-trusted component of a given system. Other approaches deal with the
problem of monitoring the possible un-trusted component to enjoy a given property, by
treating it as the whole system of interest. However, it is frequent the case where not the
whole system needs to be checked (or it is simply not convenient to check it as a whole).
Some components could be trusted and one would like to have a method to constrain only
un-trusted ones (e.g., downloaded applets). Similarly, it could not be possible to build a
monitor for a whole distributed architecture, while it could be possible to have it for some
of its components.

We contribute by showing how our approach could also be used to deal with web
services. In particular, in web services scenarios we will be able to synthesize an or-
chestrator process that, by managing the service providers, guarantees that a given user’s
requirement is satisfied.

Finally, we have developed a tool that permits to generate a controller program for a
specified controller operator. As a matter of fact, we have implemented a synthesis tool
in the objective language O’caml [78] that, given a system, a security property, and a
controller operator enforcing that property, is able to generate the respective controller
program.

Bibliographical note
The work we present here has been already published in international conferences. In
particular:

• The modeling and synthesis of controller operators for safety properties appeared
in [91, 92, 93].

• The synthesis of controller operators for information flow properties in [90, 98].

• The synthesis of web services orchestration in [95].

• The synthesis of controller operators for security properties in distributed systems
in [94].

• The synthesis tool in [97].

We acknowledge joint research with Fabio Martinelli. In addition to the contribution of
University of Siena, Italy, this research work has been done with the contribution of the
Institute of Informatics and Telematics, CNR, Italy. We also thank the European projects
S3MS, GRIDTRUST and SENSORIA for having partially supported this research.
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Organization of the thesis
The thesis is organized in six chapters and one appendix. In particular,

Chapter 2 introduces some general background, aimed at helping the reader in acquiring
the basic notions required for the subsequent chapters. More precisely, general no-
tions about logic and the definition of syntax and semantics of linear and branching
time logic will be given. Secondly, the definition of process algebras, in particular
CCS process algebra, and the definition of behavioral equivalences between pro-
cesses, will be presented. Finally, the compositional analysis method is recalled.

Chapter 3 introduces the notion of enforcement mechanisms and shows the controller
operators that we have developed in order to deal with different security proper-
ties. Indeed, different operators can be used to enforce different security properties.
Moreover, the chapter introduces an enforcement mechanism on traces based on
partial model checking and ideas of online model checking and model checking a
path.

Chapter 4 presents the synthesis of controller programs for controller operators and it
shows possible applications of our framework, within timed setting, and for pa-
rameterized or distributed systems. We also treat the problem of composition of
properties.

Chapter 5 shows the tool architecture and some applications.

Chapter 6 summarizes contents and results of the thesis.

In the Appendix there are the proofs of the results that we present throughout the
work, in particular in Chapters 3 and 4.



Chapter 2

Logic, process algebra and partial
model checking

In this chapter, we start by recalling some basic notions about logic, in particular, by pre-
senting first order logic. Then, we present definition of temporal logics as linear temporal
logic and µ-calculus as branching time logic. In particular we focus our attention on some
variants of the µ-calculus: the modal µ-calculus, the simultaneous fixpoint µ-calculus and
the equational µ-calculus.

Successively, we introduce the Calculus of Communicating Systems (CCS for short,
see [101, 102]), by giving the operational semantics of programs in the style proposed
by Plotkin (see [111]), namely Structured Operational Semantics (SOS). This language
belongs to the family of process algebras (see [65, 67]), that are formalisms for the de-
scription of concurrent communicating processes.

Finally, we show the compositional analysis techniques proposed by Larsen and XinXin
in [77]. They introduced the concept of context to deal with partially specified systems.
We show how CCS operators can be seen as contexts. We also recall the work of An-
dersen (see [2, 3, 77]) that analyzed a similar problem by introducing the partial model
checking technique.

2.1 Logical basic notions
In this section, we recall some basic notions about logic. We present propositional logic
and first order logic, FOL for short, that is a formal deductive system used by mathe-
maticians, philosophers, linguists, and computer scientists. For this part we refer to the
definition given in [57].

2.1.1 Propositional Logic
A proposition is an assertion that can be true or false, but it cannot be true and false at the
same time.
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In logic and mathematics, a propositional calculus (or a sentential calculus) is a for-
mal system in which formulas representing propositions can be formed by combining
atomic propositions using logical connectives, and a system of formal proof rules allows
certain formulas to be established as “theorems” of the formal system.

The language of a propositional calculus consists of:

• a set of primitive symbols, variously referred to as atomic formulas, placeholders,
proposition letters, or variables;

• a set of operator symbols, variously interpreted as logical operators or logical con-
nectives.

In the mathematical formalization, logical connectives are denoted as ¬ (not), ∧ (and),
∨ (or),→ (implication) and↔ (double implication). Their meaning can be found in Table
2.1.

¬p means “not p”
p ∧ q means “p and q”
p ∨ q means “p or q”

p → q means “if p then q”
p ↔ q means “p if and only if q”

Table 2.1: Logical connectives.

In general, a calculus is a formal system that consists of a set of syntactic expressions,
a distinguished subset of these expressions, plus a set of formal rules that define a spe-
cific binary relation, intended to be interpreted as logical equivalence, on the space of
expressions.

Within a formal, logical system, expressions are mathematical statements, and rules,
known as inference rules, are typically intended to be truth-preserving. Rules may include
axioms, i.e., sentences or propositions that are not proved nor demonstrated and that are
considered as self-evident. They can then be used to derive (“infer”) formulas.

The set of axioms may be empty, a nonempty finite set, a countably infinite set, or can
be given by axiom schemata. A formal grammar recursively defines the expressions and
well-formed formulas of the language. In particular, a well-formed formula is any atomic
formula or any formula that can be built up from atomic formulas by means of operator
symbols according to the grammar rules.

The semantics of the propositional calculus assigns a truth function to each proposi-
tion. First, it is necessary to define the meaning of the logical connectives. The set of
truth values is the set {T,F}. Truth tables show the meaning of the boolean connectives
as follows.

The first two columns represent the four possible truth values of A and B, respectively.
The other columns show truth values of the propositions A ∧ B, A ∨ B, A → B and
A ↔ B.
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A B A ∧B A ∨B A → B A ↔ B
F F F F T T
F T F T T F
T F F T F F
T T T T T T

Table 2.2: Truth table for boolean connectives.

2.1.2 First Order Logic
First Order Logic FOL is a system of deduction extending propositional logic by allowing
quantification over individuals of a given domain (universe) of discourse. For example,
the following proposition can be stated: “Every individual has the property P ”. Thus,
while propositional logic deals with simple declarative propositions, first-order logic ad-
ditionally covers predicates and quantification. Let us consider the following sentences:
“Socrates is a man”, “Plato is a man”. In propositional logic these will be two unrelated
propositions, denoted, for example, by p and q. In first-order logic they can be con-
nected by the same relation: Man(x), where Man(x) means that “x is a man”. When
x = Socrates we get the first proposition, i.e., p, and when x = Plato we get q. We
obtain a more powerful logic than the propositional logic. Indeed, there is the possibility
to build constructions with quantifiers, e.g., “for every x, if Man(x), then . . . ”. How-
ever, without quantifiers, every valid argument in FOL is valid in propositional logic,
and viceversa.

The language of FOL has sufficient expressive power for the formalization of most of
mathematics. A first-order theory consists of a set of axioms (usually finite or recursively
enumerable) and the statements deducible from them.

Basically, two extra components are present in FOL, with respect to propositional
logic. Quantifiers, introduced above, and variables, referring to properties. Quantifiers
govern the nature of the quantity of the variables bound within their scope. There are two
types of quantifiers - universal and existential, to be read “for all x” and “there exists at
least one x”, respectively.

Syntax

The signature of a first order logic consists of a set of symbols divided in three subsets,
constant symbols, function symbols and relation symbols and a function, called arity that
associates to constant symbols the value zero and to function symbols positive integers.
There is also a set, denoted by V ar, of variables symbols. We can give the following
definition of terms.

Definition 2.1 The set of terms is recursively defined by the following rules:

• Any constant is a term.

• Any variable is a term.
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• if t1, . . . , tn are terms and f is a function symbols of arity n then f(t1, . . . , tn) is a
term.

• Closure clause: Nothing else is a term.

A closed term is a term with no variables.

Definition 2.2 A well-formed formula is recursively defined as follows.

• If R is a symbol of relation of arity n and t1, . . . tn are terms then R(t1, . . . , tn) is a
formula.

• Let φ and ψ be two formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ and φ → ψ are formulas.

• If φ is a formula and x is variable then ∀xφ and ∃xφ are formulas.

• Closure clause: Nothing else is a formula.1

A formula is atomic if there are no connectives.
A formula φ can contain variables. If the variable occurs in a subformula in which

there is a quantifier then it is called a bound variable. If it is not bound, we call it free.

Semantics

First, we recall the following definition.

Definition 2.3 Let L be a signature. A L-structure M consists in:

• A non empty set, said universe, for short dom(M).

• A correspondence c 7→ cM between the constant symbols of the signature L and the
constant symbols of the structure M .

• A correspondence f 7→ fM between the function symbols of the signature L and
the function symbols of the structure M .

• A correspondence R 7→ RM between the relation symbols of the signature L and
the relation symbols of the structure M .

For the sake of readability, in the following we will omit to specify the signature with
respect to which we give all the definitions.

Let M be a structure and let φ be a formula with free variables in {x1, . . . , xn}. The
formula ∀x1 . . . xn φ is the universal closure of φ.

Definition 2.4 Given a formula φ and a structure M if there exists the universal closure
of φ that is true in M , we said that φ is valid, or universally true, in M .

1We do not consider languages with the symbol =.
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Definition 2.5 A theory T consists in a signature L and a set of axioms of T .

Definition 2.6 A model of a theory T is a structure in which all axioms of T are valid. If
M is a model of T we write M |= T . This means that for all axioms φ of T , M |= φ. A
theory is said coherent or satisfiable if it has at least a model.

2.2 Modal Logic
Here, we consider Modal logic, characterized by modal operators describing, informally,
concepts like: “it is necessary that . . .”, or “it is possible that . . .”.

2.2.1 Structures: Kripke Structures and Labeled Transition Systems
As anticipated in Section 2.1, to establish if a formula is true or false, we should define a
structure with respect to which the formula is interpreted.

We recall the definition of two kind of structures that are suitable for our later pur-
poses: Labeled Transition Systems, LTS for short, and Kripke Structures. They are very
similar. In LTS transitions are labeled to describe the actions which cause a change in
the state, while in a Kripke Structure states are labeled to describe how they are modified
by transitions.

Kripke Structure

A Kripke Structure was introduced by Saul Kripke in [73] in order to respond to a diffi-
culty with classical quantification theory. In particular, the key point is the possibility to
represent the fact that terms may fail within one scenario (that he called world), and ex-
ist within another one. Indeed, when standard quantifier rules are used, each term refers
to something that exists in all the possible worlds. This seems incompatible with our
ordinary practice of using terms to refer to things that exist contingently.

A Kripke Structure represents a graph where nodes are the reachable states of the
system, and whose edges represent state transitions. A labeling function maps each node
to a set of properties that hold in the corresponding state.

Definition 2.7 Let AP be the set of atomic propositions. A Kripke Structure M over AP
is a tuple M = (S, S0, R, δ) where

• S is a finite set of states.

• S0 ⊆ S is the set of initial states.

• R ⊆ S × S is a transition relation that must be total, that is, for every state s ∈ S
there is a state s′ ∈ S such that R(s, s′).

• δ : S → 2AP is a function that labels such state with the set of atomic propositions
that are true in that state.
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When feasible, we omit the set of initial states S0.

Definition 2.8 A path in the structure M from a state s is an infinite sequence of states
u = s0s1s2 . . . such that s0 = s and R(si, si+1) holds for all i ≥ 0.

Kripke Structures could be seen as a type of nondeterministic finite state machine,
that is a model composed by a finite number of states, transitions between these states,
and actions. Temporal logics are traditionally interpreted in terms of Kripke Structures
(see [45]). As a matter of fact, they are the model used to give semantics (definition of
when a specified property holds) for the most widely used specification languages for
temporal logics. Kripke Structures describe the behavior of the system in a manner that
is independent from the specification language. Therefore, temporal logics are really
formalism-independent. The definition of atomic propositions is the only thing that needs
to be adjusted according to the formalism. Moreover, they are also used for describing
behavior of systems.

Labeled Transition System

In computer science, Labeled Transition Systems (LTSs) are commonly used to represent
possible computation pathways during the execution of a program. In Kripke Structure
the attention is on the formula that is valid in a state. On the other hand, in a LTS the
attention is focused on the transition between two states.

LTSs consist of a set of states, a set of labels (or actions) and a transition relation, T ,
that describes how a process passes from a state to another, i.e., given two states s an s′

and a label a, sTas
′ means that the process passes from the state s to the state s′ with an

arc labeled a.

Definition 2.9 A triple 〈S, Act, T 〉 is called Labeled Transition System (LTS), where S
is a set of states, Act is a set of actions (or labels) and T ⊆ S × Act × S is a ternary
relation, known as a transition relation.

LTSs are mathematical objects used to give formal (operational) semantics to concurrent
programming languages (see Section 2.3.1).

Doubly Labeled Transition System

Some research deals with a third structure that combines both of these aspects. It is called
Doubly labeled transition system (L2TS) (see [41, 42]).

Definition 2.10 Let AP be a fixed set of atomic names. L2TS is a structure (S,Act, T , δ)
where (S, Act, T ) is a LTS and δ : S → 2AP is a labeling function which associates a
set of atomic propositions to each state.

The introduction of this structure permits to compare different temporal logics, e.g.,
branching and linear temporal formulas. In this way, they can be interpreted on the same
structure.
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Figure 2.1: The state 2 satisfies φ2, while the state 1 does not satisfy φ2.

2.2.2 Hennessy-Milner Logic and µ-calculus
Here, we consider the Hennessy-Milner Logic, HML for short. Then, we devote the
major part of the section to the µ-calculus by presenting some of its variants: the modal
µ-calculus, simultaneous fixpoint µ-calculus and the equational µ-calculus. We choose
these three variants because they are the most meaningful for this thesis.

Hennessy-Milner Logic

HML [102] is a temporal logic well suited for the specification and verification of sys-
tems whose behavior is naturally described by changes of states through actions. This is
a primitive modal logic. Formulas of HML have, in addition to the Boolean operators, a
modality 〈a〉φ, where a ∈ Act and Act is a set of actions (or labels). The meaning is “it
is possible to do and a-action to go to a state where φ holds”.

φ ::= T | ¬φ | φ1 ∧ φ2 | 〈a〉φ

The basic information are not atomic propositions, that here are only the constants T
and F, but the notion of action or transition between worlds. The semantics of modal
logic is given by using Labeled Transition Systems 〈S, Act,→〉, where → represents the
transition relation, by inductively defining when a process in a transition system satisfies
a certain property, e.g., E |= 〈a〉φ if and only if ∃F such that E performs a transition
labeled by the action a in order to pass to F , i.e., E

a−→ F , and F |= φ. E and F are
processes, and they can be seen as states in a transition system.

The expressive power of HML in this form is quite weak: a given HML formula can
only make statements about a given finite number of steps towards the future.

The satisfaction of a formula with respect to a state of an LTS is defined inductively
as follows:

s |= T for every s
s |= ¬φ iff not s |= φ
s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= 〈a〉φ iff ∃s′(s a−→ s′ and s′ |= φ)



16 Chapter 2

Example 2.1 We give a simple example that shows how HML formulas may be used to
distinguish between two LTSs, whose initial states have a different branching structure.
Consider the two LTSs in Figure 2.1. Let φ1 be (〈a〉〈b〉T) ∧ (〈a〉〈c〉T) and let φ2 be
(〈a〉(〈b〉T ∧ 〈c〉T)). Then, state 2 of the rightmost LTS satisfies φ1 and φ2, while state 1
of the leftmost LTS satisfies φ1 but not φ2.

Modal µ-calculus

Modal µ-calculus is a process logic which extends HML with fixpoint operators in order
to reason directly about recursive definitions of properties. It permits to analyze non
terminating behaviors of systems.

Let a be in Act, Z be a variable ranging over a set of variables V . Modal µ-calculus
formulas are generated by the following grammar:

φ ::= Z | T | F | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ | µZ.φ | νZ.φ

The possibility modality 〈a〉φ expresses the ability to have an a transition to a state that
satisfies φ. The necessity modality [a]φ expresses that after each a transition there is a
state that satisfies φ. We consider the usual definition of bounded and free variables. The
interpretation of a closed formula φ with respect to a LTS M is the set of states where
φ is true. The interpretation of a formula φ(Z) with a free variable Z is a function from
set of states to set of states. Hence, the interpretation of µZ.φ(Z) (νZ.φ(Z)) is the least
(greatest) fixpoint of this function. The interpretation of a formula with free variables is a
monotonic function, so a least (greatest) fixpoint exists.

Formally, given an LTS M = 〈S, Act,→〉, where → is the transition relation, the
semantics of a formula φ is a subset JφKρ of the states of M , defined in Table 2.3, where
ρ is a function (called environment) from free variables of φ to subsets of the states of M .
This kind of semantics is called denotational semantics, that is an approach to formalizing
the semantics of computer systems by constructing mathematical objects, said denotations
or meanings.

The environment ρ[S ′/Z](Y ) is equal to ρ(Y ) if Y 6= Z, otherwise ρ[S ′/Z](Z) = S ′.
Actually we have presented a slight variant of the propositional µ−calculus as described
by Kozen (see [72]) or by Walukiewicz (see [131]).

In our treatment, we omit propositional symbols. As usual we consider φ ⇒ ϕ as an
abbreviation for ¬φ ∨ ϕ.

Examples and facts. Modal µ-calculus allows to express a lot of interesting properties,
like safety properties, i.e., nothing bad happens as well as liveness properties, i.e., some-
thing good happens. Moreover, equivalence conditions over LTSs may be expressed
through this logic (see [2, 125] and Section 2.2.1).

Safety properties are usually defined by means of greatest fixpoint formulas, while
liveness properties by least fixpoint formulas (see [27]).
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[[T ]]ρ = S
[[F ]]ρ = ∅
[[Z]]ρ = ρ(Z)

[[φ1 ∧ φ2]]ρ = [[φ1]]ρ ∩ [[φ2]]ρ
[[φ1 ∨ φ2]]ρ = [[φ1]]ρ ∪ [[φ2]]ρ

[[〈a〉φ]]ρ = {s|∃s′ : s
a−→ s′ and s′ ∈ [[φ]]ρ}

[[[a]φ]]ρ = {s|∀s′ : s
a−→ s′ implies s′ ∈ [[φ]]ρ}

[[µZ.φ]]ρ =
⋂{S ′|[[φ]]ρ[S′/Z] ⊆ S ′}

[[νZ.φ]]ρ =
⋃{S ′|S ′ ⊆ [[φ]]ρ[S′/Z]}

Table 2.3: Denotational semantics of modal µ-calculus.

An example of safety property is a formula that expresses the possibility to open a
new file only if the previous one is closed. It can be described by the following formula:

νZ1.[open]([close]Z1 ∧ [open]F)

As a matter of fact, this formula states that whenever an action open is performed
([open]) the process goes in a state in which it is not possible to perform another open
action ([open]F) and it is possible to close the file opened at the previous transition step
([close]Z1). It is possible to note that, after performing the action close, the process
call the first variable Z1. This allows to open a new file after closing the previous one.

Another interesting formula is νZ.[K]Z ∧ [Act\K]F2 which expresses the fact that
only actions in K can be performed by a process in any reachable state.

Moreover, access-control property are safety properties. The set of proscribed partial
executions contains those partial executions ending with an unacceptable operation being
attempted. There is no way to “unaccess” the resource and fix the situation afterward.

Also some bounded availability properties may be characterized as safety ones. An
example is “one principal cannot be denied the use of a resource for more then D steps as
a results of the use of that resource by other principals”. Here, the defining set of partial
executions contains intervals that exceed D steps and during which a principal is denied
use of a resource.

A liveness property like “there exists a path for a state which satisfies φ” is expressed
by µZ.〈Act〉Z ∨ φ.

Modal µ-calculus can express cyclic properties, e.g., “there exists an infinite path such
that the formula ψ is true at all even instants”. The µ-calculus formula which expresses
the aforementioned property is the following:

νZ.(〈Act〉〈Act〉Z ∧ ψ).

2We use an extended notation, with K ⊆ Act let [K]φ be
∧

a∈K [a]φ, and 〈K〉φ be
∨

a∈K〈a〉φ. Since
Act is finite the indexed disjunctions (conjunctions) can be expressed by means of disjunction (conjunction).
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The following lemma states some well known facts about µ-calculus (see [33]) that
will be used later in the chapter.

Lemma 2.1 ([33]) Let φ be a µ-calculus formula, ρ an environment and σ ∈ {µ, ν}.

1. if Z is not free in φ then [[σZ.φ]]ρ = [[φ]]ρ.

2. Let W be a variable that does not appear free in σZ.φ, then [[σZ.φ]]ρ
= [[σW.φ[W/Z]]]ρ.

3. Let ψ be a formula, then [[φ[ψ/Z]]]ρ = [[φ]]ρ[[[ψ]]ρ/Z].

4. [[σZ.φ]]ρ = [[φ[σZ.φ/Z]]]ρ.

Modal µ-calculus subsumes several temporal logics (see [24, 38]). But, despite its ex-
pressiveness, the satisfiability problem (namely finding a structure and a state where the
formula holds) still remains EXPTIME-complete (see [127]).

Moreover µ-calculus enjoys the finite model property, i.e., if a closed formula is satis-
fiable then there exists a finite model (a finite state process) for that formula (see [127]).

Theorem 2.1 ([127]) Given a formula φ, it is possible to decide within exponential time
in the length of φ if there exists a model of φ and it is also possible to give an example of
such model.

A finitary axiom system has been proposed by Walukiewicz in [131, 132, 133]. We recall
here that satisfiability procedure because we refer to it later in this thesis.

Walukievicz satisfiability procedure.

Tableau construction. The vocabulary of the µ-calculus is extended by a countable
set DCons of fresh symbols that will be referred to as definition constant and usually de-
noted U , V, · · · (see [131, 133]). These new symbols are now allowed to appear positively
in formulas, like propositional variables. A definition list is a finite sequence of equations:

D = ((U1 = σ1Z.φ1(Z)), · · · , (Un = σnZ.φn(Z)))

where U1, · · · , Un ∈ DCons and σiZ.φi(Z) are formulas such that all definition constants
appearing in φi are among U1, · · · , Ui−1. We assume that Ui 6= Uj and φi 6= φj for i 6= j.
If i < j then Ui is said to be older than Uj .

A tableau sequent is a pair (Γ,D) where D is a definition list and Γ is a finite set of
formulas such that the only constants that occur in them are those fromD. We will denote
(Γ,D) by Γ `D.

A tableau axiom is a sequent Γ `D such that some formula and its negation occur in
Γ.

In Table 2.4 there is the set S of rules for constructing tableau. In the last rule (all〈〉)
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(and) φ, ϕ, Γ `D
φ ∧ ϕ, Γ `D

(or) φ, Γ `D ϕ, Γ `D
φ ∨ ϕ, Γ `D

(cons) φU, Γ `D
U, Γ `D whenever (U = σZ.φ(Z)) ∈ D

(µ) U, Γ `D
µZ.φ(Z), Γ `D whenever (U = µZ.φ(Z)) ∈ D

(ν) U, Γ `D
νX.φ(Z), Γ `D whenever (U = νZ.φ(Z)) ∈ D

(all 〈〉) {φ, {ϕ : [a]ϕ ∈ Γ} `D : 〈a〉φ ∈ Γ}
Γ `D

Table 2.4: System rule S for constructing a tableau.

each formula in Γ is a propositional constant, a variable, a negation of one of them or a
formula of the form 〈b〉ϕ or [b]ϕ for some action b and a formula ϕ.

Observe that each rule, except (or) or (all 〈〉), has exactly one premise.
The system Smod is obtained from S by replacing the rule (or) by two rules (orleft)

and (orright) defined in the obvious way.
The system Sref is obtained from S by replacing the rule (all〈〉) by the rule

(〈〉) 〈a〉φ, Γ `D
φ, {ϕ : [a]ϕ ∈ Γ} `D

with the same restrictions on formulas in Γ as in the case of (all〈〉) rule.

Definition 2.11 Given a positive guarded formula φ, a tableau for φ is any labeled tree
〈K, L〉, where K is a tree and L a labeling function, such that

• the root of K is labeled with φ `D where D is the definition list of φ.

• if L is a tableau axiom then n is a leaf of K.

• if L(n) is not an axiom then the sons of n in K are created and labeled according
to the rules of the system S .

A quasi-model of φ is defined in a similar way to tableau, except the system Smod is used
instead of S and we impose the additional requirement that no leaf is labeled by a tableau
axiom. A quasi-refutation of φ is defined in a similar way to tableau, except the system
Sref is used instead of S and we impose the additional requirement that every leaf is
labeled by a tableau axiom.

Remark 2.1 Observe that each quasi-model, as well as a quasi-refutation can be ob-
tained from a tableau by cutting of some nodes.
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Let P = (v1, v2, · · · ) be a path in the tree K. A trace T r on the path P is any
sequence of formulas {φi}i∈I such that φi ∈ L(vi) and φi+1 is either αi, if formula φi was
not reduced by the rule applied in vi, or otherwise φi+1 is one of the formulas obtained by
applying the rule to φi.

A constant U regenerates on the trace T r if for some i, ai = U and ai+1 = α(U)
where (U = σZ.φ(Z)) ∈ D. The trace T r is called a ν-trace if and only if it is finite
and does not end with a tableau axiom, or if the oldest constant in the definition list D
which is regenerated infinitely often on T r is a ν-constant. Otherwise the trace is called
a µ-trace.

Definition 2.12 A quasi model PM is called pre-model if and only if any trace on any
path of PM is a ν-trace.

A quasi-refutation of φ is called a refutation of φ if and only if on every path of there
exists a µ-trace.

Game. Given a formula φ it is possible to find either a pre-model or a refutation for
it. Let T be a tableau for φ. In order to find a pre-model or a refutation it is supposed to
be two players, I and II of a game with the following rules:

• game starts in the root of T .

• in any (or) node, i.e., a node where (or) rule is applied, player I chooses one of he
sons.

• in any (all〈〉) node, player II chooses one of the sons.

• in other nodes which are not leaves automatically the only son is chosen.

The result of such a game is either a finite or an infinite path of the tableau T . The path
can be finite only when it ends in a leaf which can be labeled either by axiom or by
unreducible sequent but not an axiom. In the former case player II wins and in the latter
case player I is the winner. If the resulting path is infinite, then player II wins if and only
if we can find a µ-trace on the path. A winning strategy of either player can be naturally
presented as a tree. More precisely, a winning strategy for player I may be identified with
a pre-model of φ while a winning strategy for player II can be identified with a refutation
of φ. Hence, we have the following proposition.

Proposition 2.1 For each formula φ there exists a pre-model or a refutation in any tableau
for φ.

According to [131, 133], a formula φ is satisfiable if and only if there exists a pre-model
for it. In particular here we recall the definition of canonical structure that is the candidate
to be a model of φ.

Definition 2.13 Given a pre-model PM, the canonical structure for PM is a structure
M = 〈SM, RM, ρM〉 such that
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• SM is the set of all nodes of PM which are either leaves or to which (all〈〉) rule
was applied. For any node n of PM we will denote by sn the closest descendant of
n belonging to SM.

• (s, s′) ∈ RM(a) if and only if there is a son n of s with sn = s′, such that L(n) was
obtained from L(s) by reducing a formula of the form 〈a〉φ.

• ρM(p) = {s : p occurs in the sequent L(s)}.

Proposition 2.2 ([131, 133]) If there exists a pre-model PM for a positive guarded sen-
tence φ then φ is satisfiable in the canonical structure for PM.

Simultaneous fixpoint µ-calculus

Another variant of the µ-calculus is the simultaneous µ-calculus. This variant permits us
to define, in a simultaneous way, recursive properties by allowing minimum and maxi-
mum fixed points to be used freely and interchangeably.

We recall here the specification given in [77].

Definition 2.14 Let Act be a set of actions and let V be a set of variables. The formulas
and declarations over V relative to Act, FV,Act and DV,Act are built up according to the
following abstract syntax

φ ::= T | F | X | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ | LET MAX D IN φ | LET MIN D IN φ
D ::= X1 = φ1 . . . Xn = φn

The above logic is a propositional modal logic with 〈a〉φ and [a]φ providing the two rela-
tivized modalities. The declaration in the LET-constructs, LET MAX {X1 = φ1 . . .} IN φ
and LET MIN {X1 = φ1 . . .} IN φ, introduces simultaneous recursively specified prop-
erties X1 with scope being the body φ. The concepts of free and bound variables are
defined as usual; in particular we call a formula closed if it contains no free variables.
We shall use standard notation φ[ψ/X] to describe the substitution of ψ for all free occur-
rences of the variable X in φ. The interpretation of the introduced logic is given relative
to labeled transition system over the set of action Act. A labeled transition system is a
structure (Γ, L,→), where Γ is a set of configurations (or states) and L is a set of labels
(or actions) and →⊆ Γ × L × Γ is the transition relation. The interpretation of a closed
formula is given as the set of configurations satisfying the formula. However, as formulas
(and declarations) in general may contain free variables, the semantics of the formulas
is given with respect to an environment ρ. By EV,Act is defined the set of environments
over V (relative to Act). The semantics definition is given in Table 2.5 with respect to the
following definition of the semantics functions:

F : FV,Act → EV,Act → P(Γ)
Dν , Dµ : DV,Act → EV,Act → EV,Act
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FJTKρ = Γ FJFKρ = ∅ FJXKρ = ρ(X)
FJφ1 ∨ φ2Kρ = FJφ1Kρ ∪ FJφ2Kρ FJφ1 ∧ φ2Kρ = FJφ1Kρ ∩ FJφ2Kρ
FJ〈a〉φKρ = {γ ∈ Γ|∃γ′ : γ

a−→ γ′ ∧ γ′ ∈ FJφKρ}
FJ[a]φKρ = {γ ∈ Γ|∀γ′ : γ

a−→ γ′ ⇒ γ′ ∈ FJφKρ}
FJLET MAXD ∈ φKρ = FJφK(DνJDKρ) FJLET MIND ∈ φKρ = FJφK(DµJDKρ)

and
DνJX1 = F1 . . . Xn = FnKρ = νρ′ ρ{FJφ1Kρ′\X1, . . . , JφnKρ′\Xn}
DµJX1 = F1 . . . Xn = FnKρ = µρ′ ρ{FJφ1Kρ′\X1, . . . , JφnKρ′\Xn}

Table 2.5: Semantics clauses.

inductively on the structure of formulas and declarations as in Table 2.5, with ρ ∈ EV,Act

and ν and µ being the maximum respectively minimum fixed point operator.
For this logic the following theorem holds.

Theorem 2.2 ([127]) Given a formula φ it is possible to decide in exponential time in the
length of φ if there exists a model of φ and it is also possible to give an example of such
model.

Example 2.2 By using this logic it is possible to define several security properties, e.g.,
the Chinese Wall policy. This policy says that, let A and B two sets of elements. Once
one accesses to an element in A, he cannot access to B and viceversa. Here we consider
that A and B are sets of files and we consider the action open. This can be expressed by
the formula φ = φ1 ∨ φ2 where φ1 and φ2 are the following two formulas respectively:

φ1 = LET MAX W = [openA]W ∧ [openB]FINW
φ2 = LET MAX V = [openB]V ∧ [openA]FINV

As a matter of fact φ is a disjunction between two different formulas φ1 and φ2 that cannot
be both true at the same time. Indeed φ1 permits to open only file in A, on the other hand
φ2 allows the access to elements in B.

Equational µ-calculus

Equational µ-calculus is based on fixpoint equations instead of fixpoint operators that
permit to define recursively the properties of systems. A minimal (maximal) fixpoint
equation is Z =µ φ (Z =ν φ), where φ is an assertion, i.e., a simple modal formula
without recursion operators.

The syntax of the assertions (φ) and of the lists of equations (D) is given by the
following grammar:

φ ::= Z | T | F | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ
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D ::= Z =ν φ,D | Z =µ φ,D | ε
It is worthwhile noticing that the syntax of assertions is more restrictive with respect to
the one for modal µ-calculus. This is mainly due to our necessity to perform syntactic
transformations on these assertions. This syntax permits us to keep small the size of the
transformed assertions. It is assumed that variables appear only once on the left-hand
sides of the equations of the list, the set of these variables will be denoted as Def(D).
A list of equations is closed if every variable that appears in the assertions of the list
is in Def(D). Let M = 〈S, Act,→〉 be an LTS, ρ be an environment that assigns
subsets of S to variables that appear in the assertions of D, but which are not in Def(D).
Then, the semantics JφKρ of an assertion φ is the same as for µ-calculus assertions and
the semantics JDKρ of a definition list is an environment which assigns subsets of S to
variables in Def(D). As notation, we use t to represent union of disjoint environments.
Let σ be in {µ, ν}, σU.f(U) represents the σ fixpoint of the function f in one variable U .
The semantics, JDKρ is defined by the following equations:

JεKρ = [] J(Z =σ φ)DKρ = JDK(ρt[U ′/Z]) t [U ′/Z]

where U ′ = σU.JφK(ρt[U/Z]tρ′(U)) and ρ′(U) = JDK(ρt[U/Z]).
It informally says that the solution to (Z =σ φ)D is the σ fix-point solution U ′ of JφK

where the solution to the rest of the list of equations D is used as environment. We write
M |= D ↓ Z as notation for JDK(Z) when the environment ρ is evident from the context
or D is a closed list (i.e., without free variables) and without propositional constants;
furthermore Z must be the first variable in the list D.

Let φ a formula. We define a positive integer, namely ad(φ) (alternation depth) as
follows. For this it is necessary first define the notions direct active sub-formulas and
active sub-formula as follows.

Definition 2.15 Let φ be a µ-formula or a ν-formula. We say that a sub-formula ψ of φ
is a direct active sub-formula of φ if ψ 6= φ and the variable Z appears in ψ.

It is fairly straightforward to shown that the binary relation “direct active sub-formula”
is a partial order. The transitive closure of this partial order is the relation “active sub-
formula”.

Definition 2.16 A formula ψ is an active sub-formula of φ, if there exists a sequence (or a
chain) of sub-formulas ϕ1, ϕ2, . . . , ϕk such that φ = ϕ1, ψ = ϕk and for each i, 1 ≤ i < k
ϕi+1 is a direct active sub-formula of ϕi.

Definition 2.17 It is possible to define ad(φ) as follows:

• For a µ-formula φ, ad(φ) = 0 if φ has no active ν-sub-formulas in it, otherwise
ad(φ) = 1 + max{ad(ψ) : ψ is an active ν-sub-formula ofφ}.

• For a ν-formula φ, ad(φ) = 0 if φ has no active µ-sub-formulas in it, otherwise
ad(φ) = 1 + max{ad(ψ) : ψ is an active µ-sub-formula ofφ}.
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• For any formula φ define ad(φ) = max{ad(ψ) : ψ is a µ-sub-formula or a ν-sub-
formula of φ}.

Moreover we said that φ is an alternation-free formula if ad(φ) = 0.

Examples and facts A lot of properties can be defined by using equational µ-calculus.
It is possible to translate from a modal µ-calculus formula to an equational one and vice-
vera. For that reason, we can express the same properties. In particular it is useful to
express several security properties. In order to underline that equational µ-calculus for-
mulas are more concise than in modal µ-calculus, we shows how in equational µ-calculus
could be expressed the safety property that expresses the possibility to open a new file
only if the previous one is closed:

Z1 =ν [open]([close]Z1 ∧ [open]F)

The same consideration can be done for the specification of a liveness property. For
instance, the property “a state satisfying φ can be reached” is expressed by Z =µ 〈 〉Z ∨
φ3.

Also for this calculus we have a satisfiability result similar to Theorem 2.2.

2.2.3 Temporal Logic
The term temporal logic is used to describe any system of rules and symbolisms for rep-
resenting, and reasoning about, propositions qualified in terms of time.

For instance, it seems reasonable to say that possibly it will rain tomorrow, and pos-
sibly it won’t; on the other hand, if it rained yesterday, if it really already did so, then it
cannot be quite correct to say “It may not have rained yesterday”. It seems that the past is
“fixed” or necessary, in a way that the future is not. This aspect is sometimes referred to
as accidental necessity.

A standard method for formalizing time is to use two pairs of operators, one for the
past and one for the future. For the past, let “It has always been the case that . . .” be
equivalent to the box of modal logic, and let “It was once the case that . . .” be equivalent
to the diamond of modal logic. For the future, let “It will always be the case that . . .” be
equivalent to the box of the modal logic, and let “it will eventually be the case that . . .”
be equivalent to the diamond of modal logic.

Temporal logics may differ about the underlying nature of time which is assumed: if
time has only a single possible future moment we call them linear time logics; otherwise,
if there may be many possible future moments, we call them branching time logics. Tem-
poral operators of the logic typically reflect the underlying nature of time, so linear time
temporal logics have operators for expressing properties about a single time line, while
branching time logics have also operators that permit to quantify along possible time lines

3In writing properties, here and in the rest of the paper, we use the shortcut notations [ ] means [Act]
and, equivalently, 〈 〉 means 〈Act〉.
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(also referred to as computation tree) that may start from a time point. Modal logic that
we have presented in the previous section are branching time logics.

Temporal logic has found an important application in formal verification, where it is
used to state requirements of hardware or software systems.

In his landmark work (see [112]) Pnueli proposed temporal logics as a well-suited
formalism to reason about reactive system behavior, i.e., systems that keep an ongoing
interaction with the environment by receiving and emitting stimuli. His intuition has
been followed by many researchers. Since non termination is, usually, one of the main
characteristics of concurrent systems, it is reasonable to search for a formalism whose
operators can express properties about possibly non terminating executions of systems.
Temporal logic modalities permit to reason about executions (computations) of systems.

Linear Temporal Logics

Linear Temporal Logic, LTL for short, provides an important framework for formally
specifying systems and reasoning about them. Usually, specification and verification are
done in pure future temporal logics, i.e., logics where the modalities only refer to the
future of the current time. It is well-known that temporal logics combining past and future
modalities make some specifications easier to write and more natural (see [80]). All the
main logics with past-time admit translation to their pure-future fragment (see [55, 56]).

The LTL is built up from a set of proposition variables AP = {p1, p2, ...}, the usual
logic connectives ¬, ∨, ∧, → and the following temporal modal operators, N, G, F and U.
So the grammar is the following:

φ ::= AP | ¬φ | φ1 ∧ φ2 | Nφ | Fφ | Gφ | φ1Uφ2

where U reads until and N is next. Moreover, we have Fφ (sometimes φ), Gφ (always φ).
It is easy to note that the LTL grammar can be reduced using only N and U as

temporal operators. Let n = length(u) = |u| be the length of u. Let u = a0a1 . . . be a
path, we denote by u[0] the initial state of the sequence, by u[i] the ith state and by u[0...i]

its prefix which length is i.
We first recall the notion of equivalence between formulas. We write φ1 ≡ φ2 when

φ1 and φ2 are equivalent, i.e., when for all u and i, we have u[i] |= φ1 if and only if
u[i] |= φ2. A less discriminating equivalence is initial equivalence, denoted ≡i, and
defined by: φ1 ≡i φ2 if and only if for all u, u[0] |= φ1 if and only if u[0] |= φ2.

“Global” equivalence (≡) is the natural notion of equivalence, and it is substitutive.
The following equivalences hold:

F ≡ p ∧ ¬p
T ≡ ¬F
φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)
φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2

φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1)
Fφ ≡ TUφ
Gφ ≡ ¬F¬φ
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φ U ψ

N φ

G φ

F φ

Figure 2.2: Intuition for linear-time operators. In the figure, the black states satisfy for-
mula φ and the crossed state satisfy ψ.

An LTL formula can be evaluated over a sequence of truth evaluations and a position
on that path. Let u be a path, i a non-negative integer and φ a LTL formula. Notation
u[i] |= φ means that ”the formula φ holds in the position i of u”. The semantics for the
modal operators it is interpreted on a Kripke structure and it is given as follows.

u[i] |= p iff p ∈ δ(u, 0)
u[i] |= φ1 ∧ φ2 iff u[i] |= φ1 and u[i] |= φ2

u[i] |= ¬φ iff not u[i] |= φ
u[i] |= Nφ iff u[i+1] |= φ
u[i] |= ψUφ iff ∃k ≥ 0 s.t. u[k] |= φ and ∀0 ≤ j < k u[j] |= ψ

A graphical explanation of LTL operators is shown in Figure 2.2.
We can then define the other temporal operators as derived ones. Among the de-

rived temporal operators there is also ψBφ (“ψ before φ”), which expresses the fact that
during a time line the formula ψ is true before the formula φ, this abbreviates the for-
mula ¬(¬ψUφ). Another one is φ1Rφ2, reads release, that can be derived from U as
¬(¬φ1U¬φ2).

Below we give some simple equivalences among LTL formulas:

(1) |= G Gφ ⇔ Gφ
(2) |= F Fφ ⇔ Fφ
(3) |= φ ⇒ Fφ
(4) |= Gφ ⇒ φ
(5) |= Fφ ⇔ φ ∨ NFφ
(6) |= Gφ ⇔ φ ∧ NGφ
(7) |= ψUφ ⇔ φ ∨ (ψ ∧ N(ψUφ))
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The last three equivalences are called fixpoint characterization of temporal operators in
terms of “next” and “until” operators. For example the equivalence (5) can be explained
by noticing that if Fφ holds in a time line then φ holds at the first instant of time or φ holds
at a future moment and hence Fφ holds in the time line that starts from the next time. On
the other hand, if φ holds at the first instant of the time line or Fφ holds in the time line
that starts from the next instant then obviously Fφ holds in the time line.

Linear temporal logic with Past (PLTL) In addition to the temporal operator N and
U of LTL, that express properties in the future, we consider also operators that describe
the behavior of the system in the past. Hence, the grammar of PLTL is the grammar of
LTL with the operators S (Since), N−1 (Previously). From these two operators can be
derived other two operators: F−1 and G−1 as follows:

F−1φ ≡ TSφ
G−1φ ≡ ¬F−1¬φ

Now we give the semantics of PLTL by using Kripke structure.
The truth relation (|=) is defined inductively in the structure of the formula φ.

u[i] |= N−1φ iff u[i−1] |= φ
u[i] |= ψSφ iff ∃j ≤ i u[j] |= φ and ∀j < k ≤ i u[k] |= ψ

We say that a PLTL formula φ is satisfiable if and only if there exists a linear-time
structure (u, δ) such that u[i] |= φ. We say that any such structure is a model for φ. We say
φ is valid, and write |= φ, if and only if for all linear structures (u, δ) such that u[i] |= φ.

Gabbay’s theorem, stating that “any PLTL formula can be translated into an equiva-
lent LTL formula”, refers to initial equivalence: saying that φ1Uφ2 and F(φ2 ∧ G−1(φ1 ∨
φ2)) are equivalent is only correct with initial equivalence in mind.

2.3 Process algebra
Process algebras (see [65, 67]) are approaches to formally model concurrent systems.
They provide a method for the high-level description of interactions, communications,
and synchronization between independent entities.

Thus, rather than actual programming languages, process algebras are specification
formalisms for systems that have to cooperate and communicate to perform complex tasks
and computations in different settings and in different contexts. The universe of interest
is modeled by assuming the notion of processes that autonomously and concurrently can
proceed in their computation but which have also the possibility to communicate and
synchronize among themselves. Process algebra formalisms are built from the basic
operations of this framework. The processes can perform actions which may represent
computation steps.
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A process calculus of our interest is the Calculus of Communicating Systems [103],
CCS for short, developed by Robin Milner and presented in Section 2.3.2. Its actions
model invisible communications between two participants. The notion of communica-
tion considered is a synchronous one, i.e., both processes must agree on performing the
communication at the same time.

2.3.1 Operational semantics

The importance of giving precise semantics to programming and specification languages
was recognized since the sixties with the development of the first high-level programming
languages.

In this section we introduce a formal method for giving (operational) semantics to pro-
grams, namely Structural Operational Semantics (SOS, for short) proposed by Plotkin
(see [111]). The operational semantics explicitly describes how programs compute in a
stepwise fashion, and the possible state-transformations they can perform. Moreover, this
method has a logical flavor and permits to compositionally reason about the behavior of
programs.

This method is based on the notion of labeled transition systems, introduced in Section
2.2.1. The states of the transition system are the elements of some formal language. The
key point is the transition between states, i.e., s

a−→ s′, which expresses the fact that
the system, initially in state s, performs the action labelled a, and it reachs the state s′. In
general, transitions can be inferred through a set of (conditional) rules, based on the syntax
of the language. As an example, the transition s

a−→ s′ can be derived by inspecting the
transitional behavior of subcomponents of s. The general structure for a SOS rule is as
follows:

premises

conclusions

where premises and conclusions are properties expressed on transitions of open terms
of the language. The semantics of terms can be inferred by the semantics of the sub-
terms. Many important facts about programming languages, whose operational seman-
tics is given in terms of SOS rules, can be deduced simply by inspecting the format
of these rules. For example, it is possible to ensure that an equivalence relation, sec-
tion 2.3.3, among closed terms is indeed a congruence with respect to the operators of the
language, [25]. Moreover, a lot of work has been carried out in order to automatically de-
rive complete equational theories from SOS specifications for (concurrent) programming
languages, see [1].

2.3.2 A process algebra: CCS

The main notion of CCS is the communication between processes, that is a synchronous
one. Both the processes must agree on performing the communication at the same time,
and communication is modeled by a simultaneous performing of complementary actions
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(e.g., send-receive actions). This event is represented by a synchronization action (or
internal action) τ .

The main operator is the parallel composition between processes, namely P‖Q. The
intuition is that the parallel composition of two processes performs an action whenever
anyone of the two processes performs an action. Moreover, processes can communicate.
The CCS language assumes a set Act = L ∪ L̄ ∪ {τ} of communication actions built
from a set L of names and a set L̄ of co-names. Putting a line, called complementation,
over a name means that the corresponding action can synchronize with its complemented
action. Complementation follows the rule that ¯̄a = a, for any communication action
a ∈ Act. The special symbol, τ , is used to model any (unobservable) internal action. We
let a, b, . . . range over Act.

The following grammar specifies the syntax of the language defining all CCS pro-
cesses:

P, Q ::= 0 | a.P | P + Q | P‖Q | P\L | P [f ] | A
where L ⊆ Act and the relabeling function f : Act 7→ Act must be such that f(τ) = τ .

The operational semantics of CCS terms (see [103]) is described by a labeled transi-
tion system (E , Act,→), where E is the set of all CCS terms and →⊆ E × Act × E is
a transition relation defined by structural induction as the least relation generated by the
set of the structural operational semantics rules of Table 2.6. The transition relation →
defines the usual concept of derivation in one step. As a matter of fact P

a−→ P ′ means
that process P evolves in one step into process P ′ by executing action a ∈ Act. The
transitive and reflexive closure of

⋃
a∈Act

a−→ is written →∗.
Informally, the meaning of CCS operators is the following:

0: is the process that does nothing.

Prefix: a (closed) term a.P represents a process that performs an action a and then be-
haves as P .

Choice: the term P + Q represents the non-deterministic choice between the processes
P and Q. Choosing the action of one of the two components means dropping the
other.

Parallel composition: the term P‖Q represents the parallel composition of P and Q.
It can perform an action if one of the two processes can perform that action, and
this does not prevent the capabilities of the other process. The third rule of parallel
composition is characteristic of this calculus, it expresses that the communication
between processes happens whenever both can perform complementary actions.
The resulting process is given by the parallel composition of successors of each
component, respectively.

Restriction: the process P\L behaves like P but the actions in L ∪ L̄ are forbidden.
To force a synchronization on an action between parallel processes, we have to set
restriction operator in conjunction with parallel one.
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Prefixing:

a.P
a−→ P

Choice:
P

a−→ P ′

P + Q
a−→ P ′

Q
a−→ Q′

P + Q
a−→ Q′

Parallel:

P
a−→ P ′

P‖Q a−→ P ′‖Q
Q

a−→ Q′

P‖Q a−→ P‖Q′
P

l−→ P ′ Q
l̄−→ Q′

P‖Q τ−→ P ′‖Q′

Restriction:
P

a−→ P ′

P\L a−→ P ′\L
Relabeling:

P
a−→ P ′

P [f ]
f(a)−→ P ′[f ]

Constant:
P

a−→ P ′

A
a−→ P ′

Table 2.6: SOS system for CCS.

Relabeling: the process P [f ] behaves like P , but its actions are renamed through rela-
beling function f .

Constant: A defines a process and it is assumed that each constant A has a defining
equation of the form A

.
= P .

Given a CCS process P , Der(P ) = {P ′|P →∗ P ′} is the set of its derivatives. A CCS
process P is said finite state if Der(P ) is finite. Sort(P ) is the set of names of actions
that syntactically appear in the process P .

A timed variant

Several languages have been developed in the literature to describe systems in a timed set-
ting, see, e.g., [6, 61, 116]. Here, we present a timed variant of CCS, called timedCCS
(see [116]). This approach considers that time is discrete, actions are durationless and
there is one special tick action to represent the elapsing of time. These are features of
the so called fictitious clock approach, e.g., [35, 66, 129]. A global clock is supposed to
be updated whenever all processes of the system agree on it, by globally synchronizing
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Prefixing:

α.P
α−→ P

Choice:
P

a−→ P ′

P + Q
a−→ P ′

Q
a−→ Q′

P + Q
a−→ Q′

P
tick−→ P ′ Q

tick−→ Q′

P + Q
tick−→ P ′ + Q′

Parallel:

P
a−→ P ′

P1‖Q a−→ P ′‖Q
Q

a−→ Q′

P‖Q a−→ P‖Q′
P

l→ P ′ Q
l→ Q′

P‖Q τ→ P ′‖Q′

P
tick−→ P ′ Q

tick−→ Q′

P‖Q tick−→ P ′‖Q′

Restriction:
P

α−→ P ′

P\L α−→ P ′\L(α 6∈L∪L)

Idling:
P 6 tick−→ P 6 τ−→
i(P )

tick−→ i(P )

P
tick−→ P ′

i(P )
tick−→ i(P ′)

P
α−→ P ′

i(P )
α−→ P ′

Table 2.7: Operational semantics for timedCCS (see [116]).

on action tick. Hence, between two global synchronizations on action tick all processes
proceed asynchronously by performing durationless actions.

The set of timedCCS processes is denoted with Et, ranged over by Et, Ft, Pt, Qt . . .
4.

Let Actt = L ∪ L̄ ∪ {τ} ∪ {tick} be the set of actions, ranged over by α, β, . . . and let
L ∪ {τ} be the actions ranged over by a, b, c, . . ..

The semantics is given in Table 2.7. Here, we omit to describe rules already presented
for standard CCS. tick.P lets one time unit pass. P + Q represents the nondeterministic
choice between the two processes P and Q; time passes when both P and Q are able
to perform a tick action and, in such a case, by performing tick, a configuration where
both the derivatives of the summands can still be chosen is reached. The parallel operator
P‖Q is the core operator for time. As a matter of fact both components must agree on
performing a tick action. i(P ) (idling) allows process P to wait indefinitely. At every
instant of time, if process P performs an action α then the whole system proceeds in this
state, while dropping the idling operator.

4In the rest of the thesis we will write P instead of Pt whenever it is clear from the context if we are
working in a timed setting or not.
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Example and facts By using timedCCS we are able to model temporal aspects of
systems. For instance, we can easily model timeout constructs. Let us assume n1 ≤ n2.
We define the following process:

TIME OUT(n1, n2, P, Q) = tickn1 .i(P ) + tickn2 .τ.Q

where P and Q are two processes. TIME OUT(n1, n2, P,Q) first performs a sequence of
n1 tick actions; then, the system may perform n2−n1 tick actions, unless P resolves the
choice by performing an action; instead if P does not do anything, after n2 time units, via
the execution of a τ action, the process is forced to act as Q.

2.3.3 Behavioral equivalence
In the literature, many different equivalence theories have been proposed, due to the huge
number of different settings that arise in the analysis of concurrent systems.

In general, it is interesting to study when two processes (terms) can be considered
equivalent, by abstracting from irrelevant aspects. What a relevant aspect is, mainly de-
pends on the way a process is used, as well as on the identification of the properties that
it should satisfy. Furthermore, certain equivalence notions may preserve some properties,
while others may not. Also, when considering Labeled Transition Systems, it is important
to consider the behavioral capacity of the system to react with the outside world, rather
than its internal state.

Here, we briefly introduce some well known equivalences among processes (for a
deeper discussion one can see, e.g., [26, 39, 40, 130]).

Within a computer security field, most of the security properties are based on the sim-
ple notion of traces: two processes are equivalent if they exactly show the same execution
sequences (called traces). In order to formally define traces, we define trace pre-order
(≤trace) and trace equivalence (≈trace) as follows.

Definition 2.18 For any P ∈ E the set T (P ) of traces associated with P is T (P ) =

{γ ∈ Act∗ | ∃P ′ : P
γ−→ P ′}, where Act∗ is the set of sequences of actions and,

let γ be the sequence a1a2 . . . an,
γ−→=

a1−→ a2−→ . . .
an−→ . Q can execute all traces of

P (notation P ≤trace Q) if and only if T (P ) ⊆ T (Q). P and Q are trace equivalent
(notation P ≈trace Q) if and only if P ≤trace Q and Q ≤trace P , i.e., if and only if
T (P ) = T (Q).

This equivalence, even though rather intuitive, is not completely satisfactory from sev-
eral points of view. Concurrent systems may present deadlocks, i.e., the system cannot
proceed and cannot perform its task. The above equivalence does not take into account
deadlocks, e.g., the following terms are considered equivalent under a trace equivalence
notion: a.0+a.b.0 and a.b.0. Actually, while the second process always reaches the dead-
lock state upon sequentially performing a and b, the first process could reach a deadlock
configuration not only performing actions a, b, but it can also perform only a, given the
presence of the non-deterministic choice.
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Another negative aspect about trace equivalence is that it does not take into account
the branching structure of the processes. For this reason, another notion of pre-order and
equivalence is introduced: the simulation. Let us consider the following example.

Example 2.3 Consider two vendor machines P and Q which behaviors can be repre-
sented by their LTSs (see Figure 2.3).

c

P Q

a

b c

a a

b

Figure 2.3: Example of two similar processes.

The first process “chooses” to perform a b or c action at the beginning of its computa-
tion, while the latter after performing an a action; if this action can influence the choice
of the following behavior of the process then it is reasonable to consider that the second
process has a more decisional power.

To underline the way in which the processes in Figure 2.3 differ, we introduce the notion
of simulation, according to which Q can simulate P , but the contrary does not hold.
Informally, saying that “Q simulates P ” means that Q’s behavior pattern is at least as rich
as that of P .

More formally, we can define the notion of strong bisimulation by following Park’s
definition [107].

Definition 2.19 Let (E , Act,→) be an LTS of concurrent processes over the set of ac-
tions Act, and let R be a binary relation over E . Then R is called strong simulation,
denoted by ≺, over (E , Act,→) if and only if, whenever (P,Q) ∈ R we have:

if P
a−→ P ′ then ∃ Q′ such that Q

a−→ Q′ and (P ′, Q′) ∈ R
Recalling that the converse R−1 of any binary relation R is the set of pairs (Q,P ) such
that (P, Q) are in R, we give the following definition.

Definition 2.20 A strong bisimulation is a relation R such that both R and R−1 are
strong simulations. We represent with ∼ the union of all the strong bisimulations.

Two processes P and Q are strong bisimilar if there exists a strong bisimulation R such
that (P, Q) ∈ R. The maximal strong bisimulation is ∼ which is the union of every
strong bisimulation. It is easy to check that this relation is still a strong bisimulation and
moreover is reflexive, symmetric and transitive.
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Strong bisimulation is the finest equivalence that is commonly accepted and enjoys
several good properties. First of all, this equivalence is also a congruence with respect to
all CCS operators.

Another important aspect of bisimulation is that it can be logically characterized.

Proposition 2.3 ([102]) If P and Q are finitely branching processes then

P ∼ Q if and only if ∀φ ∈ HML (P |= φ ⇔ Q |= φ).

This strong connection between modal logics and models of our concurrent languages is
one of the major advantages in considering interleaving semantics for concurrency. This
connection plays a central role in this thesis. As a matter of fact, by investigating on the
behavioral relations existing between given processes, we are able to synthesize secure
system by generating controller process by applying satisfiability procedure for temporal
logic.

Observational equivalence or weak bisimulation

Up to now, we do not have assumed a distinguished role for the τ action. This action has
been used to model an internal communication within the system, or an internal compu-
tation step, not visible to the outside world. We may want to abstract from those actions
when comparing two systems. Within a step-wise development strategy, this could be ap-
pealing, because we would be able to substitute more complex specifications with simpler
ones, without however affecting the overall visible behavior of the system. For example,
we can imagine to substitute a process with two others that perform the same visible task,
but omitting some internal communication. The point is that we cannot simply abstract
from the internal actions, since they also can affect the visible behavior of a system. Look
at the following figure:

QP

a b a

b

τ

Figure 2.4: Example of two not observationally bisimilar processes.

The processes P and Q cannot be consider equivalent, since the second performs an inter-
nal action by reaching a state where an action a is no longer possible. Thus, the non visible
behavior of the system, represented by the τ action, can modify its visible behavior. To
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compare this kind of processes, Milner, in [103], proposed the notion of observational
equivalence, or weak bisimulation.

Let us consider a 6= τ , â = a, and τ̂ = ε. Then, we use the notation P
τ

=⇒ P ′ in
order to denote that P and P ′ belongs to the reflexive and transitive closure of τ . The
same holds for notation P

ε
=⇒ P ′. Also, P

â⇒ P ′ if P
ε⇒ Pε

â→ P ′
ε

ε⇒ P ′ where Pε and
P ′

ε denote intermediate states5.
We can give the following definition:

Definition 2.21 Let (E , Act,→) be an LTS of concurrent processes over the set of ac-
tions Act, and let R be a binary relation over E . Then R is called weak simulation,
denoted by ¹, over (E , Act,→) if and only if, whenever (P,Q) ∈ R we have:

if P
a−→ P ′ then ∃ Q′ such that Q

a
=⇒ Q′ and (P ′, Q′) ∈ R

Recalling that the converse R−1 of any binary relation R is the set of pairs (Q,P ) such
that (P, Q) are in R, we give the following definition.

Definition 2.22 A weak bisimulation is a relation R such that both R and R−1 are weak
simulations, i.e., if for each (P,Q) ∈ R and for each a ∈ Act:

if P
a−→ P ′ then there exists Q′ : Q

a
=⇒ Q′ and (P ′, Q′) ∈ R.

if Q
a−→ Q′ then there exists P ′ : P

a
=⇒ P ′ and (P ′, Q′) ∈ R.

Two processes P and Q are weakly bisimilar if there exists a bisimulation R such that
(P,Q) ∈ R. The maximal weak bisimulation is ≈ which is the union of every weak
bisimulation. It is easy to check that this relation is still a weak bisimulation and moreover
is reflexive, symmetric and transitive. Weak bisimulation is a congruence with respect to
all CCS operators, except summation (+).

An important result proved by Milner is the following.

Proposition 2.4 ([103]) Every strong simulation is also a weak one.

Example 2.4 Let us consider the processes E, F and P of Fig. 2.5. F and P are weakly
bisimilar, while E and F (P ) are not.

Bisimulation is a very interesting equivalence. It is decidable in polynomial time for
finite-state processes, [70]. Moreover, proving that two processes P and Q are bisimilar
can be done by quite elegant proof techniques. Actually, it is sufficient to provide a
bisimulation R such that (P, Q) ∈ R.

5We can use the short notation P
ε=⇒ â−→ ε=⇒ P ′ when the intermediate states are not relevant.
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E

a c

b

F

a

b c

P

a

b c

ττ

τ τ

E 6≈ F ≈ P

Figure 2.5: Example of observational equivalence between different processes.

Observational equivalences in a timed setting

The definitions given in the previous section can be extended to deal with processes in a
timed setting. We follow the approach of [116].

Definition 2.23 Let (E , Act,→) be a LTS of concurrent processes and letR be a binary
relation over E . ThenR is called timed strong simulation≺t over (E , Act,→) if and only
if, whenever (P, Q) ∈ R, we have:

• if P
a−→ P ′ then there exists Q′ such that Q

a−→ Q′ and (P ′, Q′) ∈ R,

• if P
tick−→ P ′ then there exists Q′ such that Q

tick−→ Q′ and (P ′, Q′) ∈ R.

A timed strong bisimulation is a relationR such that bothR andR−1 are timed strong
simulations. We represent with ∼t the union of all the timed strong bisimulations.

For our purposes, it is also useful to consider those processes allowing time to pass, the
so-called weakly time alive processes.

Definition 2.24 A process P is directly weakly time alive if and only if P
tick
=⇒ 6, while it

is weakly time alive if and only if for all P ′ ∈ Der(P ), P ′ is directly weakly time alive.

Since P
α−→ P ′ implies Der(P ′) ⊆ Der(P ), it directly follows that if P is weakly time

alive, then any derived P ′ of P is weakly time alive as well. Moreover, it is worthwhile
noticing that the above property is preserved by the parallel composition.

We define the timed weak bisimulation relation as follows.

Definition 2.25 Let (E , Act,→) be a LTS of concurrent processes and letR be a binary
relation over E . Then R is called timed weak simulation ¹t over (E , Act,→) if and only
if, whenever (P, Q) ∈ R we have:

6We are no interested to the final state of the transition.
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• if P
a−→ P ′ then there exists Q′ such that Q

a
=⇒ Q′ and (P ′, Q′) ∈ R,

• if P
tick−→ P ′ then there exists Q′ such that Q

tick
=⇒ Q′ and (P ′, Q′) ∈ R.

A timed weak bisimulation is a relation R such that both R and R−1 are timed weak
simulations. We represent with ≈t the union of all the timed weak bisimulations.

Also, a proposition similar to Proposition 2.4 holds for the timed setting.

Characteristic formulas

Finite-state processes can be characterized by equational µ-calculus formulas with respect
to strong and weak bisimulation. This characterization can be derived from the greatest
fixpoint characterization of the bisimulation relation.

A characteristic formula is a formula in equational µ-calculus that completely char-
acterizes the behavior of a state-transition graph or of a state in a graph modulo a chosen
notion of behavioral relation.

Here, we recall the definition of the characteristic formula of a finite-state process, by
following the approach studied in [105].

Definition 2.26 Given a finite-state process P , its characteristic formula with respect to
strong bisimulation is given by the closed list DP ↓ ZP where for every P ′ ∈ Der(P ),
a ∈ Act:

ZP ′ =ν (
∧

a∈Act;P ′′:P ′ a→P ′′

〈a〉ZP ′′) ∧ (
∧

a∈Act

([a](
∨

P ′′:P ′ a→P ′′

ZP ′′)))

Strong bisimulation requires that every step of a process is matched by a corresponding
step of a bisimilar process. Considering weak bisimulation, this requirements is relaxed,
since internal actions of a process can be matched by zero or more internal steps of the
other process.

Let 〈〈a〉〉 be a weak version of the modality 〈a〉, introduced as abbreviation and de-
fined as follows (see [105]):

〈〈ε〉〉φ def
= µZ.φ ∨ 〈τ〉Z 〈〈a〉〉φ def

= 〈〈ε〉〉〈a〉〈〈ε〉〉φ
Now we are able to give the following definition.

Definition 2.27 Given a finite-state process P , its characteristic formula with respect to
weak bisimulation is given by the closed list DP ↓ ZP where for every P ′ ∈ Der(P ),
a ∈ Act:

ZP ′ =ν (
∧

a∈Act;P ′′:P ′ a→P ′′

〈〈â〉〉ZP ′′) ∧ (
∧

a∈Act

([a](
∨

P ′′:P ′ â⇒P ′′

ZP ′′)))

The following lemma characterizes the power of these formulas.
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Lemma 2.2 ([116]) Let P1 and P2 be two different finite-state processes. If φP2 is char-
acteristic for P2 then:

1. If P1 ≈ P2 then P1 |= φP2;

2. If P1 |= φP2 and P1 is finite-state then P1 ≈ P2.

Following a similar reasoning to the one in [105] for defining characteristic formulas with
respect to bisimulation, it is possible to define a characteristic formula for a given process
also with respect to strong and weak simulation. Let us start from strong simulation. Let
R be the strong simulation relation, let ZPi

and ZQi
be the variables associated to each

derivatives of P and Q, let DP ↓ ZP the list of equation, one for each derivative of P and
let MP (DP )(ZQ′) = {P ′ ∈ Der(P )|(P ′, Q′) ∈ R}. Then, two processes P and Q are
strongly similar, i.e.,

(P,Q) ∈ R
iff
∀a P

a−→ P ′ ∃Q′ Q
a−→ Q′ ∧ (P ′, Q′) ∈ R

iff [Definition of MP (ZQ′)]
∀a P

a−→ P ′ ∃Q′ Q
a−→ Q′ ∧ P ′ ∈ MP (ZQ′)

iff [Definition of
∨

]
∀a P

a−→ P ′ P ′ ∈ MP (
∨{ZQ′|Q a−→ Q′})

iff [Definition of [a]]
∀a P ∈ MP ([a]

∨
a∈Act{ZQ′|Q a−→ Q′})

iff [Definition of
∧

]
P ∈ MP (

∧
a∈Act[a]

∨
a∈Act{ZQ′|Q a−→ Q′})

iff [Definition of a−→]
P ∈ MP (

∧
a∈Act[a]

∨
a∈Act,Q′:Q a−→Q′ ZQ′)

For the weak simulation we can give the following definition.

Definition 2.28 Given a finite-state process P , its characteristic formula with respect to
strong and weak simulation is given by the closed list DP ↓ ZP where, respectively:

Strong for every P ′ ∈ Der(P ),

ZP ′ =ν

∧
a∈Act

([a](
∨

P ′′:P ′ a→P ′′

ZP ′′))

Weak for every P ′ ∈ Der(P ),

ZP ′ =ν

∧
a∈Act

([a](
∨

P ′′:P ′ â⇒P ′′

ZP ′′))
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As a matter of fact, we can follows the same reasoning made for strongly similar processes
by considering that (P,Q) are weakly similar, i.e., are in R, if and only if

∀a P
a−→ P ′ ∃Q′ Q

â
=⇒ Q′ ∧ (P ′, Q′) ∈ R

Following a similar reasoning made in [105], it is possible to prove that the following
proposition holds because of the definition of the characteristic formula does not depends
on Q.

Lemma 2.3 Let P and Q be a finite-state process and let φP,≺ be the characteristic for-
mula of the process P with respect to strong simulation then:

Q ≺ P ⇔ Q |= φP,≺

The same result holds also if we are considering the weak simulation as behavioral rela-
tion.

Proof : see Appendix A.2.

2

A timed setting It is possible to characterize also processes in a timed setting. Accord-
ing to the definition of timed strong and weak simulation and bisimulation given in the
previous section, it is possible to give the following definition.

Definition 2.29 ([105]) Given a finite state process P , its characteristic formula with
respect to timed strong bisimulation is given by the closed list DP ↓ ZP is defined by the
following equation for every P ′ ∈ Der(P ), α ∈ Actt:

ZP ′ =ν (
∧

α∈Actt;P ′′:P ′
α→P ′′

〈α〉ZP ′′) ∧ (
∧

α∈Actt

([α](
∨

P ′′:P ′ α→P ′′

ZP ′′)))

Note that the presence of tick actions does not influence the definition of the characteristic
formula. For that reason, definitions 2.27 and 2.28 do not change in the timed setting.

The following lemmas hold.

Lemma 2.4 ([116]) Let P1 and P2 be two different finite-state processes. If φP2 is char-
acteristic for P2 then:

1. If P1 ≈t P2 then P1 |= φP2;

2. If P1 |= φP2 and P1 is finite-state process then P1 ≈t P2.

Lemma 2.5 Let P and Q be a finite-state process and let φP,¹t be the characteristic
formula of the process P with respect to timed weak simulation then:

Q ¹t P ⇔ Q |= φP,¹t

Proof : Since the definition of the characteristic formula with respect to simulation
does not change by introducing the tick action, the proof of this lemma follows the same
step of the proof of Lemma 2.3 (see Appendix A.2).

2
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2.3.4 Modeling web services through CCS

Here, we give some basic notions of service-oriented computing, an emerging paradigm
that will serve to this thesis as one of the possible applications of the synthesis methodol-
ogy. Upon a brief description of the general concepts of so called Web Services, we will
show a useful mapping from their description languages to process algebra CCS.

Service-oriented computing is based on autonomous, platform-independent computa-
tional entities (called services) that can be described, published and categorized, and dy-
namically discovered and assembled for developing massively distributed, interoperable,
evolvable systems and applications. The widespread success that this paradigm achieves
today can be witnessed by the effort and resources that many large companies invest, to
promote service delivery on a variety of computing platforms, mostly through the Internet
in the form of Web Services. Tomorrow, the expectation is that there will be a plethora of
new services supporting, e.g., e-government, e-business, e-science. These will promote a
rapid evolution of the Information Society.

The World Wide Web Consortium, W3C for short, defines a Web Service as a software
system designed to support interoperable Machine to Machine interaction over a network.
Web Services are frequently just Web APIs that can be accessed over a network, such as
the Internet. They are executed on a remote system with respect to the system of the user
that invokes that service. Eventually, the user gets the result of such an execution.

To sum up, Web Services are computational entities distributed on the web, whose
main goal is to cooperate in order to work out simple or complex tasks.

Web Service languages: WSDL and BPEL

The W3C definition of Web Service encompasses many different systems, but in common
usage the term refers to clients and servers that communicate using XML (the Extensible
Markup Language) messages following the SOAP standard. SOAP is a protocol for
exchanging XML-based messages over computer networks.

XML is a general-purpose markup language. It is classified as an extensible language
because it allows its users to define their own tags. Its primary purpose is to facilitate
the sharing of structured data across different information systems, particularly via the
Internet. It is used both to encode documents and serialize data.

WSDL is XML-based language that provides a model for describing Web Services.
In particular, the format describes network services as a set of endpoints, or ports, operat-
ing on messages containing either document-oriented or procedure-oriented information.

The service is described, at an abstract level, in terms of the messages it sends and
receives and, at a concrete level, defines details about protocols and data format specifi-
cations implementing operations for that particular service.

The BPEL language [4] has been introduced to describe business processes which
manage the interaction of different Web Services, i.e., it describes how Web Services
can be composed and can cooperate one each other. Like WSDL, it is an XML-based
language. It is layered on top of WSDL and it defines how to coordinate the interactions
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Primitive activities
Receive Accepts a message through the invocation of a specified

operation by a partner
Reply Sends a message as a response to a request previously

accepted through a receive activity
Throw Used when the process needs to signal a fault explicitly
Invoke Used for invocation of a web service operation offered by

a partner
Link Defines a link of a flow; an activity within the flow can act

as the source of a link or the target of a link
Structured activities
Flow Provides concurrency and synchronization

(concurrent composition)
While Supports repeated execution of a specified iterative activity;

execution continues until the specified boolean condition no
longer holds true

Sequence Includes one or more activities to be executed sequentially,
in the order in which the appear under this activity

Pick Waits the appearance of one or more events and executes the
activity associated with the event that emerged. Messages
incoming or timer pass form the possible events

Switch Supports conditional behavior by enabling specification
of one or more case branches whose execution depends on a
specified condition, and an optional else
branch which gets executed if all cases fail their checks

Table 2.8: BPEL relevant basic and structured activities.

between services. In this sense, a BPEL process definition provides and/or uses one or
more WSDL interfaces, that are lists of message declarations and types, and it provides
the description of the behavior and interactions of the services. Indeed, in WSDL no
information is given on the sequence of messages sent and received by the service. This
is one of the reason because BPEL has been adopted to describe the interactions between
services.

In BPEL, specifications are classified as basic activities and structured activities (see
Table 2.8).

Basic activities are sending and reception of a message, e.g., receiving a request from
a client, replying to the request, and also assigning data from one container to another,
terminating the process, waiting for some period of time and doing nothing.

Structured activities define the control flow of the process. They include basic pro-
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gramming constructs as sequencing, loops and statements of various kind, e.g., :

sequencing : 〈sequence〉
activity1

activity2

. . .
〈\sequence〉

that expresses a sequence of activity that are done successively.

while loops : 〈while condition=“bool-expr”〉
activity

〈\while〉

that describes that a certain activity is done while a the condition is verified.

switch statements : 〈switch〉
〈case condition = . . .〉
〈\case〉
. . .
〈case condition = . . .〉
〈\case〉

〈\switch〉

that permits to chose which activity perform according to which case condition is verified.
BPEL also includes a structured activity called pick, that allows for nondeterminis-

tic selective communication:

〈pick〉
〈onMessage . . .〉
〈invoke . . . \〉〈\onMessage〉
〈onMessage . . .〉

〈invoke . . . \〉〈\onMessage〉
〈\pick〉

This construct is similar to the nondeterministic choice construct of process algebras.
All the activities in BPEL are modeled as instantaneous, i.e., they take no time. How-

ever, there are constructs modeling, e.g., the elapsing of time: the wait activity allows a
business process to specify a delay for a certain period of time or until a certain deadline
is reached.

From BPEL to timedCCS process algebra. The nature and features of BPEL sug-
gest the use of a process algebra to formalize it. In the literature, several efforts have been
done for relating BPEL with process algebras, see, e.g., [9, 31, 123]. Indeed, process
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algebras provide methodologies for the high-level description of interactions, communi-
cations, and synchronizations among processes, and this feature may be appealing for
specifying interactions between web services, or reasoning on the specified system.

Referring to [31, 123], we recall and adapt here an encoding between BPEL and
timedCCS.

The action notion of timedCCS finds its equivalent in the Receive, Reply and Invoke
basic activities of BPEL. As a matter of fact, an abstract action accompanied with a re-
ception in timedCCS may be expressed as a reception of a message using the receive
activity in BPEL. On the other hand, an emission in timedCCS corresponds in BPEL
to the asynchronous invoke activity. At the abstract level, an emission followed immedi-
ately by a reception matches the BPEL synchronous invoke, performing two interactions
(sending a request and receiving a response). On the other hand, the complementary re-
ception/emission in timedCCS is equivalent to a receive activity followed by a reply
one in BPEL. Synchronized actions are equivalent to BPEL interactions. Hence BPEL
services and timedCCS processes correspond to each other.

Moreover, a system is described using a main behavior made up of instantiated pro-
cesses composed in parallel and synchronizing together. As a matter of fact, the restriction
operator is used in timedCCS to make explicit the synchronization. Let us observe that
the main specification P1‖ . . . ‖Pn, that denotes a parallel composition, does not match
with a BPEL process. Indeed the correspondence is between each process P1 and BPEL
service. Accordingly, the architecture of the specification is preserved.

Regarding the dynamic constructs,the sequence activity in BPEL matches the prefix-
ing construct of timedCCS. The nondeterministic choice in timedCCS can be seen as
sequence and pick constructs in BPEL. In case of a deterministic choice described
as a switch construct, we should use the same timedCCS choice operator. An overall
activity is completed when the end of its behavior is reached (no explicit construct un-
like the termination denoted by 0 in timedCCS). Agent recursion, corresponding to the
repetition of their behavior, could be represented using a while activity. To sum up in
Table 2.9 there is the encoding proposed in [31, 123]. We stress that some notions that
are present in timedCCS do not directly appear in BPEL. This is the case of the τ ac-
tion and of the restriction operator. Moreover, the behavior of the idling operator matches
the BPEL wait activity. Furthermore, we can imagine that the names needed in the
timedCCS restriction set could be easily extracted from the WSDL files.

2.4 Compositional analysis

In this section we recall the theory on compositionality context developed in [77]. The
problem under consideration is the following:

What properties must the component of a combined system satisfy in order that the
overall system satisfies a given specification.
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BPEL timedCCS

receive,reply,invoke actions(reply/receive)
sequence sequence ·
pick and switch choice +
interacting Web services parallel composition ‖
interactions and assign restriction \
end of the main sequence or terminate termination 0
new instantiation or while recursive call
(internal) assign, (external) interactions τ -actions
wait idling

Table 2.9: Mapping between timedCCS and WSDL/BPEL (extension of [31, 123] with
time).

This kind of problem can be found, for instance, when a large system is developed. Since
the implementation cannot be immediately extracted from the specification, the imple-
mentation phase consists of a large number of small refinements of the initial specification
until, eventually, the implementation can be clearly identified.

In [77] the authors have developed a framework, based on the concept of context, in
order to study this problem. The component should satisfy properties with the following
features:

• properties should be as weak as possible, in order to not restrict too much the com-
ponent implementation.

• properties should be decomposable into properties of subcomponents, thereby al-
lowing to carry out independently the future refinement of the subcomponents.

2.4.1 Contexts
We present an operational theory of context in terms of action transducers as defined in
[77]. We show that all CCS operators can be described in this theory.

Definition 2.30 A context system C is a structure

C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m)

where Cm
n is a set of n-to-m contexts; Act is a set of actions; Act0 = Act ∪ {0} where

0 6∈ Act is a distinguished no-action symbol, Actk0 is a tuple of k actions ∈ Act0, and
→n,m⊆ Cm

n × (Actn0 × Actm0 )× Cm
n is the transduction-relation for the n-to-m contexts

satisfying (C,−→a ,
−→
0 , D) ∈→n,m if and only if C = D and −→a =

−→
0 for all contexts

C, D ∈ Cm
n .
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For (C,−→a ,
−→
b , C ′) ∈→n,m we usually write C

−→
b−→−→a C ′, leaving the indices of → to be

determine by the context, and we interpret this as: by consuming the action ā, the context
C can produce the actions

−→
b and change in C ′.

The operational semantics of contexts is consistent with the existing operational se-
mantics of processes introduced in Section 2.3.1. For instance, let C be a context ∈ Cm

n .
If there are n components Pi, i = 1 . . . n, and Pi

ai−→ P ′
i is a transition of the component

Pi, then C can consume the actions a1 . . . an while producing action b1 . . . bm and chang-

ing into C ′. Thus, the context C(P1, . . . , Pn) has the transition C(P1, . . . , Pn)
b1...bm−−−−−→a1 . . . an

C ′(P ′
1, . . . , P

′
n). Dually, any transition of C(P1, . . . , Pn) ought to be derivable in this

way.
In particular the set of 0-to-1 contexts C1

0 are just processes and C1
n are normal n-hole

contexts.

Example 2.5 CCS process algebra (see [100]) can be seen as a context system with the
following contexts: prefix a∗ ∈ C1

1 for a ∈ Act, restriction \L ∈ C1
1 where L ⊆ Act.

Choice and parallel context +, ‖ ∈ C1
2 ; inactiveOm

n ∈ Cm
n for any n and m, with Nil that

denotes the context O1
0. There are also the identity context In ∈ Cn

n and the projection
Πi

n ∈ C1
n. The semantics definition of CCS context is in Table 2.5.

Operations between contexts

Different operations between contexts can be defined. First of all, we show how the be-
havior of two contexts can be compared by recalling the following definition of simulation
and bisimulation equivalence.

Definition 2.31 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. Then a n-to-m

simulationR is a binary relation on Cm
n such that, whenever (C,D) ∈ R and−→a ∈ Actn0 ,−→

b ∈ Actm0 , then the following holds:

if C

−→
b−→−→a C ′, then D

−→
b−→−→a D′ for some D′ with (C ′, D′) ∈ R.

We write C ≺ D in case (C,D) ∈ R for some n-to-m simulation R.
A bisimulation is a relationR such that bothR andR−1 are simulations. We represent

with ∼ the union of all the bisimulations.

Composition. Contexts can be composed. C(P1, . . . , Pn) is a composed context. In
order to facilitate composition, it is allowed that contexts produce a number m of actions,
with respect to the consumption of n actions, with, possibly, n 6= m. Moreover, in order
to cater for asynchronous contexts, it is not required that all the components P1, . . . , Pn

contribute in a transition of the combined process C(P1, . . . , Pn).
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Inaction:

C

−→
0−→−→
0 C for all C

Prefix:

a∗
a−→−→
0 I1

Restriction:
\L

a−→a \L a 6∈ L

Choice:

(1) +
a−−−→

(a, 0) Π1
1 (2) +

a−−−→
(0, a) Π1

2 for a ∈ Act

Projection:

Πi
n

a−−→
i(a) Πi

n

Parallel:

(1) ‖
τ−−−→

(a, ā) ‖ (2) ‖
a−−−→

(a, 0) ‖ (3) ‖
a−−−→

(0, a) ‖
Identity:

In

ā−→−→a In

where i(a) ∈ Actn0 with the ith component being a and all the others being 0.

Table 2.10: Semantics of CCS context system.

Definition 2.32 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. A composition

on C is a dyadic operation ◦ on contexts such that whenever C ∈ Cm
n and D ∈ Cr

m then
D ◦ C ∈ Cr

n. Furthermore, the transductions for a context D ◦ C with C ∈ Cm
n and

D ∈ Cr
m are fully characterized by the following rule:

C

−→
b−→−→a C ′ D

−→c−→−→
b D′

D ◦ C

−→c−→−→a D′ ◦ C ′

As a particular case of composition of context we can consider a unary context C and
a process P and we may syntactically form the combined process C(P ) by substituting
the free variable (normally denoted by []) in C with P . Semantically, the behavior of
C(P ) is derivable from the ones of C and P . In particular, if P

a−→ P ′ and C has an

a-consuming transduction C
b−→a C ′, then the combined process C(P ) should have a b-

transition to C ′(P ′). Extending the transition relation for processes such that P
0−→ Q if
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and only if P = Q, we have the following rule:

C
b−→a C ′ P

a−→ P ′

C(P )
b−→ C ′(P ′)

(2.1)

In particular, whenever C
b−→
0 C ′, i.e., C has a transduction which does not involve any

consumption, we expect a transition C(P )
b−→ C ′(P ), with no effect on the inner process

P .

Product. In order to represent a partial specification of a system, i.e., a system with
n holes, we use an n-to-1 context C ∈ C1

n. To allow the expansion of the n holes to
be carried out independently, an independent combination of n contexts is defined as
D1 × . . .×Dn.

Definition 2.33 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. A product on

C is a dyadic operation × on contexts, such that whenever C ∈ Cm
n and D ∈ Cs

r then
C×D ∈ Cm+s

n+r . Furthermore, the transduction for a context C×D are fully characterized
by the following rule:

C

−→
b−→−→a C ′ D

−→
d−→−→c D′

C ×D

−→
b
−→
d−−→−→a −→c C ′ ×D′

where juxtaposition of vectors −→a = (a1, . . . , an) and −→c = (c1, . . . , cr) is the vector−→a −→c = (a1, . . . , an, c1, . . . , cr).

Feed-back. In order to deal with recursion, a construction of feed-back on contexts
is defined, such that whenever C ∈ Cn

n then C† ∈ Cn
0 with the behavioral equation

C† ∼ C ◦ C† being satisfied. Formally, we have the following definition.

Definition 2.34 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. A feed-back on

C is a unary operation † on contexts of C such that, whenever C ∈ Cn
n , then C ′ ∈ Cn

0 .
Furthermore, the transduction for a context C† with C ∈ Cn

n is fully characterized by the
rule:

C

−→
b−→−→a C ′ C† −→a−→ D

C†
−→
b−→ C ′ ◦D

For this operations on contexts the following result holds.

Theorem 2.3 ([77]) ∼ is preserved by composition, product and feed-back of context.

By following a reasoning similar to the one are made in [77] to prove the previous theo-
rem, it is possible to note that the same result holds also for ≺.

We conclude this section by recalling the following result:
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Associativity:

(A◦) E ◦ (D ◦ C) ∼ (E ◦D) ◦ C (A×) E × (D × C) ∼ (E ×D)× C

Distributivity:

(D×
◦ ) (D ◦ C)× (D′ ◦ C ′) ∼ (D ×D′) ◦ (C × C ′) (D†

×) (D × E)† ∼ D† × E†

Identity:

(I) Im ◦ C ∼ C ◦ In ∼ C

Zero:

(Z◦) Om
r ◦ Or

n ∼ Om
n (Z×) Om

n ×Os
r ∼ Om+r

n+s (Z†) (On
n)† ∼ (In)† ∼ Os

0

(ZZ) On
m ◦ C ◦ Or

l ∼ On
l (Z0) O0

0 × C ∼ C ×O0
0 ∼ C

Projection:

(Pd) Πi
n ∼ O0

i−1 × I1 ×O0
n−i (P×) (Im ×O0

s) ◦ (C ×D) ◦ (In ×Or
0) ∼ C

Fixedpoint:

(F ) C† ∼ C ◦ C†

Table 2.11: Laws between operations on contexts.

Theorem 2.4 ([77]) Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system with com-

position, product, and feed-back. Then, the equivalences of Table 2.11 are universally
valid.

2.4.2 Property transformer
According to the definition in [77] it is possible to define the property transformer func-
tion W for contexts, as in Table 2.12. The property transformer is introduced in order to
obtain the necessary and sufficient conditions that the unspecified part of the system has
to satisfy. The following theorem holds.

Theorem 2.5 ([77]) Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. Let φ ∈

simultaneous µ-calculus be a closed formula and let C ∈ Cm
n . Then, for any Q ∈ Cn

0 , the
following equivalence holds:

C(Q) |= φ ⇔ Q |= W(C, φ)
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W(C,T) = T
W(C,F) = F
W(C, X) = XC

W(C, φ1 ∧ φ2) = W(C, φ1) ∧W(C, φ2)
W(C, φ1 ∨ φ2) = W(C, φ1) ∨W(C, φ2)

W(C, 〈−→b 〉φ) =
∨

C

−→
b−→−→a D

〈−→a 〉W(D, φ)

W(C, [
−→
b ]φ) =

∧
C

−→
b−→−→a D

[−→a ]W(D, φ)

W(C, LET MAX D IN φ) = LET MAX DT IN W(C, φ)
W(C, LET MIN D IN φ) = LET MIN DT IN W(C, φ)

where
DT = {XC = W(C, φ)|C ∈ Cm

n , X = φ ∈ D}

Table 2.12: Definition of the property transformer W .

In Table 2.13 there are a number of useful properties of the transformer W w.r.t the oper-
ations between contexts.

Here we recall some examples in order to explain how the property transformer works.

Example 2.6 We want to find the weakest requirement on the process P such that the
combined process a∗ ◦ P presents an infinite a-computation. a∗ is a 1-to-1 context that
can perform an action a and then behaves as its internal component P . Exploiting Theo-
rem 2.5, where C = a∗ and φ = LET MAX X = 〈a〉X IN X we have that the requirement
comes as follows:

W(C, φ) =

= LET MAX

{
Xa∗ = W(C, 〈a〉X)
XI1 = W(I1, 〈a〉X)

}
INXa∗

= LET MAX

{
Xa∗ = 〈0〉XI1

XI1 = 〈a〉XI1

}
INXa∗

= LET MAX

{
Xa∗ = XI1

XI1 = 〈a〉XI1

}
INXa∗

= φ

where I1 is the identity function on a single action. Hence the component process P must
has an infinite a-computation.

Example 2.7 We consider again the formula that expresses the Chinese Wall policy given
in the Example 2.2. We consider a distributed system S = ‖(X1, X2). Hence we calculate
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Composition:
W(C ◦D, φ) ≡ W(D,W(C, φ))

Identity:
W(In, φ) ≡ φ

Monotonicity:
φ ⇒ ψ

W(C, φ) ⇒W(C, ψ)

Bisimilarity:
C ∼ D

W(C, φ) ≡ W(D,φ)

Feed-back:
T ⇒W(C, φ)

C† ∈ φ

Induction-Principle:
∀ψ ψ ⇒W(C, φ[ψ\X])

C† ∈ LETMAX X = φIN X

Table 2.13: Properties of the property transformer W .

φ′ = W(‖, φ). Let us consider the following abbreviation:

W ‖ = W(‖,W ) V ‖ = W(‖, V )
φ′1 = W(‖, φ1) φ′2 = W(‖, φ2)

Then we obtain φ′ = φ′1 ∨ φ′2 where φ′1 and φ′2 are the following:

φ′1 = LET MAXW ′ = [(0, openA)]W ′ ∧ [(openA, 0)]W ′

∧[(0, openB)]F ∧ [(openB, 0)]F)INW ′

φ′2 = LET MAXV ′ = [(0, openB)]V ′ ∧ [(openB, 0)]V ′

∧[(0, openA)]F ∧ [(openB, 0)]FINV ′

Partial evaluation function

In [3], Andersen deals with the same problem. He has proposed the partial model check-
ing mechanism in order to give a compositional method for proving properties of concur-
rent systems, i.e., the task of verifying an assertion for a composite process is decomposed
into verification tasks for the subprocesses. The partial evaluation function proposed by
Andersen is very similar to the property transformer we have recalled in the previous
section.

We decide to give here also the formulation of the partial evaluation function given
in [3] for several reasons. First of all, its notation is more readable than the other one.
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(D↓ Z)//t = (D//t)↓ Zt

ε//t = ε
(Z =σ φD)//t = ((Zs =σ φ//s)s∈Der(E))(D)//t
Z//t = Zt

φ1 ∧ φ2//s = (φ1//s) ∧ (φ2//s)
φ1 ∨ φ2//s = (φ1//s) ∨ (φ2//s)
[a]φ//s = [a](φ//s) ∧∧

s
a−→s′ φ//s′, if a 6= τ

〈a〉φ//s = 〈a〉(φ//s) ∨∨
s

a−→s′ φ//s′, if a 6= τ
[τ ]φ//s = [τ ](φ//s) ∧∧

s
τ−→s′ φ//s′ ∧∧

s
a−→s′ [a](φ //s′)

〈τ〉φ//s = 〈τ〉(φ//s) ∨∨
s

τ−→s′ φ//s′ ∨∨
s

a−→s′〈−→a 〉(φ//s′)
T//s = T
F//s = F

Table 2.14: Partial evaluation function for parallel operator.

Moreover, Andersen has studied system with only one unspecified component, and a
relevant part of this thesis is about systems with only one unspecified component. Also,
the use of partial model checking techniques allows to do model checking in an efficient
way. On the other hand, we will use compositionality theory through contexts when we
will deal with distributed systems, in which more than one component is unspecified.

The intuitive idea underlying the partial model checking is the following: proving that
P‖Q satisfies an equational µ-calculus formula φ is equivalent to prove that Q satisfies
a modified specification φ//P

, where //P is the partial evaluation function for the paral-
lel composition operator (see [3] or Table 2.14). The formula φ is specified by use the
equational µ-calculus. Hence, the behavior of a component is partially evaluated and the
requirements are changed in order to respect this evaluation. The partial model checking
function (also called partial evaluation function) for the parallel operator is given in Table
2.14.

In order to explain better how partial model checking function acts on a given equa-
tional µ-calculus formula, we show the following example.

Example 2.8 Let [τ ]φ be the given formula and let P‖Q be a process. We want to eval-
uate the formula [τ ]φ w.r.t. the ‖ operator and the process P . The formula [τ ]φ//P

is
satisfied by Q if the following three conditions hold at the same time:

• Q performs an action τ going in a state Q′ and P‖Q′ satisfies φ; this is taken into
account by the formula
[τ ](φ//P

).

• P performs an action τ going in a state P ′ and P ′‖Q satisfies φ, and this is consid-
ered by the conjunction ∧

P
τ−→P ′φ//P ′ , where every formula φ//P ′ takes into account

the behavior of Q in composition with a τ successor of P .
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(D↓ Z)//t = (D//t)↓ Zt

ε//t = ε
(Z =σ φD)//t = ((Zs =σ φ//s)s∈Der(E))(D)//t
Z//t = Zt

φ1 ∧ φ2//s = (φ1//s) ∧ (φ2//s)
φ1 ∨ φ2//s = (φ1//s) ∨ (φ2//s)
T//s = T
F//s = F
[a]φ//s = [a](φ//s) ∧∧

s
a−→s′ φ//s′, if a 6= τ

[τ ]φ//s = [τ ](φ//s) ∧∧
s

τ−→s′ φ//s′ ∧∧
s

a−→s′ [a](φ //s′)
〈a〉φ//s = 〈a〉(φ//s) ∨∨

s
a−→s′ φ//s′, if a 6= τ

〈τ〉φ//s = 〈τ〉(φ//s) ∨∨
s

τ−→s′ φ//s′ ∨∨
s

a−→s′〈−→a 〉(φ//s′)

[tick]φ//s =

{
[tick]φ//s′ s

tick−→ s′

T otw

〈tick〉φ//s =

{
〈tick〉φ//s′ s

tick−→ s′

F otw

Table 2.15: Partial evaluation function for parallel operator of timedCCS.

• the τ action is due to the performing of two complementary actions by the two
processes. So for every a-successor P ′ of P there is a formula [−→a ](φ//P ′ ).

In [3], the following lemma is given.

Lemma 2.6 Given a process P‖Q (where P is a finite-state process) and an equational
specification D ↓ Z we have:

P‖Q |= (D ↓ Z) iff Q |= (D ↓ X)//P

The reduced formula φ//P depends only on the formula φ and on process P . No informa-
tion is required on the process Q which can represent a possible enemy.

Remarkably, this function is exploited in [3] to perform model checking efficiently,
where both P and Q are specified. In our setting, the process Q will be not specified.
Thus, given a certain system P , it is possible to find the property that the enemy must
satisfy to avoid a successful attack on the system. It is worth noticing that partial model
checking function may be automatically derived from the semantics rules used to define
a language semantics. Thus, the proposed technique is very flexible. According to [3],
when φ is simple, i.e., it is of the form X , T, F, X1 ∧ . . . ∧ Xk ∧ [α1]Y1 ∧ . . . ∧ [αl]Yl,
X1 ∨ . . . ∨ Xk ∨ 〈α1〉Y1 ∨ . . . ∨ 〈αl〉Yl, then the size of φ//P is bounded by |φ| × |P |.
Referring to [2], any assertion can be transformed to an equivalent simple assertion in
linear time. Hence, we can conclude that the size of φ//P is polynomial in the size of φ
and P .
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It is important to note that a lemma similar to Lemma 2.6 holds for each CCS opera-
tors.

Partial model checking in a timed setting. According to [116], the partial model
checking function can be extended to deal with system in a timed setting, i.e., with re-
spect to timedCCS operators.

Referring to the semantics definition of timedCCS given in Table 2.7, we can note
that, by introducing the new tick action, the semantics definition of the choice operators
and of the parallel one have a new rule. Moreover, we have a new operator, the idling.

In Table 2.15, we recall the definition of the partial model checking function for par-
allel operator in a timed setting.
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Chapter 3

Run-time monitors and enforcement
techniques

In this chapter we present several techniques to enforce security properties that spec-
ify acceptable executions of programs. For example, a security property might concern
access control that specifies what operations individuals can perform on objects, infor-
mation flow that specifies what individuals can infer about objects from observing other
aspects of the system behavior, or availability that ensures that information or resources
are available when required.

According to [124], an enforcement mechanism, EM for short, is a mechanism that
works by monitoring a target system, that is the system we want to check, and terminating
any execution that is about to violate the security policy being enforced. Class of EM
includes security kernels, reference monitors, and other operating systems and hardware-
based enforcement mechanisms.

Here, we propose process algebra controller operators as mechanisms to enforce secu-
rity properties at run time. As a matter of fact, our framework is based on process algebra
(see Section 2.3), partial model checking (see Section 2.6) and open system paradigm
suggested for the modeling and the verification of system, and here extended to deal with
the synthesis problem (see Chapter 4). Using the open system approach we develop a
theory to enforce security properties. Our goal consists in protecting the system against
possible intruders. Indeed, we should check each process that could interact with the
system, considering it as an intruder or a malicious agent, before executing it. If it is not
possible, we have to find a way to guarantee that the whole system behaves correctly, even
when there are intruders.

The technical proofs of the results in this chapter are in the Appendix A.1.

3.1 Specification and verification of secure systems
Following the approach proposed in [85, 89], we describe a methodology for the for-
mal analysis of secure systems based on the concept of open systems and partial model
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Specification : E‖F‖P‖X

X is a malicious agent

E

P

F

Figure 3.1: Graphical representation of a possible open system scenario.

checking techniques.

3.1.1 Open systems analysis for security
As reminded in the introduction, a system is open if it has some unspecified components.
We want to make sure that the system with the unspecified component works properly,
e.g., by fulfilling a certain property. Thus, the intuitive idea underlying the verification of
an open system is the following:

An open system satisfies a property if and only if, whatever component is substituted to
the unspecified one, the whole system satisfies this property.

In the context of formal languages, an open system may be simply regarded as a term
of this language which may contain “holes” (or placeholders). These are unspecified
components. For instance E‖( ) and E‖F‖( ) may be considered as open systems.

Example 3.1 We suppose to have a system S in which three processes E, F and P work
in parallel. In order to be sure that S works as we expected we have to consider that a
possible malicious agent works in parallel with E, F and P as we can see in Fig. 3.1.
In this case the possible intruder, here denoted by X , is able to interact with the other
components in order to make the system unsafe. For that reason, instead to consider and
analyze the system S = E‖F‖P , we study S = E‖F‖P‖X and we require that S is safe
whatever the behavior of X is.

The main idea is that, when analyzing security-sensitive systems, neither the enemy’s
behavior nor the malicious users’ behavior should be fixed beforehand. A system should
be secure regardless of the behavior that the malicious users or intruders may have, which
is exactly a verification problem of open systems. According to [85, 89], the problem that
we want to study can be formalized as follows:

For every component X S‖X |= φ (3.1)
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Specification : S‖Y . X

X

Y

S

Y . X

Figure 3.2: A graphical representation of how a controller program Y works.

where X stands for a possible enemy, S is the system under examination and φ is a (tem-
poral) logic formula expressing the security property. It roughly states that the property
φ holds for the system S, regardless of the unspecified component which may possibly
interact with it. By using partial model checking we reduce such a verification problem
as in Formula (3.1) to a validity checking problem as follows:

∀X S‖X |= φ iff X |= φ//S
(3.2)

In this way we find the sufficient and necessary condition on X , expressed by the logical
formula φ//S

, such that the whole system S‖X satisfies φ if ad only if X satisfies φ//S
.

3.2 Process algebra controller operators
According to the Formula (3.2), in order to protect the system we should check each
process X before executing it. If it is not possible, we have to find a way to guarantee
that the whole system behaves correctly. For that reason we develop process algebra
controller operators that force the intruder to behave correctly, i.e., referring to Formula
(3.2), as prescribed by the formula φ//S

. We denote controller operators by Y . X , where
X is an unspecified component (target) and Y is a controller program. The controller
program is a process that controls X in order to guarantee that a given security property is
satisfied. Hence, we use controller operators in such a way the specification of the system
becomes:

∃Y ∀X s.t. S‖(Y . X) |= φ (3.3)

By partially evaluating φ with respect to S the Formula (3.3) is reduced as follows:

∃Y ∀X Y . X |= φ′ (3.4)

where φ′ = φ//S
.

In this way the behavior of the safe and known part of the system is considered directly
into the formula φ′. The problem described by the Formula (3.4) is about the target system
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X and the controller program Y . The controller program has to work only on X and does
not care about the rest of the system.

There exist other approaches that deal with the whole system of interest. Obviously,
our approach differs from those, since we are able to control only X . This is, of course,
an advantage because, often, not all the system needs to be checked, or it is simply not
convenient to check it as a whole. Also, some components could be trusted and one
would like to have a method to constrain only un-trusted ones (e.g., downloaded applets).
Similarly, it could not be possible to build a monitor for a whole distributed architecture,
while it could be possible to have it for some of its components.

Among the existing approaches, this work of thesis inherits from the one based on
the security automata of [19, 20, 124]. Security automata have been used to enforce a
target to behave correctly, thus actuating as controllers. We will recall this in the next
sections. Our work consists in doing the same by means of process algebras. This allows
compositionality and it permits to use existing results on process algebras to do analysis,
verification and synthesis of secure systems.

There is not a unique way to control a target system in order to enforce security prop-
erties. According to which properties the system has to satisfy and through the way it has
to satisfy them, it is possible to use a controller operator instead of another. Indeed, it is
possible to define several controller operators with different behaviors.

In the following we define some of them, by distinguishing between the controller op-
erators that enforce safety properties and information flow properties. We start by recall-
ing how security automata act as controllers, and then we map them at process algebras
level.

3.2.1 Modeling security automata by controller operators
In [124], a security automaton is defined as a triple (Q, q0, δ) whereQ is a set of states, q0

is the initial one and δ : Act×Q → 2Q, where Act is a set of the actions, is the transition
function. A security automaton processes a sequence a1a2 . . . of actions. At each step
only one action is considered and for each action we calculate the global state Q′ that is
the set of the possible states for the current action, i.e., if the automaton is checking the
action ai then Q′ =

⋃
q∈Q′ δ(ai, q). If the automaton can make a transition on a given

action, i.e., Q′ is not empty, then the target is allowed to perform that step. The state of
the automaton changes according to the transition rules. Otherwise, the target execution is
terminated. Thus, at every step, it verifies if the action is in the set of the possible actions
or not.

Successively, Ligatti et al. in [19, 20], starting from the definition of security automa-
ton given by Schneider in [124], have defined four different kinds of deterministic security
automata. To study their cost in term of time, we must consider how much the transition
function costs. Since the security automata we consider are deterministic (thus Q′ would
be either a singleton or empty), it is easy to understand that the cost in time is constant.
Thus, given a sequence of n actions, we need O(n) to check whether this sequence is
acceptable or not.
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In the next section we recall the semantics definition of security automata truncation,
suppression, insertion, edit, defined in [19, 20], and we will present how we model them
by process algebra operators.

Controller operators for enforcing safety properties

We follow the approach given in [19] to describe the behavior of security automata trun-
cation, suppression, insertion, edit.

These have a slightly different transition functions δ, and these differences account
for the variations in their expressive power. The exact specification of δ is part of the
definition of each automaton. We use σ to denote a sequence of actions, · for the empty
sequence and τ 1 to represent an internal action.

The execution of each different kind of security automata K, with K ∈ {T, S, I, E},
is specified by a labeled operational semantics. The basic single-step judgment has the
form (σ, q)

a−→K (σ′, q′) where σ′ and q′ denote, respectively, the actions sequence and
the state after that the automaton takes a single step, a denotes the action produced by
the automaton. The single-step judgment can be generalized to a multi-step judgment
(σ, q)

γ
=⇒K

2 (σ′, q′), where γ is a sequence of actions, as follows:

(σ, q)
.

=⇒K (σ, q)
(Reflex)

(σ, q)
a−→K (σ′′, q′′) (σ′′, q′′)

γ
=⇒K (σ′, q′)

(σ, q)
a;γ
=⇒K (σ′, q′)

(Trans)

where a; γ means that the action a and the sequence of actions γ are performed sequen-
tially.

We define four controller operators by showing their behavior thought semantics rules.
We also prove for each operator that its behavior mimics the behavior of one of the secu-
rity automata. Hence, in the following we recall the semantic definition of each security
automaton, we show the controller operator by which we model it and, finally, we prove
that they have the same behavior (for technical proofs see Appendix A.2).

Truncation automaton. The operational semantics definition of truncation automata
given in [19, 20] is the following:

if σ = a; σ′ and δ(a, q) = q′

(σ, q)
a−→T (σ′, q′) (T-Step)

1In [19] internal actions are denoted by ·. According to the standard notation of process algebras, we
use τ to denote an internal action.

2Consider a finite sequence of visible actions γ = a1 . . . an. Here we use ⇒ to denote automata
computations. Before we use the same notation for process algebra computations. The meaning of the
symbol will be clear from the context.
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otherwise
(σ, q)

τ−→T (·, q) (T-Stop)

We denote with E the controller program and with F the target. We work, without loss of
generality, under the additional assumption that E and F never perform the internal action
τ since truncation automata do not consider internal action. We define the controller
operators .T as follows:

E
a→ E ′ F

a→ F ′

E .T F
a→ E ′ .T F ′

This operator models the truncation automaton that is similar to Schneider’s automaton
(when considering only deterministic automata, e.g., see [19, 20]). Its semantics rule
states that if E and F perform the same action, thus such action is allowed. Hence, the
controlled process E .T F performs the action a, otherwise it halts. It is easy to note that
this operator is similar to the parallel operator of CSP process algebra (see [67]).

It is also important to note that this operator is a monitor. As a matter of fact it is
not able to enforce any security properties. On the other hand, it guarantees that a given
security property will not be violated.

We give some notation. The CCS choice operators on an arbitrary number of pro-
cesses is denoted as

∑
a∈Act. For instance, E =

∑
act∈{a,b,c} act.0 means that E =

a.0 + b.0 + c.0.

Proposition 3.1 Let

Eq =
∑

a∈Act

{
a.Eq′ iff δ(a, q) = q′

0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of a truncation automaton (Q, q0, δ) is also derivable from Eq .T F and vice-versa.

Example 3.2 Let us consider the system S = a.b.0 and consider the following equa-
tional definition φ = [a][c]F. It asserts that after every action a, an action c cannot be
performed. Let Act = {a, b, c, τ, ā, b̄, c̄} be the set of actions.

In this case, by using the operator .T , we are able to halt the execution of the system
if, after an action a, it tries to perform an action c.

Suppression automaton. It is defined as (Q, q0, δ, ω) where ω : Act × Q → {−, +}
indicates whether or not the action in question should be suppressed (-) or emitted (+). Its
semantics definition is the following:

if σ = a; σ′ and δ(a, q) = q′ and ω(a, q) = +

(σ, q)
a−→S (σ′, q′) (S-StepA)
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if σ = a; σ′ and δ(a, q) = q′ and ω(a, q) = −

(σ, q)
τ−→S (σ′, q′) (S-StepS)

otherwise
(σ, q)

τ−→S (·, q) (S-Stop)

We denote with E the controller program and with F the target. Again, we suppose that
E and F never perform the internal action τ since suppression automata do not consider
internal action. We define the controller operators .S as follows:

E
a→ E ′ F

a→ F ′

E .S F
a→ E ′ .S F ′

E
−a−→ E ′ F

a→ F ′

E .S F
τ→ E ′ .S F ′

where−a is a control action not in Act (so it does not admit a complementary action). As
for the truncation automaton, if F performs the same action performed by E also E .S F
performs it. On the contrary, if F performs an action a that E does not perform and E
performs the control action −a then E .S F performs the action τ that suppresses the
action a, i.e., a becomes not visible from external observation. Otherwise, E .S F halts.

Proposition 3.2 Let Eq,ω =

∑
a∈Act





a.Eq′,ω iff ω(a, q) = + and δ(a, q) = q′

−a.Eq′,ω iff ω(a, q) = − and δ(a, q) = q′

0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of a suppression automaton (Q, q0, δ, ω) is also derivable from Eq,ω .S F and vice-versa.

Example 3.3 Referring to the Example 3.2, we note that by using the operator .S we are
able to check if the system tries to perform an action c after the execution of an action a
and, consequently, it suppresses c.

Insertion automaton. It is defined as (Q, q0, δ, γ) where γ : Act×Q → Act×Q that
specifies the insertion of an action into the sequence of actions of the program.

In [19, 20], the automaton inserts a finite sequence of actions instead of only one ac-
tion. By using γ, it controls if a wrong action is performed. If it happens, it inserts a
finite sequence of actions, hence a finite number of intermediate states. Without loss of
generality, here we consider that it inserts only one action. In this way we openly consider
all the intermediate states. Note that the domain of γ is disjoint from the domain of δ, in
order to have a deterministic automaton:

if σ = a; σ′ and δ(a, q) = q′

(σ, q)
a−→I (σ′, q′) (I-Step)
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if σ = a; σ′ and γ(a, q) = (b, q′)

(σ, q)
b−→I (σ, q′) (I-Ins)

otherwise
(σ, q)

τ−→I (·, q) (I-Stop)

We denote with E the controller program and with F the target. E and F never perform
the internal action τ since the insertion automata do not consider internal action. We
define the controller operators .I as follows:

E
a→ E ′ F

a→ F ′

E .I F
a→ E ′ .I F ′

E 6 a→ E ′ E
+a.b−→ E ′ F

a→ F ′

E .I F
b→ E ′ .I F

where +a is an action not in Act. If F performs an action a that also E can perform, the
whole system makes this action. If F performs an action a that E does not perform and
E detects it by performing a control action +a followed by an action b, then the whole
system performs b. It is possible to note that in the description of insertion automata in
[19] the domains of γ and δ are disjoint. In our case, this is guaranteed by the premise
of the second rule, i.e., E 6 a−→ E ′, E

+a.b−→ E ′. In fact, if a pair (a, q) is not in the
domain of δ and it is in the domain of γ, it means that, in the state q, a actions cannot be
performed. Thus, in order to change state, an action different from a must be performed.
It is important to note that the controller is able to insert new actions, but it is not able to
suppress any action performed by F .

Proposition 3.3 Let Eq,γ =

∑
a∈Act





a.Eq′,γ iff δ(a, q)
+a.b.Eq′,γ iff γ(a, q) = (b, q′)
0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of an insertion automaton (Q, q0, δ, γ) is also derivable from Eq,γ .I F and vice-versa.

Example 3.4 Let us consider again the same system and the same property of the Exam-
ple 3.2. Applying the operator .I we obtain the same behavior of the .T operator, because
there is no action to insert. The only possibility is to halt the system execution.

Edit automaton. It is defined as (Q, q0, δ, γ, ω), where γ : Act × Q → Act × Q
specifies the insertion of a finite sequence of actions into the program’s actions sequence
and ω : Act × Q → {−, +} indicates whether or not the action in question should be
suppressed (-) or emitted (+). ω and δ have the same domain, while the domain of γ is
disjoint from the domain of δ, in order to have a deterministic automaton:
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if σ = a; σ′ and δ(a, q) = q′ and ω(a, q) = +

(σ, q)
a−→E (σ′, q′) (E-StepA)

if σ = a; σ′ and δ(a, q) = q′ and ω(a, q) = −

(σ, q)
τ−→E (σ′, q′) (E-StepS)

if σ = a; σ′ and γ(a, q) = (b, q′)

(σ, q)
b−→E (σ, q′) (E-Ins)

otherwise
(σ, q)

τ−→E (·, q) (E-Stop)

We denote with E the controller program and with F the target. E and F never perform
the internal action τ since the edit automata do not consider internal action. In order to
do insertion and suppression together, we define the following controller operator .E . Its
rules are the union of the rules of the .S and .I .

E
a→ E ′ F

a→ F ′

E .E F
a→ E ′ .E F ′

E
−a−→ E ′ F

a→ F ′

E .E F
τ→ E ′ .E F ′

E 6 a→ E ′ E
+a.b−→ E ′ F

a−→ F ′

E .E F
b−→ E ′ .E F

This operator combines the power of the previous ones.

Proposition 3.4 Let

Eq,γ,ω =
∑

a∈Act





a.Eq′,γ,ω iff δ(a, q) = q′ and ω(a, q) = +
−a.Eq′,γ,ω iff δ(a, q) = q′ and ω(a, q) = −
+a.b.Eq′,γ,ω iff γ(a, q) = (b, q′)
0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of an edit automaton (Q, q0, δ, γ, ω) is also derivable from Eq,γ,ω .E F and vice-versa.

It is important to note that we have introduced the control action −a in the semantics of
.S and the control action +a in the semantics of .I in order to find operators that are as
similar as possible to suppression and insertion automata, respectively.

Example 3.5 Let us consider again the same system and the same property of the Exam-
ple 3.2. Applying the operator .E we obtain the same behavior of the .S operator. Hence,
the action c is suppressed and the execution ends correctly.
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Timed setting

Note that as far as safety properties are concerned, Section 3.2.1, a timed setting does not
influence the semantics definition of the operators .K. As a matter of fact, the tick action
will be performed when both the controller program and the target agree to perform it.
Hence

E
tick−→ E ′ F

tick−→ F ′

E .K F
tick−→ E ′ .K F ′

It is easy to note that it is exactly the first rule of all the four operators in which, instead
of a generic action a ∈ Act we consider the action tick. Since, when we are working in
a timed setting we consider Actt = Act ∪ {tick} as set of actions, as we have defined in
Section 2.3.2, the semantics definition of the four operators does not change.

3.2.2 Controller operators for enforcing information flow properties
Information flow properties are a particular class of security properties which aim at con-
trolling the way information may flow among different entities. They have been first
proposed as a mean to ensure confidentiality, in particular to verify if access control poli-
cies are sufficient to guarantee the secrecy of (possibly classified) information. Indeed,
even if access control is a well studied technique for system security, it is not trivial to
find an access control policy which guarantees that no information leak is possible.

In the literature, there are many different security definitions reminiscent of the in-
formation flow idea, each based on some system model (see [49, 51, 81, 121]). Here, we
consider the notion of Bisimulation Non Deducibility on Compositions, BNDC for short,
proposed in [49, 51] as a generalization of the classical idea of Non-Interference [60] to
nondeterministic systems: Low level users cannot infer the behavior of high level users
from the system because for low level users the system appears always the same.

In the following we recall the definition of non interference as BNDC property pro-
posed by Focardi and Gorrieri [48, 49, 50, 51]. Moreover we recall the analysis method
for this class of property based on open system paradigm proposed by Martinelli in
[52, 89, 116].

Information flow properties

To describe information flow properties, we can consider two users, High and Low, in-
teracting with the same computer system. We wonder if there is any flow of information
from High to Low.

In [48, 49, 50, 51], Focardi and Gorrieri propose a family of information flow secu-
rity properties called Non Deducibility on Compositions (NDC, for short). Intuitively, a
system is NDC if, by interacting with every possible high level user, this always appears
the same to low level users. No information at all can be deduced by low level users.

The underlying idea of NDC for ensuring non interference between high users and
low users is that the system behavior perceived by low users must be invariant with respect
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to the composition with every high user. Hence, there is no possibility of establishing a
communication (i.e., sending information); intuitively, it is like a medium where the same
signal is always present. In terms of a generic language for the description of systems,
where ‖ stands for the composition operator and ≡ for the equivalence relation, we have:

∀Π ∈ High users E‖Π ≡ E with respect to Low users

This property can be instantiated by assuming different notions of composition and equiv-
alence. The method presented in [116] is suitable to manage various composition opera-
tors and equivalence criteria. In terms of CCS parallel composition operator and bisimu-
lation equivalence, we have the definition of BNDC (Bisimulation based Non Deducibil-
ity on Compositions).

Definition 3.1 Let EH = {Π | Sort(Π) ⊆ H ∪ {τ}} be the set of High users. E ∈
BNDC if and only if ∀Π ∈ EH we have (E‖Π)\H ≈ E\H .

Let us show how BNDC works through some simple examples.

Example 3.6 The simplest case of flawed process is E = h.l̄.0 where h is high and l is
low. The process E accepts the high level input h and, only after such an input is receives,
it gives l̄ as output. As a consequence, a low level user knows that h has been performed by
just observing the output l̄. This system is not BNDC. It is sufficient to consider Π = h̄.0
and observe that (E‖Π)\ ≈ l̄.0 while E\H ≈ 0. Thus, E\H 6≈ (E‖Π)\H . E can be
made secure by letting l̄ be also executed independently from h as in E ′ = h.l̄.0 + l̄.0. It
is easy to prove that E ′ is BNDC.

By using the characteristic formula φ of the process E\H (see Section 2.3), we may
express information flow property in a logical way as follows:

E ∈ BNDC if and only if ∀Π ∈ EH (E‖Π)\H |= φ (3.5)

By using the partial model checking function, the property 3.5 turns out to be equivalent
to:

E ∈ BNDC if and only if ∀Π ∈ EH Π |= φ′ (3.6)

where φ′ is the formula obtained from φ after the partial evaluation with respect to the
process E (and the restriction operator). Thus, due to the decidability of the validity
problem for µ-calculus we have that BNDC for finite-state processes is decidable [52,
89].

Enforcing BNDC properties

The open systens paradigm is used also for enforcing BNDC properties. In this case, the
unspecified component will be the high level component.

According to Statement 3.5, we would like to guarantee that:

∀X(S‖X)\H |= φ (3.7)
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where S is the system, X is the unspecified component, e.g., a downloaded mobile
agent, and H = Sort(X).

We provide a framework for defining new operators, say Y . X , that can permit to
control the behavior of the component X , given the behavior of a controller program Y .

∃Y ∀X S‖(Y . X)\H |= φ (3.8)

We use the partial model checking approach and we focus on the properties that the con-
troller program Y has to enforce.

∃Y ∀X Y . X |= φS,\H (3.9)

Examples of controller operators Let E and F be two processes, and let a ∈ Act be
an action. We define a new operator .′ (controller operator) by these two rules:

E
a→ E ′ F

a→ F ′

E .′ F
a→ E ′ .′ F ′

E
a→ E ′

E .′ F
a→ E ′ .′ F

(3.10)

This operator forces the system to make always the right action also if we do not know
what action the agent F is going to perform.

We can define other controller operators as follows.
The controller .′′ have two rules:

E
a→ E ′ F

a→ F ′

E .′′ F a→ E ′ .′′ F ′
E

a→ E ′ F
a

6→ F ′

E .′′ F a→ E ′ .′′ F
(3.11)

This controller is the most complete: If F does not have a correct behavior (i.e., , it does
not perform the right action a), the process E takes care of it, and performs that action.
Thus, the system maintains a correct behavior.

Timed setting

Now, we propose controller operators for enforcing information flow in a timed setting.
The introduction of the elapsing of time presents some difficulties when enforcing this
kind of properties.

Let tBNDC be the Bisimulation based Non Deducibility on Compositions property
in a timed setting (see [49]).

In the timedCCS model we cannot consider all the high processes for the interaction
with the system. Indeed, we have to restrict the set of the admissible High users. We
consider weakly time alive processes that can perform only action in H ∪ {τ, tick}. and
we denote by EH the set of such processes.

This restriction is made because a process Π that is not weakly time alive may pre-
vent time from elapsing when composed in parallel with some system E. Indeed, in a
compound process, time can pass if and only if all components let it pass. Hence, a high
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user which is not weakly time alive could block the time flow also for low users and we
certainly want to avoid this unrealistic (and undesirable) possibility. The tBNDC property
in timed CCS can be thus defined as follows.

Definition 3.2 E ∈ tBNDC if and only if ∀Π ∈ EH we have (E‖Π)\H ≈t E\H .

Due to the presence of the universal quantification, tBNDC is not very easy to check.
Let H be the set of high users that are composed with the system when it is checked

(as done in [89]). Under certain constraints on the set H, we can provide a method for
reducing the verification of tBNDCH membership to a validity problem in equational
µ−calculus, where by tBNDCH we denoted tBNDC for processes in H,

Definition 3.3 E ∈ tBNDCH if and only if

∀Π ∈ H (E‖Π)\H ≈t E\H
By using the characteristic formula for ≈t of E\H , we obtain the following characteriza-
tion: 3

E ∈ tBNDCH if and only if ∀Π ∈ H (E‖Π)\H |= φ≈t,E\H (3.12)

Now, we can apply the partial evaluation function with respect to E, \H to the formula
φ≈t,E\H by getting a formula φ′. Then the previous equation is equivalent to check that
every process inH satisfies φ′. Indeed, the behavior of E has been evaluated and encoded
in the formula φ′. Thus:

E ∈ tBNDCH if and only if ∀Π ∈ H Π |= φ′

We expect to have decidability results only if we restrict ourselves to finite-state systems
(see [86]). Let fs = {E|Der(E) is finite} be the set of finite state processes. We also
require that the set L of visible actions is finite. If the membership in H can be defined
by a formula φ′′ then we obtain that the previous problem is equivalent to:

E ∈ tBNDCH if and only if ∀Π ∈ H Π |= φ′′ ⇒ φ′

The validity problem for this logic may be shown to be decidable for finite-state processes
by using the same proof techniques of [128].

Enforcing tBNDC properties. Let E and F be two processes. We define the con-
troller operator .′ as follows.

E
α→ E ′ F

α→ F ′

E .′ F
α→ E ′ .′ F ′ α 6= τ

E
a→ E ′

E .′ F
a→ E ′ .′ F

F
τ→ F ′

E .′ F
τ→ E .′ F ′

This operator forces the system to make always the right action also if we do not know
what action F is going to perform. Whereas we are interested in the observational equiv-
alence between processes, F can also perform the action τ . Under this hypothesis and

3Actually, this is true only if we consider finite-state processes.
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the additional one that F is weakly time alive, this controller operator is able to wait an
action of a possible intruder, then, after that timeout expires, performs the right action. It
is possible to note that .′ is tick-deterministic (the action tick can be performed only if
the first rule can be applied). Another controller operator .′′ could be defined as follows.

E
α→ E ′ F

α→ F ′

E .′′ F
α→ E ′ .′′ F ′ α 6= τ

E
a→ E ′ F

a

6→ F ′

E .′′ F
a→ E ′ .′′ F

F
τ→ F ′

E .′′ F
τ→ E .′′ F ′

This operator looks at the action performed by F and, if E and F perform the same action
α, then the whole system performs it. On the contrary, the whole system performs the
action performed by E. The τ action can be always performed by both of the processes.
This controller is tick-deterministic.

3.2.3 Controller contexts for enforcing security properties in a dis-
tributed system

Following the same approach based on open system here we present how and when it
is possible to enforce security properties in a distributed system by using centralized/
decentralized monitors. As a matter of fact we consider a partially specified systems in
which more than one component is unspecified. We model it as a context in C1

n where n
is the number of unspecified components of the system.

We would like to guarantee that a given partially specified system is secure, i.e., satisfy
a given property φ.

∀X1, . . . , Xn C(X1, . . . , Xn) |= φ (3.13)

We introduce controller context, denoted by . ∈ Cn
2n, that forces the system to behave

correctly, i.e., as prescribed by φ. It acts on two components, in particular it combines a
controller program Y ∈ Cn

0 and an unknown component X ∈ Cn
0 in such a way Y forces

X to behave correctly.

3.2.4 Controller context for safety properties
It is possible to give several semantics definitions for .. It depends on which kind of
properties we are going to enforce or in which way we want to enforce them (e.g., [92, 93,
98]). Here we aim to define controller contexts for enforcing safety properties. Hence,
referring to the Section 3.2.1, we present a possible variant of the semantics definition
of controller operator .K in order to deal with contexts. For simplicity we denote the
controller contexts that we define below with the same symbols, .T , .S , .I and .E , used
in Section 3.2.1.

We define the controller context .T (Y, X) by the following semantics rule:

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.T (Y, X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .T (Y ′, X ′)

(3.14)
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This means that .T works in such a way if Y and X do not perform the same actions than
the execution halts.

The semantics definition of controller contexts .S(Y,X) is the following:

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.S(Y,X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .S(Y ′, X ′)

Y
−→−a−→ Y ′ X

−→a−→ X ′

.S(Y, X)

−→τ−−−−−→
(−→−a,−→a ) .S(Y ′, X ′)

(3.15)

where−→−a is a control vector of actions not in Actn0 (so it does not admit a complementary
action). As for .T (Y, X), if X performs the same vector of actions performed by T also
.S(Y, X) performs it. On the contrary, if X performs −→a that Y does not perform and Y
performs the control vector of actions −→−a then .S(Y,X) performs −→τ that suppresses −→a ,
i.e., −→a becomes not visible from external observation. Otherwise, .S(Y, X) halts.

We define the controller context .I as follows:

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.I(Y, X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .I(Y ′, X ′)

Y 6
−→a−→ Y ′ Y

−−→
+a.b−→ Y ′ X

−→a−→ X ′

.I(Y,X)

−→
b−−−−−−→

(
−−→
+a.b,−→a ) .I(Y ′, X ′)

(3.16)

where
−−→
+a.b is a vector of action not in Actn0 . We use this notation because we want to

consider as a unique step that before performing the vector of action
−→
b , Y performs a

control vector of action −→+a. Informally, the semantics of .I means that, if X performs an
action −→a that also Y performs, the whole system makes this action. On the contrary, if Y
detects that X is going to perform a forbidden action by performing a control action +a
followed by an action b, then the whole system performs b.

The last controller context we define is .E(Y, X). Its rules are the union of the rules
of the .S(Y,X) and .I(Y, X).

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.E(Y, X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .E(Y ′, X ′)

Y
−→−a−→ Y ′ X

−→a−→ X ′

.E(Y,X)

−→τ−−−−−→
(−→−a,−→a ) .E(Y ′, X ′)

(3.17)

Y 6
−→a−→ Y ′ Y

−−→
+a.b−→ Y ′ X

−→a−→ X ′

.E(Y, X)

−→
b−−−−−−→

(
−−→
+a.b,−→a ) .E(Y ′, X ′)

This controller context combines the power of the two previous ones.

Two approaches for enforcing safety properties in a distributed system

A controller context can be applied in several ways in order to solve the problem in For-
mula (3.13). Here we present two possible approaches: A centralized and a decentralized
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method. In the following we use the symbol . in order to represent a generic controller
contexts. As a matter of fact, the following theory is not related to a particular controller
context.

Centralized method. We use a unique controller program Y that enforces φ by moni-
toring a unique unspecified component obtained by considering the product of all unspec-
ified components of the systems. In this case the Formula (3.13) becomes:

∃Y ∀X1, . . . , Xn C(.(Y, X1 × . . .×Xn)) |= φ (3.18)

where, being each Xi is in C1
0 , X1 × . . . × Xn is in Cn

0 . First of all, by applying the
property transformer function, we find the weakest condition the unknown component
has to satisfy in order to guarantee the whole system satisfies φ. Hence the problem of
Formula (3.18) becomes as follows:

∃Y ∀X1, . . . , Xn . (Y, X1 × . . .×Xn) |= φ′ (3.19)

where φ′ = W(C, φ).

Decentralized method. We use several controller programs Yi, one for each unspecified
components Xi of the system. Hence our main problem can be formalized as follows:

∃Y1, . . . , Yn ∀X1, . . . , Xn C(.(Y1, X1), . . . , .(Yn, Xn)) |= φ (3.20)

In this case all Yi are processes. By exploiting the property transformer on context, we
can reduce the previous problem as follows:

∃Y1, . . . , Yn ∀X1, . . . , Xn . (Y1, X1)× . . .× .(Yn, Xn) |= W(C, φ) (3.21)

In this scenario we wonder if exists a decomposition of the formulaW(C, φ) as a product
formula of the form:

φ1 × . . .× φn

where φ1, . . . , φn are closed, unary formulas. Whenever such decomposition exists we
require that each .(Yi, Xi) satisfies a formula φi of the product. We recall that for a
product formula φ, we write |= φ if φ is satisfied by all n-ary context system. In this case
φ is valid. Moreover |=× φ if φ is satisfied by all n-product process P1 × . . .× Pn of any
context system. In this case φ is weakly valid.

According to [77] there is not a unique product formula φ1 × . . . × φn such that
|=× φ1 × . . .× φn ⇔W(C, φ).

Whenever φ is a finite formula, i.e., it is neither LET MAX nor LET MIN, there exists a
finite decomposition, i.e., a finite collection of product formulae 〈φi

1× . . .×φi
n〉i∈I , where

I is and index set, such that

|=×
∨
i∈I

φi
1 × . . .× φi

n ⇔W(C, φ)

Without loss of generality, it is possible to consider that the decomposition is made in
dyadic formula.
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(i) |=× T ⇔ T×T
(ii) |=× F ⇔ T× F ∨ F× F
(iii) |=× φ1 × ψ1 ∧ φ2 × ψ2 ⇔ (φ1 ∧ φ2)× (ψ1 ∧ ψ2)
(iv) |=× 〈(a, b)〉(φ× ψ) ⇔ (〈a〉φ)× (〈b〉ψ)
(v) |=× [(a, b)](

∨
i φ

i × ψi) ⇔ ∨
i([a]φi)× ([b]ψi)

where in (v)
∨

i φ
i × ψi is assumed to be saturated.

Table 3.1: Weak equivalences for decomposition of properties (see [77]).

Definition 3.4 A formula φ is said to be a disjunctive product formula if it has the form

φ =
∨
i∈I

ψi × ϕi

for some finite collection 〈ψi〉i∈I and 〈ϕi〉i∈I of closed, monadic formulae, i.e., there are
not product of other formulae.

Definition 3.5 A disjunctive product formula,
∨

i∈I ψi × ϕi is said to be saturated, pro-
vided for any product formula ψ × ϕ

|= ψ × ϕ ⇒
∨
i∈I

ψi × ϕi

is equivalent to
|= ψ ⇒ ψi and |= ϕ ⇒ ϕi for some i ∈ I

It is important to note that every general disjunctive product formula can be saturated (see
[77]). In Table 3.1 there are recalled weak equivalences for decomposing properties.

The following theorem holds.

Theorem 3.1 ([77]) Let φ be a finite formula. Then there exists a weakly equivalent
disjunctive product formula

∨
i∈I ψi × ϕi such that

|=× φ ⇔
∨
i∈I

ψi × ϕi

Hence, whenever φ is a finite formula there exists a disjunctive product formula
∨

i∈I ψi
1×

. . .× ψi
n, that is weakly equivalent to φ. In this way our problem becomes the following:

∃Y1, . . . , Yn ∀X1, . . . , Xn . (Y1, X1)× . . .× .(Yn, Xn) |=×
∨
i∈I

ψi
1 × . . .× ψi

n (3.22)
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We have a disjunction of product formulas. In order to solve our problem it is sufficient
to enforce one of the product formula fo the disjunction. Indeed we reduce the problem
in Formula (3.22) as follows:

∃Y1, . . . , Yn ∀X1, . . . , Xn . (Y1, X1)× . . .× .(Yn, Xn) |=× ψk
1 × . . .× ψk

n (3.23)

Since we can consider that we have a saturated formula, we can solve the problem above
by solving n problems like the following one:

∃Yj ∀Xj . (Yj, Xj) |= ψk
j

3.3 Online path model checking
In this section we propose another technique to monitor security properties at run-time
that is not based on the open system paradigm approach. As a matter of fact, starting
from the idea of model checking a path, proposed by Markey and Schnoebelen in [83]
for solving the model checking problem on a single path instead on the whole model, we
present a technique for monitoring security properties.

Our goal is to control system at run-time. In particular we define controller operator
able to control system and enforce several security properties. In this scenario we de-
scribe another approach based on the idea that only a trace of execution of the target X is
monitored. Hence it is possible to directly check the execution trace by using the partial
model checking. We call this method Online path model checking (OPMC for short).

Let X be the target and φ the security property we would like to enforce. The main
idea is that, if the formula obtained partially evaluating φ with respect to the action per-
formed by X is equivalent to false we halt the execution. This halt condition comes
directly from the partial model checking function with respect to prefix operators (see
Table 3.2). As a matter of fact, it means that the target is going to perform an action that
violates the property.

3.3.1 Partial model checking for Online Path Model Checking
The scenario we consider is the same described at the beginning of the chapter. We have
a system S and a logic formula φ expressed in equational µ-calculus. Let X be one
component that may be dynamically changed (e.g., a downloaded mobile agent). We say
that the system S‖X enjoys φ if and only if for every behavior of the component X , the
behavior of the system S enjoys that security property, i.e.,

∀X (S‖X) |= φ (3.24)

First of all, by applying partial model checking, we reduce the problem in Formula (3.24)
as follows:

∀X X |= φ′ (3.25)
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where φ′ = φ//S
. We assume to not know anything about X a priori. We want to detect

if X is going to perform an action that violates φ. On the contrary with respect to the
previous approach (see Section 3.2) we do not check all the possible behavior of the
target X but we consider only the trace execution (path) we can observe at run-time. In
order to do that we consider the following definition.

Definition 3.6 An execution u = a0a1 . . . 4is secure with respect to a formula φ when-
ever:

∀i ≥ 0 u[0...i] |= φ

where u[0...i] is a simplification for a0a1 . . . ai.
A formula φ is initially satisfiable if it is satisfiable in the initial state of the execution.

u[0] |= φ

We describe an algorithm, called Online path model checking, that controls a target X ,
actually getting its actions one by one and analyzing them. The algorithm is said online
because works without any initial knowledge on the state graph of the process (see [68])
and path model checking (see [83]) because we analyze the sequence of action of X .

Let φ be an equational µ-calculus formula. It must be initially satisfiable. So at
the beginning we check 0 |= φ. After every action a performed by X , we apply the
partial model checking for prefix operator (see Table 3.2) to the formula φ and we find
φ1 = φ//a.t . Then we require again that φ′ is initially satisfiable. This algorithm ends if the
execution of X ends and in this case we discover that X is a safe process or if there exists
an action ai performed by X such that 0 6|= (φi−1)//ait = φi where φi−1 is the formula
obtained by partial model checking with respect to the first i− 1 actions performed by X .
In this case the formula φi is equivalent to F. Hence we conclude that the action ai is not
legal.

In order to better explain these different methods we give a simple example.

Example 3.7 Let φ = [a][b]T be a formula we want to satisfy. 0 |= φ trivially.
We suppose that X performs the action a. The monitor calculate the φ1 = [b]T,

according to Table 3.2 and checks if 0 |= φ1. This holds trivially.
We suppose that X = a.b.0.

a−→ · b−→ 0

We have to check X |= φ but we do not know nothing about the behavior of X . We
suppose X performs the action a. We apply the partial model checking to φ with respect
to the prefix operator of action a and we check 0 |= φ//a . In this way, we shouldn’t store
what action was performed by X because this information is store in the new formula
φ//a = φ1. If 0 6|= φ1 then we can deduce that the action a is not compatible with the
formula. On the other hand, if 0 |= φ1 we look at the next action that X could perform.
If X performs another action we apply again the same algorithm.

4It is to note that, in order to describe the trace execution we adopt the same notation of linear temporal
logic.
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Renaming phase

X//a.tr = Xtr

(X =σ φD)//a.tr = Xtr =σ φ//a.trD//a.tr
(〈b〉φ)//a.tr = 〈b〉(φ)//a.tr
([b]φ)//a.tr = [b](φ)//a.tr
φ1 ∧ φ2//a.tr = (φ1//a.tr) ∧ (φ2//a.tr)
φ1 ∨ φ2//a.tr = (φ1//a.tr) ∨ (φ2//a.tr)
T//a.tr = T
F//a.tr = F

Evaluating phase

X//a.t = Xt

(X =µ φD)//a.t = φ//a.tD//a.t[(X =µ φD)//a.tr/Xtr ][F/Xt]
(X =ν φD)//a.t = φ//a.tD//a.t[(X =ν φD)//a.tr/Xtr ][T/Xt]

〈b〉φ//a.t =

{
(φ//a.tr) if b = a
F if b 6= a

[b]φ//a.t =

{
(φ//a.tr) if b = a
T if b 6= a

φ1 ∧ φ2//a.t = (φ1//a.t) ∧ (φ2//a.t)
φ1 ∨ φ2//a.t = (φ1//a.t) ∨ (φ2//a.t)
T//a.t = T
F//a.t = F

Table 3.2: Partial evaluation function for prefix operator.

This method has a lot of advantages. For instance, it is not necessary that all the sequence
of actions are stored somewhere. Indeed the evaluation of the action is already stored in
the new formula by partial model checking. Moreover, applying the partial evaluation
function for prefix operator to the initial formula, it is able to understand immediately if
this action compromise the security of the whole system or not.

It is possible to note that this technique gives the same results that we obtain by using
the truncation operator .T for safety properties. As a matter of fact this technique permits
to recognize a bad action but it does not give any advantage to repair it. Another advantage
of this approach is that we are able to enforce all properties that can be expressed by an
equational µ-calculus formula.

Computational analysis

Let u be the sequence of actions performed by X . Let n the length of u. Looking at the
rule of partial model checking for prefix operator we have that the cost of each operation
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of partial model checking on a formula φ is O(|φ|), i.e., it is linear in the size of the
considered formula.

According to [34], we know that the cost of model checking of an equational µ-
calculus formula φ is O((s|φ|)ad) where s is the number of states of the model and ad
is the alternation depth of the formula φ. In our method the model checking is always do
with respect to the model 0 which number of state is 1. So the cost of the whole algorithm
is n(O(|φ|ad)).

If we restrict to consider safety properties, the cost of the algorithm decreases. As a
matter of fact, according to [27], safety properties can be expressed in µ-calculus, by using
only ν fixpoint, without diamond operator and the µ-fixpoint. These kind of formulas are
trivially alternation-free. Referring to [34, 46], we know that, for this class of formulae it
is possible to solve the model checking problem in O(|φ|s) where s is the number of the
state of the transition system and |φ| is the size of the formula.

In this case the cost of the whole algorithm is (n)O(|φ|) where n is the length of the
sequence of actions performed by X .

3.4 Related work on enforcement mechanisms
Security automata was introduced by Schneider in [124]. A security property that can be
enforced in this way corresponds to a safety property.

Starting from the Schneider’s work, Ligatti et al. in [19, 20] have defined four dif-
ferent kinds of security automata which deal with finite sequences of actions: truncation
automaton, suppression automaton, insertion automaton and edit automaton.

In Section 3.2.1 we have showed a possible way to model security automata in [19, 20]
by using process algebra. Moreover we study also systems in a timed setting.

Other works present different frameworks to model, analyze and study security au-
tomata. For instance, in [96], a process algebra is used to model part of the usage control
framework (see [108]) for the JV M tm. As a matter of fact, security in the grid environ-
ment is a challenging issue. The authors proposed to integrate a local monitor into the
grid computational service architecture, to control the behavior of applications executed
on behalf of grid users. Their approach was inspired to the concept of continuous usage
control.

More recently, [17] proposes to use CSP − OZ, a specification language combin-
ing Communicating Sequential Processes (CSP ) and Object-Z (OZ), to specify security
automata, formalize their combination with target systems, and analyze the security of
the resulting system specifications. They provide theoretical results relating CSP − OZ
specifications and security automata and show how refinements can be used to reason
about specifications of security automata and their combination with target systems. We
also use process algebra to model security automata and describe their combination with
a target system.

Also Bartoletti, Degano and Ferrari in [13] refer to [124] by saying that while safety
properties can be enforced by an execution monitor, liveness properties cannot. In order to
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enforce safety and liveness properties, they enclose security-critical code in policy fram-
ings, in particular safety framings and liveness framings, that enforce respectively safety
and liveness properties of execution histories. This is however a static analysis that over-
approximates behavior history expressions. In [12] they have proposed a mixed approach
to access control, that efficiently combines static analysis and run-time checking. They
compile a program with policy framings into an equivalent one without framings, but in-
strumented with local checks. The static analysis determines which checks are needed
and where they must be inserted to obtain a program respecting the given security re-
quirements. The execution monitor is essentially a finite-state automaton associated with
the relevant security policies. In our work we isolate the possible un-trusted components
by partial model checking then we checks at run-time the target. An advantages of our
method with respect to the one described in [12] is that our monitors not only halts the
target whenever it are going to violate the given policy, but only they provide some mech-
anisms to enforce the policy without ending the target execution by the insertion or the
suppression of some possible wrong actions. Moreover, in Section 3.2.2 we have also de-
fined several semantics definitions of controller operators able to enforce also information
flow properties. In [87], a preliminary work has been provided that is based on different
techniques for automatically synthesizing systems enjoying a very strong security prop-
erty, i.e., SBSNNI (see [53]). That work did not deal with controllers.

Much of prior work are about the study of enforceable properties and related mech-
anisms. In [44] authors deal with a safety interface that permits to study if a module
is safe or not in a given environment. Here is checked all system, instead in our ap-
proach, through the partial model checking function, we are able to monitor only the
necessary/untrusted part of the system.

Related work on enforcement mechanisms for distributed systems

In Section 3.2.4 we deal with system in which there are several unspecified components
by applying the theory of compositionality by contexts proposed in [77]. In particular we
show different control approaches.

Other works deal with partially specified system using context. In [64] is presented
a framework inspired by [77] for the validation of reactive system embedded in a test
environment, or isolated from their operational environment, thereby inducing a natural
classification of validation strategies in different scenario. However they do not deal
with security property and do not make security analysis. Moreover the authors consider
context with only one unknown component, instead in our work we present results on
contexts in which more than one component of the system is unspecified.

In [106], contexts are used to build upgrade specification from components and their
interface languages. No security problem is addressed.

A lot of works deal with the problem of decentralized discrete-event control problems,
as [10, 11, 32, 114, 120] the authors have studied the decentralized supervisory control
problem of discrete event systems under partial observation. They do not treat this prob-
lem from a security point of view. As a matter of fact they do not do security analysis by
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considering generating controller for whatever possible behavior of the unspecified part,
i.e., they do not consider the unspecified part of the system as a potential attacker. In
[32, 114, 120] the authors have investigated on the necessary and sufficient conditions for
the existence of decentralized supervisors for ensuring that the controlled behavior of the
system lies in a given range.

Related work on model checking a path

A great deal of work is done for developing techniques to cope with the run-time model
checking. A technique that is used in run-time verification is the model checking a path,
i.e., solving the model checking problem on a single path instead on the whole model. It
was introduced by Markey and Schnoebelen in [83].

In particular, this technique is developed for model checking of linear time logic. Us-
ing standard dynamic programming methods a path can obviously be checked in bilinear
time, O(|path| × |formula|). In [84], they prove that model checking a path of modal
µ-calculus formulae has the complexity of O((n×|φ|)ad) We can note that this technique
is developed on LTL formulas and, in [83], the authors give the cost of the algorithm for
LTL formulas and for LTL + Past formulae. These two logics are suitable for express
safety properties. However, we use the equational µ-calculus that it is more expressive
that LTL and PLTL.

Previous works have deal with the state explosion in model checking problem. We
focus in particular on two techniques, on-the-fly model checking and online model check-
ing. These two techniques do not work on a path or a trace of execution but consider at
run-time a state graph. The main difference between these two kind of model checking is
that in the first one the state graph of the process is known but it is not stored in memory.
Instead in the second one nothing is known about the program and the state graph in built
and check at run-time. Both of this model checking are developed by Jard and Jeron:
Online model checking is described for the first time in [68] and the on the fly model
checking is developed in [69]. In [68] Jard e Jeron introduce the online model checking
where satisfiability is checked during the state generation process. In particular they work
with TL formulas. The basic idea of their paper is to check during the state enumera-
tion. For that aim, the temporal logic specification must be executed. It is done by first
translating the logic specification into a finite automaton. Here is the main algorithmic
difficulty. The automaton will value the system states during enumeration. The decision
of validity or rejection can be reached in finite time providing a large enough memory to
store a number of state equal to the depth of the state graph. This approach is different
from the approach of on-the-fly model checking that was introduced by Jard, Jeron et al.
in the technical report [69]. This method is used at runtime. The global state graph of
the automata is not stored before the labeling but there are generate only the part of the
state graph that are interested at runtime that are necessary to verify the satisfiability of
the formula. This second kind of model checking is more used than the other.
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Chapter 4

Synthesis of controller programs

In this chapter we present our mechanisms for the synthesis of controller programs (see
Chapter 3).

The synthesis problem occurs when we deal with a system in which there are some
unspecified components, e.g., a software that is not completely implemented.

Following the approach based on the open system paradigm for the specification and
verification of secure systems, in Chapter 3 we have defined several process algebra con-
troller operators, developed for enforcing security properties by using controller programs
that monitor the possible un-trusted component in order to guarantee the whole system is
secure.

In this chapter we deal with the problem of the synthesis of controller programs. In-
deed, given a system and a property, we wonder if there exists an implementation of a
controller program that, by controlling the unspecified components, makes the system se-
cure, i.e., it guarantees the system satisfy the given property whatever the behavior of the
unspecified components that it controls is. In particular given a system, that we want to
be secure, a security property we want to enforce and a controller operator we are going
to use in order to do that, we show how and when it is possible to synthesize a controller
program for the given controller operator.

The technical proofs of the results in this chapter are in the Appendix A.2.

4.1 Synthesis of controller programs for safety properties

In Section 3.2.1, we have described four different controller operators: Y .T X , Y .S X ,
Y .I X and Y .E X whose semantics definitions are recalled in Table 4.1. The problem
we want to solve is the following:

∃Y ∀X S‖Y .K X |= φ

where φ is a security property and K ∈ {T, S, I, E}.
By applying partial model checking, we evaluate the behavior of S into the formula



80 Chapter 4

Truncation:
E

a→ E ′ F
a→ F ′

E .T F
a→ E ′ .T F ′

Suppression:
E

a→ E ′ F
a→ F ′

E .S F
a→ E ′ .S F ′

E
−a−→ E ′ F

a→ F ′

E .S F
τ→ E ′ .S F ′

Insertion:
E

a→ E ′ F
a→ F ′

E .I F
a→ E ′ .I F ′

E 6 a→ E ′ E
+a.b−→ E ′ F

a→ F ′

E .I F
b→ E ′ .I F

Edit:
E

a→ E ′ F
a→ F ′

E .E F
a→ E ′ .E F ′

E
−a−→ E ′ F

a→ F ′

E .E F
τ→ E ′ .E F ′

E 6 a→ E ′ E
+a.b−→ E ′ F

a−→ F ′

E .E F
b−→ E ′ .E F

Table 4.1: Semantics definition of controller operators for enforcing safety properties.

φ. Hence we reduce the previous problem in the following one.

∃Y ∀X Y .K X |= φ′ (4.1)

where φ′ = φ//S
.

The equation in Formula (4.1) might not be easy to manage because of the presence
of the universal quantification on all possible behaviors of the target X . For that reason,
firstly, we underline that, by .K operators, we are goring to enforce safety properties, as
we have already said in Section 3.2.1. Hence we restrict ourselves to consider a subclass
of equational µ-calculus formulas that we call Frµ. It consists of equational µ-calculus
formulas without 〈 〉 operator.

It is easy to prove that, according to the rule of the partial evaluation function with
respect to parallel operator, this set of formulas is closed under the partial model checking
function and that the following result holds.

Proposition 4.1 ([29]) Let E and F be two processes and φ ∈ Frµ. If F ¹ E then
E |= φ ⇒ F |= φ. The same result holds also if F and E are strong similar.

Now, let us consider again the problem in Formula (4.1). Referring to the previous propo-
sition, it is possible to note that whenever:

Assumption 4.1 For every X and Y , we have:

Y .K X ¹ Y
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then the the problem in Formula (4.1) can be equivalently reduced as follows:

∃Y Y |= φ′ (4.2)

The formulation (4.2) is easier to be managed.
According to the semantics definition of .K operators given in Section 3.2.1 and re-

called in Table 4.1, we are able to give the following proposition.

Proposition 4.2 For every K ∈ {T, S, I, E}
Y .K X ¹ Y [fK]

holds, where fK is a relabeling function depending on K. In particular, fT is the identity
function on Act1 and

fS(a) =

{
τ if a = −a
a othw fI(a) =

{
τ if a = +a
a othw

fE(a) =

{
τ if a ∈ {+a,−a}
a othw

This proposition provides that, whatever controller operators .K is chosen to use to en-
force a given safety properties, it is possible to find a solution for the problem in Formula
4.1 by finding a controller program Y such that:

Y [fK] |= φ′

To further reduce the previous formula, we can use the partial model checking function
for relabeling operator, calculating φ′′K = φ′//[fK]

for each K. Thus we obtain:

∃Y Y |= φ′′K (4.3)

This is a satisfiability problem in µ-calculus. Hence a possible model Y for φ′′K can be
find according to the Theorem 2.2. So we are able to prove the following result

Theorem 4.1 The problem described in Formula (4.1) is decidable.

Note that the trivial solution exists. As a matter of fact the process 0 is a model for
all possible formulas in Frµ. As a matter of fact for every process P , 0 ¹ P , hence,
according to the Proposition 4.1, 0 |= φ. Referring to the semantics definition of each
controller operator, for each K and

∀ X, 0 .K X = 0

Hence
for each K, ∀ X 0 .K X |= φ′

1Here the set Act must be consider enriched by control actions.
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4.1.1 Automated synthesis of maximal controller program for trun-
cation operator

In this section we recall the notion of maximal model with respect to the simulation re-
lation and show how it is possible to synthesize a maximal program controller Y for the
operator Y .T X .

Firstly, we give the definition of maximal model with respect to the simulation relation
as follow (see [117, 118]).

Definition 4.1 A process E is said to be the maximal model for a given formula φ with
respect to the relation of simulation if and only if E |= φ and ∀E ′ such that E ′ |= φ we
have that E ′ ¹ E.

Informally, the maximal program controller Y is the process that restricts as little as pos-
sible the activity of the target X .

In order to find the maximal model we exploit the theory developed by Walukiewicz
in [131].

Usually the discovered model is a non-deterministic process. There are several pos-
sible solution to find deterministic model. For instance, it is possible to turn E into a
deterministic model but some deadlock may occur.

Let us consider a subset of formulas of Frµ without ∨. This set of formulas is called
the universal conjunctive µ-calculus formulas, ∀∧µC.

Definition 4.2 The set ∀∧µC of universal conjunctive µ-calculus formulas is the largest
subset of equational µ-calculus formulas that can be written without either the ∨ operator
and the 〈 〉 modality.

It is possible to prove that ∀∧µC is closed under the partial model checking function.

Proposition 4.3 ([59]) ∀∧µC is closed under the partial model checking function.

Moreover, for this class of formulas the following result holds.

Proposition 4.4 ([58]) Given a formula φ ∈ ∀∧µC, a model E of this formula exists.

In order to generate the maximal model E, we find a model for φ ∧ ψ where ψ = X ,
X =ν

∧
a∈Act\{τ}([a]F∨ (〈a〉X ∧ [a]X)). The formula ψ permits us to check all possible

actions in Act.
First of all we prove that the formula φ ∧ ψ is satisfiable.

Lemma 4.1 Let φ ∈ ∀∧µC and ψ = X where X =ν

∧
a∈Act([a]F ∨ (〈a〉X ∧ [a]X)). If

φ is satisfiable then φ ∧ ψ is satisfiable.

Exploiting the theory of Walukiewicz, we find a deterministic model E for φ ∧ ψ
that does not perform τ actions. As a matter of fact, we assume that the pre-model (and
consequently the canonical structure) is built using quasi-models where the (orleft) is
applied only if the (orright) fails. With this assumption, since we will apply the canonical
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model only to one kind of formula with disjunction, we may control which branch will
be followed and so the kind of canonical model generated. In this way we generate a
deterministic model of φ. We prove the following proposition.

Proposition 4.5 Given a formula φ ∈ ∀∧µC, a maximal deterministic model E of this
formula exists.

In particular, as model we consider the canonical structure (see [131]) of the formula
φ ∧ ψ. It is easy to prove the following lemma.

Lemma 4.2 Let E ′ |= φ with φ ∈ ∀∧µC. Let E be the canonical structure of φ∧ ψ, then
the following relation holds:

E ′ ¹ E

Hence E is the maximal model for φ.
Thus, by using the result in Proposition 4.5, it is possible to find a maximal deter-

ministic model that synthesizes a controller operator to force a security policy, i.e., the
synthesis of a truncation automaton for a component that will allow the whole system to
enjoy the desired security property.

Note that the maximal model that we have found it is not necessary unique because of
the simulation relation is a pre-order.

4.1.2 Timed setting
In this section we present how the results that we have proved in the previous section,
can be obtained also in a timed setting. In particular we are able to synthesize controller
programs for the controller operators defined in Table 4.1 also for systems that work in a
timed setting.

Referring to Section 2.3.2, we use the tick action to model the elapsing of time. The
introduction of the tick action in the set of possible action Act does not change the se-
mantics definition of the controller operators .K, where K ∈ {T, S, I, E}.

We prove the following proposition in order to show that .K operators permit the
elapsing of time, i.e., are weakly time alive (see Section 2.3.3).

Let E and F be finite state processes, in particular E is the controller program and F
the target. The following proposition holds.

Proposition 4.6 If both E and F are weakly time alive, also E .K F is weakly time alive.

According to Section 3.2.1, the tick action is performed when both the target and
the controller perform it. Also in this case we can followed the same reasoning made
before.We restrict ourselves to consider formulas in Frµ, the following proposition holds.

Proposition 4.7 Let E and F be processes and φ ∈ Frµ. If F ¹t E then E |= φ ⇒ F |=
φ.

Thus also in a timed setting we require that the following assumption is verified.
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Assumption 4.2 For every X and Y , we have:

Y .K X ¹t Y

If X and Y satisfy the Assumption 4.2 then the property in Formula (4.1) is equivalent to:

∃Y Y |= φ′ (4.4)

The Formulation (4.4) is easier to be managed. A proposition similar to Proposition 4.2
holds. In particular, looking at the definition of weak timed simulation and at the proof of
the Proposition 4.2, it is possible to prove the following proposition.

Proposition 4.8 For every K ∈ {T, S, I, E} Y .K X ¹t Y [fK] holds, where fK is a
relabeling function depending on K. In particular, fT is the identity function on Act2 and

fS(α) =

{
τ if α = −α
α othw fI(α) =

{
τ if α = +α
α othw

fE(α) =

{
τ if a ∈ {+α,−α}
α othw

At this point in order to satisfy the Formula (3.25) it is sufficient to find a controller
program Y s.t.:

Y [fK] |= φ′

To further reduce the previous formula, we can use the partial model checking function
for relabeling operator, calculating φ′′K = φ′//[fK]

for each K. Thus we obtain:

∃Y Y |= φ′′K (4.5)

This is a satisfiability problem in µ-calculus that can be solved by Theorem 2.2. So we
are able to prove the following result

Theorem 4.2 The problem described in Formula (4.1) is decidable also in a timed setting.

4.1.3 An example
Let us consider the process S = a.b.0 and the following equational definition φ = Z
where Z =ν [τ ]Z ∧ [a]W and W =ν [τ ]W ∧ [c]F. It asserts that, after every action a, an
action c cannot be performed. Let Act = {a, b, c, τ, ā, b̄, c̄} be the set of actions. Applying
the partial evaluation for the parallel operator we obtain, after some simplifications, the
following system of equation, that we denoted with D.

Z//S
=ν [τ ]Z//S

∧ [ā]Z//S′ ∧ [a]W//S
∧W//S′

W//S′ =ν [τ ]W//S′ ∧ [b̄]W//0 ∧ [c]F
Z//S′ =ν [τ ]Z//S′ ∧ [b̄]Z//0 ∧ [a]W//S′
W//S

=ν [τ ]W//S
∧ [ā]W//S′ ∧ [c]F

Z//0 = T
W//0 = T

2Here the set Act must be consider enriched by control actions.
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where S
a−→ S ′ so S ′ is b.0.

The information obtained through partial model checking can be used to enforce a
security policy. In particular, choosing one of the four operators and using its definition
we simply need to find a process Y [fK], where K depend on the chosen controller, that is
a model for the previous formula.

In this simple example we choose the controller operator .S . Hence we apply the
partial model checking for relabeling function fS to the previous formula, that we have
simplified replacing W//0 and Z//0 by T (and assumed that Y can only suppress c ac-
tions). We obtain D//fS

as follows.

Z//S,fS
=ν [τ ]Z//S,fS

∧ [−c]Z//S,fS
∧ [ā]Z//S′,fS

∧ [a]W//S,fS
∧W//S′,fS

W//S′,fS
=ν [τ ]W//S′,fS

∧ [−c]W//S′,fS
∧ [b̄]T ∧ [c]F

Z//S′,fS
=ν [τ ]Z//S′,fS

∧ [−c]Z//S′,fS
∧ [b̄]T ∧ [a]W//S′,fS

W//S,fS
=ν [τ ]W//S,fS

∧ [−c]W//S,fS
∧ [ā]W//S′,fS

∧ [c]F

We can note the process Y = a.− c.0 is a model of D//fS
. Then, for any component X ,

we have S‖(Y .S X) satisfies φ. For instance, consider X = a.c.0. Looking at the first
rule of .S , we have:

(S‖(Y .S X)) = (a.b.0‖(a.− c.0 .S a.c.0))
a−→ (a.b.0‖(−c.0 .S c.0))

Using the second rule we eventually get:

(a.b.0‖(−c.0 .S c.0))
τ−→ (a.b.0‖0 .S 0)

and so the system still preserves its security since the actions performed by the component
X have been prevented from being visible outside.

4.2 Synthesis of controller programs for BNDC

In Section 3.2.2 we have presented several definitions of controller operators able to en-
force information flow properties defined as BNDC property. In Table 4.2 we remaind
the semantics definition of these controllers.

As we have said in Section 3.2.2 the problem we want to solve is the following:

∃Y ∀X S‖(Y .∗ X)\H |= φ (4.6)

where .∗ denoted a general controller operators.
In this section we provide a framework for synthesizing controller program Y for a

given controller operators able to enforce BNDC properties.
As we have already said, by using the partial model checking approach we focus on

the properties that the controller operator Y has to enforce. Hence the problem in Formula
(4.6) becomes:

∃Y ∀X Y .∗ X |= φS,\H (4.7)
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.′ operator:
E

a→ E ′ F
a→ F ′

E .′ F
a→ E ′ .′ F ′

E
a→ E ′

E .′ F
a→ E ′ .′ F

.′′ operator

E
a→ E ′ F a→ F ′

E .′′ F a→ E ′ .′′ F ′
E

a→ E ′ F
a

6→ F ′

E .′′ F a→ E ′ .′′ F

Table 4.2: Semantics definition of controller operators for enforcing information flow
properties.

We make the following assumption to deal with the universal quantification on all possible
behavior of the target X . Then we will prove that the operators we have defined satisfy
this assumption.

Assumption 4.3 For every X and Y , we have:

Y .∗ X ∼ Y

We are able to prove that the operator .′ and the operator .′′ enjoy Assumption 4.3.

Proposition 4.9 The operators .′ and .′′ enjoy Assumption 4.3.

Note that for BNDC properties it is sufficient that Y .∗ X and Y are weakly bisimilar.
Since every strong simulation is also a weak one [103] then Y .∗X ≈ X . Hence, accord-
ing to Proposition 4.9, both these operators could be applied to enforce information flow
properties.

While designing such a process Y could not be difficult in principle, we can take
advantage of our logical approach and obtain an automated procedure as follows. As a
matter of fact, the property expressed by the Formula (4.7) is equivalent to:

∃Y Y |= φ′ (4.8)

This is a satisfiability problem in µ-calculus that can be solved by Theorem 2.2.
So we are able to prove the following result

Theorem 4.3 The problem described in Formula (4.7) is decidable.

Feasibility issues for our controllers

The introduction of a controller operator helps to guarantee a correct behavior of the entire
system.

We discuss in this section the feasibility of our controller operators, i.e., how and also
if, the controllers .′, .′′, can be implemented.
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For the first controller operator, .′, we can note that it may in any moment neglect the
external agent X behavior, unless X performs τ . The behavior of the system may simply
follow the behavior of the controller process. In particular, the controller may always
choose to perform its correct action, rather than waiting for an action by the target. Thus,
it would be easily implementable.

The operator .′′ cannot be implemented if we are not able to decide a priori which
are possible next steps that the external agent is going to perform. On the contrary, if it
is possible to know a priori which is the set of possible next steps the target is going to
perform, it would be possible to give priority to the first rule allowing always the correct
action of the target. Thus, controller .′′ leaves that the external agent executes correct
action, if the first rule can be applied, and denies the unwanted situation checking them by
the second rule. Also in this case internal actions performed by X are permitted without
any action of Y .

4.2.1 Timed setting
As we have showed in Section 3.2.2, it is possible to define process algebra controller
operators to enforce information flow also for system that works in a timed settings. In
Table 4.3 we recall the semantics definitions of such operators. As we have said in Section

.′ operator:

E
α→ E ′ F

α→ F ′

E .′ F α→ E ′ .′ F ′ α 6= τ
E

a→ E ′

E .′ F a→ E ′ .′ F

F
τ→ F ′

E .′ F τ→ E .′ F ′

.′′ operator:

E
α→ E ′ F

α→ F ′

E .′′ F
α→ E ′ .′′ F ′ α 6= τ

E
a→ E ′ F

a

6⇒ F ′

E .′′ F
a→ E ′ .′′ F

F
τ→ F ′

E .′′ F
τ→ E .′′ F ′

Table 4.3: Semantics definition of controller operators for enforcing tBNDC properties.

3.2.2 we model information flow properties in a timed settings by tBNDC properties and
we would like to solve the following problem:

∃Y Y .∗ X |= φ′ (4.9)

where φ′ is the formula that expresses the tBNDC properties after the partial evaluation
w.r.t. the known part of the system. The controller operators has to satisfy the following
assumption.

Assumption 4.4 For every X and Y , we have:

Y .∗ X ≈t Y
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If the controller operator satisfies the Assumption 4.4, the Formula (4.9) is equivalent to:

∃Y Y |= φ′ (4.10)

As a matter of fact, the previous assumption permits us to conclude that Y .∗ X and
Y are timed bisimulation equivalent. It is possible to reduce the Formula (4.9) to the
Formula (4.10) by resorting to the concept of characteristic formula for timed equivalence
(Definition 2.29).

It is important to note that the Assumption 4.4 is a sufficient condition to enforce
tBNDC. We have also to require not only that Y satisfies the formula φ′ but also that is
weakly time alive because it has to permit the elapsing of time. As a matter of fact, since
the tick action can be performed by the system if both Y and X agree to perform it, if
the Y does not permit the elapsing of time this could generate a flow of information. The
weakly time alive property for a finite state process P can be expressed by a µ-calculus
formula as follows:

φw.t.a. = Z =ν 〈〈tick〉〉T ∧ [ ]Z

Hence we have to find a model for φ′ ∧ φw.t.a. = φ′′. Thus we obtain:

∃Y Y |= φ′′ (4.11)

While designing such a process Y could not be difficult in principle, we can take ad-
vantage of our logical approach and obtain an automated procedure. As matter of facts,
exploiting the Theorem 2.2, it is possible to decide if there exists a model Y for φ′′ and
find it. For the semantics of conjunction, if Y satisfies φ′′ it satisfies φ. Hence Y is suitable
for Formula (4.11).

Proposition 4.10 Let E and F be two finite-state processes. If both E and F are weakly
time alive, also E .′ F and E .′′ F are weakly time alive.

Proposition 4.11 The operator .′ and .′′ enjoy Assumption 4.4.

So we are able to prove the following result.

Theorem 4.4 The problem described in Formula (4.7) is decidable for finite-state pro-
cesses in a timed setting.

4.2.2 An example

Let us consider the process S = l.0 + h.h.l.0. The system S where no high level activ-
ity is present is timed weakly bisimilar to l.0. Let us consider the following equational
definition:

ZS =ν ([τ ]ZS) ∧ [l]T ∧ 〈〈l〉〉T
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It asserts that a process may and must perform the visible action l. As for the study of
tBNDC-like properties we can apply the partial evaluation for the parallel operator we
obtain after some simplifications:

(ZS)//S =ν ([τ ](ZS)//S) ∧ [h]〈〈h〉〉T
which, roughly, expresses that after performing a visible h action, the system reaches a
configuration such that it must perform another visible h action. The information obtained
through partial model checking can be used to enforce a security policy which prevents a
system from having certain information leaks. In particular, if we use the definition of the
controller as .′′, we simply need to find a process that is a model for the previous formula,
say Y = h.h.0. Then, for any component X , we have (S‖(Y .′′ X)) \ {h} satisfies
(ZS)//S .

For instance, consider X = h.0, we obtain:

(S‖(Y .′′ X)) \ {h} τ−→ (h.l.0‖(h .′′ 0)) \ {h}
Thus, using the second rule the controller may force to issue another h and thus we even-
tually get:

(h.l.0‖(h .′′ 0)) \ {h} τ−→ (l.0‖(0 .′′ 0)) \ {h} ≈ l.0

and so the system still preserves its security since the actions performed by the component
X have been prevented from being visible outside. On the contrary, if the controller would
not be there would be a deadlock after the first internal action.

4.3 Synthesis of controller programs for composition of
properties

In this section we show how our technique can be used also for synthesizing controller
programs able to enforce composition of properties. In particular we wonder if there
exists a way easier than the method described before, to enforce a property described by a
formula φ that can be written as conjunction of sub-formulas φi simpler than itself, i.e., the
size of each φi is minor of the size of φ. Thus, we present a method to enforce this kind of
properties by using the truncation operator (see Section 3.2.1). In particular we prove that
the composition of controller programs for truncation operator enforce the composition
of properties they enforce. It is important to note that, since we consider the truncation
operator, we are working under the additional assumption that the the properties that we
investigate are safety properties, i.e., we consider formulas in Frµ (see Section 4.1).

Hence we would like that the following relation holds:

∀X S‖X |= φ ≡ φ1 ∧ . . . ∧ φn (4.12)

where φ1, . . . , φn are safety properties simpler than φ. In order to guarantee that the whole
system satisfy φ we have to find a controller program Y that forces φ to be satisfied i.e., :

∃Y ∀X S‖Y .T X |= φ1 ∧ . . . ∧ φn (4.13)
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According to Theorem 2.2, the cost of the satisfiability procedure is exponential in the
size of the formula.

Here we present a method to find a controller program Y for φ starting from controller
operators of its sub-formulas φi. As a matter of fact, let φ =

∧n
i=1 φi be the given formula,

then by exploiting he Theorem 2.2, we synthesize a controller program Yi for each of φi

formula. Finally, by composing Yi one to each other we obtain Y . This method is less
expensive than synthesize directly Y . As a matter of fact, according to the Theorem 2.2,
it is possible to find a model for a µ-calculus formula φ has a cost exponential in the size
of φ, i.e., let us consider that all the φi have the same size m, then the size of φ is m× n.
Hence synthesize directly Y costs O(cm×n).

On the other hand, the cost of our method is nO(cm) because the cost for synthesizing
n models, one for each formula φi, is nO(cm) and the cost of the composition through the
.T operator is constant in the size of the formula.

In order to describe our method, first of all, we rewrite Formula (4.12), by exploiting
the semantics definition of the logical conjunction, as follows:

∀X S‖X |= φ1 and
∀X S‖X |= φ2 and
. . .
∀X S‖X |= φn

By partial model checking we obtain:

∀X X |= φ′1 and
∀X X |= φ′2 and
. . .
∀X X |= φ′n

where for each i from 1 to n, φ′i = (φi)//S
.

Let Y1, . . . , Yn be n processes such that:

∀X Y1 .T X |= φ′1 and
∀X Y2 .T X |= φ′2 and
. . .
∀X Yn .T X |= φ′n

It is possible to prove the following result.

Lemma 4.3 Let φ be a safety property, conjunction of n safety properties, i.e., φ =
φ1 ∧ φ2 ∧ . . . ∧ φn where φ1, . . . φn are safety properties. Let Y1, . . . , Yn be n controller
programs such that ∀i such that 1 ≤ i ≤ n Yi |= φi. We have

∀X Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ
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This means that, once we have synthesized controller programs for enforcing several
safety properties, we are able to enforce also the conjunction of them simply applying
them successively. However, in this way, we apply the procedure for enforcing n times.
Instead we want apply it only one time to force the conjunction of formulas. For that
reason we prove the following proposition.

Proposition 4.12 Let us consider the controller operator .T . It is possible to find Y1, . . . , Yn

controller programs such that. if Y1 .T X |= φ′1, . . . , Yn .T X |= φn then (Y1 .T . . . .T

Yn) .T X |= φ1 ∧ . . . ∧ φn.

Hence, referring to the Formula (4.13), in order to find Y we find Y1, . . . , Yn that enforce
φ′1, . . . , φ

′
n respectively and we compose them as in Proposition 4.12. In this way we find

Y that force φ′ = φ′1 ∧ . . . ∧ φ′n. According to Lemma 2.6 we have:

∀X Y .T X |= φ′ ⇔ ∀X S‖Y .T X |= φ

Hence we obtain a controller program Y for φ.

4.4 Synthesis of controller programs for parameterized
systems

A parameterized system describes an infinite family of (typically finite-state) systems (see
[18]). Instances of the family can be obtained by fixing parameters.

Let us consider a parameterized system S = Pn defined by parallel composition of
processes P , e.g.,

P‖P‖ . . . ‖P︸ ︷︷ ︸
n

The parameter n represents the number of processes P present in the system S.

Example 4.1 Consider a system with one consumer process C and several producer pro-
cesses P . Each process P is defined P

def
= a.P where a ∈ Act, and the process C is

ā.C. Let us suppose that the system consists of n producer and one consumer, then the
entire system is (Pn‖C)\{a} and the processes communicate by synchronization on ā and
a actions.

Referring to the Formula (3.1) we may wish to have:

∀n ∀X Pn‖X |= φ (4.14)

It is possible to note that in the previous equation there are two universal quantifications:
The first one is on the number of instances of the process P , n, and the second one is on
the possible behavior of the unknown agent.

In order to eliminate the universal quantification on the number of processes, firstly
we define the concept of invariant formula with respect to partial model checking for
parallel operator as follows.
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Definition 4.3 A formula φ is said an invariant with respect to partial model checking for
the system P‖X if and only if φ ⇔ φ//P

.

It is possible to prove the following result.

Proposition 4.13 Given the system Pk‖X . If φ is an invariant formula for the system
P‖X then

∀X (∀n Pn‖X |= φ iff X |= φ)

In order to apply the theory developed in Section 3.2.1, we show a method to find the
invariant formula. According to [18], let ψi be defined as follows:

ψi =

{
φ1 if i = 1
ψi−1 ∧ φi if i > 1

where for each i, φi = φ//Pi
.

By definition of ψi and by Lemma 2.6, ∀j such that 1 ≤ j ≤ i (X |= φ′j) ⇔ X |= ψi.
Hence X |= ψi means that ∀j such that 1 ≤ j ≤ i Pj‖X |= φ. We say that ψi is said
to be contracting if ψi ⇒ ψi−1. If ∀i ψi ⇒ ψi−1 holds, we have a chain that is a said
a contracting sequence. If it is possible to find the invariant formula ψω for a chain of
µ-calculus formulas, that is also said limit of the sequence, then the following identity
holds:

∀X (X |= ψω ⇔ ∀n ≥ 1 Pn‖X |= φ) (4.15)

Now we have a problem equivalent to the problem expressed in Formula 3.1. Hence,
depending on which kind of property we are going to enforce, we consider one of the
controller operators seen in Chapter 3 that forces each process to behave correctly. Then
we apply the theory developed in previous section to synthesize a controller program for
the chosen controller operator.

In some cases it could not be possible to find the limit of the chain. However there
are some techniques that can be useful in order to find an approximation of this limit (see
[18, 36]).

4.5 Synthesis of controller in a distributed system
In this section we show how it is possible to synthesize centralized and decentralized
controller program for enforcing safety properties in a distributed system.

Referring to Section 3.2.4, in order to solve the problem expressed by the following
formula:

∀X1, . . . , Xn C(X1, . . . , Xn) |= φ (4.16)

we use a controller context .(Y, X). In Table 4.4 we recall the semantics definition of
controller contexts we have defined in Section 3.2.4. We can follow a centralized approach
or a decentralized one in order to enforce safety properties. In the following we show how
synthesize controller programs for both these approaches.
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.T :

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.T (Y, X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .T (Y ′, X ′)

.S:

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.S(Y,X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .S(Y ′, X ′)

Y
−→−a−→ Y ′ X

−→a−→ X ′

.S(Y, X)

−→τ−−−−−→
(−→−a,−→a ) .S(Y ′, X ′)

.I :

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.I(Y,X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .I(Y ′, X ′)

Y 6
−→a−→ Y ′ Y

−−→
+a.b−→ Y ′ X

−→a−→ X ′

.I(Y, X)

−→
b−−−−−−→

(
−−→
+a.b,−→a ) .I(Y ′, X ′)

.E:

Y
−→
b−→ Y ′ X

−→
b−→ X ′

.E(Y, X)

−→
b−−−−−→

(
−→
b ,
−→
b ) .E(Y ′, X ′)

Y
−→−a−→ Y ′ X

−→a−→ X ′

.E(Y,X)

−→τ−−−−−→
(−→−a,−→a ) .E(Y ′, X ′)

Y 6
−→a−→ Y ′ Y

−−→
+a.b−→ Y ′ X

−→a−→ X ′

.E(Y, X)

−→
b−−−−−−→

(
−−→
+a.b,−→a ) .E(Y ′, X ′)

Table 4.4: Semantics definition of controller contexts for enforcing safety properties.

Centralized approach. We synthesize a unique controller program Y that enforces φ
by monitoring the product of all component as a unique context. According to Section
3.2.4 we have to solve the following problem:

∃Y ∀X1, . . . , Xn . (Y, X1 × . . .×Xn) |= φ′ (4.17)

where φ′ = W(C, φ). Now we want to synthesize Y .
Looking at the semantics definition of ., it is possible to prove that the following

simulation relation holds:
.(Y, X) ≺ Y

Let φ be in Frµ a safety properties. Since a proposition similar to the Proposition 4.1
holds also for contexts, in order to satisfy the Formula (3.19) it is sufficient to find a
controller program Y such that:

Y |= φ′

Since Y ∈ Cn
0 it performs a vector of actions. Without lost of generality, we consider
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that each transition is labeled by a vector as ā = (a1, . . . , an) and we synthesize Y by
Theorem 2.2. So we are able to prove the following result.

Theorem 4.5 The problem described in Formula (4.17) is decidable.

Decentralized approach. We synthesize several controller context Yi one for each un-
specified components Xi of the system. Hence we have to solve the following problem:

∃Y1, . . . , Yn ∀X1, . . . , Xn . (Y1, X1)× . . .× .(Yn, Xn) |=× ψk
1 × . . .× ψk

n (4.18)

In general we have to deal with a disjunction of product formulas and, in order to enforce
it, we chose which product formula of the disjunction enforce. We can consider to have a
saturated formula, we can solve the problem above by solving n problems as the following
form:

∃Yj ∀Xj . (Yj, Xj) |= ψk
j

We are able to synthesize n controller program able to enforce safety properties, i.e.,
properties described as formulas of Frµ, by Theorem 2.2. As a matter of fact we are
in a case similar to the one described before: Instead of generating a controller program
Y ∈ Cn

0 that control the product of n components, we generate n controller programs in
C1

0 such that, each of them, controls only one component Xi. So we are able to prove the
following result.

Theorem 4.6 The problem described in Formula (4.18) is decidable.

4.5.1 An example: Chinese Wall policy
In order to better explain the differences that exists between two different approaches,
we show an example. Indeed we consider the Chinese Wall policy (see Section 2.2.2).
Now we present how we enforce the Chinese Wall policy in a distributed system, a very
common security property. The Chinese Wall policy says that we can choose to open or
an element of the set A or an element of a set B. If an element x that belongs to the set A
is opened then we can open only element that does not belong to B and viceversa, i.e. if
we open an element x of B then we can open only elements that are not in A.We consider
as distributed system S = ‖(X1, X2).

The Chinese Wall policy can be expressed by the formula φ = φ1 ∨ φ2 where

φ1 = LET MAX W = [openA]W ∧ [openB]FINW
φ2 = LET MAX V = [openB]V ∧ [openA]FINV

Hence we calculate φ′ = W(‖, φ) = φ′1 ∨ φ′2 as follows:

φ′1 =
LET MAXW ′ = [(0, openA)]W ′ ∧ [(openA, 0)]W ′ ∧ [(0, openB)]F ∧ [(openB, 0)]F)INW ′

φ′2 =
LET MAXV ′ = [(0, openB)]V ′ ∧ [(openB, 0)]V ′ ∧ [(0, openA)]F ∧ [(openB, 0)]FINV ′

Now we synthesize a controller program for enforcing φ in both cases.
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Centralized control. In this case we generate a controller program Y ∈ C2
0 such that it

is a model for the formula φ′ and a controller program for .(Y, X1 ×X2). We take

Y = + (Y1, Y2)
Y1 = + ((0, openA)∗, (openA, 0)∗)†

Y2 = + ((0, openB), (openB, 0)∗)†

It is possible to note that such Y at the beginning permits whatever possible behavior
of unspecified components. Indeed both X1 and X2 are allowed to perform openA or
openB action. However, after the first step, only one behavior is allowed. Let us consider,
for instance, X1 = (openA)∗ ◦ X2 and X2 = (openB)∗ ◦ X1. In this case Y1 becomes
((openA, 0)∗)† and Y2 = ((0, openB)∗)† since the other choice case never happens. Hence
Y = +(((openA, 0)∗)†, ((0, openB)∗)†). Let consider that the first step is performed by
X2 then we have the following derivation tree:

.
(0,openB)−−−−−−−−−−−−−−→

(0, openB , 0, openB) . ‖
openB−−−−−−−→

(0, openB) ‖
‖ ◦ .

openB−→ ‖ ◦ .

Hence:
‖(.(Y,X1 ×X2))

openB−→ ‖(.(Y2, X1 ×X1))

Looking at the transition rule of . we can note that, at the beginning, both the possibility,
executing the action openA as well as executing the action openB, are allowed. Since the
first step is performed by X2, the action openB is done. Hence the controller program
chooses the component Y2 that allows only openB actions. However, after the transition,
the target system can perform only action openA so the system halts.

Decentralized control. Here we want to describe how it is possible to apply the decen-
tralized method for enforcing a policy.

It is easy to note that the formula φ′ is not finite. Hence a finite decomposition for it
may not exists. In this case it may be difficult to find a formula to enforce.

Moreover is that the formula φ′ requires a strict interaction between processes. As a
matter of fact, the behavior of the second context is conditioned by the behavior of the
first one and viceversa. Indeed if the first context performs an action openA (openB) the
second cannot performs an action openB (openA) and viceversa. For this reason it is not
possible to find two independent controller operators that enforce the Chinese wall policy
in a distributed way at run-time.

On the other hand, we could enforce the Chinese wall policy in a distributed way by
establishing a priori that one of the two contexts must not perform any action. For instance
we can consider the following two controller programs:

Y1 = Nil
Y2 = + (Y ′

2 , Y
′′
2 )

Y ′
2 = (open∗A)†

Y ′′
2 = (open∗B)†
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In this way, the first unknown component cannot perform any action and the second has
to respect the Chinese wall policy. For instance, let X1 = (openA)∗ ◦ X2 and X2 =
(openB)∗ ◦X1 the we have that .(Nil,X1) is equivalent to the context Nil because does
not perform any action. Hence the system is ‖(Nil, (.(Y2, X2))). Thus we have the
following transition:

‖(Nil, (.(Y2, X2)))
(openB)−−−−−−−→

(0, openB) ‖(Nil, (.(Y ′′
2 , X1)))

since, according to the semantic definition of ., the transduction of .(Y2, X2) is the fol-
lowing:

.(Y2, X2)
(openB)−−−−−−−−−−−→

(openB , openB) .(Y ′′
2 , X1)

The execution halts because the second contexts, by calling the first one, tries to performs
an action openA that is forbidden.

4.5.2 Another example
Here we show another simple example in which also the distributed approach can be
applied at run-time. In this way, we aim to underline which are the differences between
the centralized and decentralized approach to make secure a distributed system.

Let S be the system such that S = ‖(X1, X2) and let φ = [a][a]F.
First of all we apply the property transformer in order to find the weakest property that

must be satisfied by the unspecified part of the system. Hence we calculate W(‖, φ) and
we obtain the following formula:

φ′ = [(0, a)]([(0, a)]F ∧ [(a, 0)]F) ∧ [(a, 0)]([(0, a)]F ∧ [(a, 0)]F)

Now we synthesize a controller program for enforcing φ in both cases.

Centralized control. In this case we generate a controller program Y ∈ C2
0 such that it

is a model for the formula φ′ and a controller program for .(Y, X1 × X2). We take, for
instance

Y = +((0, a)∗ ◦Nil, (a, 0)∗ ◦Nil)

It is not difficult to note that Y satisfies the formula φ′.
In order to show how . works we consider, for instance, two possible behaviors

for the unspecified components and we show which are the tranductions of the system
‖(.(Y, X1 ×X2)).

Let X1 = a∗ ◦ Nil and X2 = a∗ ◦ Nil be two possible behaviors of the unspecified
components. Then, supposing that the second component performs the action a, we have:

.
(0,a)−−−−−−→

(0, a, 0, a) . ‖
a−−−→

(0, a) ‖
‖ ◦ .

a−→ ‖ ◦ .
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Hence:

‖(.(+((0, a)∗ ◦Nil, (a, 0)∗ ◦Nil), X1 ×X2))
a−→ ‖(.(Nil,X1 ×Nil))

The execution halts when also X1 wants to perform a, since it is not allowed because φ
requires that two a actions are not performed sequentially. It is not difficult to note that a
similar scenario occurs if X1 performs a. Moreover, there is also the possibility that both
the components try to perform the a action at the same time.

Decentralized control. In order to synthesize distributed controller programs we have
to decompose the formula φ in such a way we can write it as a disjunctive product for-
mula. This traduction is possible by exploiting the weak equivalences for decomposition
properties recalled in Table 3.1. In particular we use the following F ⇔ T× F ∨ F×T
and T ⇔ T × T. After several steps, it is possible to write φ is the following weak
equivalent way:

[(0, a)]([(0, a)]F ∧ [(a, 0)]F) ∧ [(a, 0)]([(0, a)]F ∧ [(a, 0)]F)
⇔ ([a]F× [a]F) ∨ ([a]F× [a][a]F) ∨ ([a][a]F× [a]F)

In this case, we want to synthesize two controller programs Y1 and Y2 s.t. .(Y1, X1) and
.(Y2, X2). In the distributed case we do not enforce the global property but we choose
which subformula of the disjunction we enforce. For instance we enforce ([a]F×[a][a]F).
Hence we synthesize Y1 s.t. it is model for [a]F and Y2 s.t. it is model for [a][a].

By exploiting a satisfiability properties we can consider Y1 = Nil and Y2 = a∗ ◦Nil.
Let X1 = a∗ ◦Nil and X2 = a∗ ◦Nil and we obtain:

‖(.(Nil, a∗ ◦Nil), .(a∗ ◦Nil, a∗ ◦Nil))

a−−−→
(a, a) ‖(.(Nil, a∗ ◦Nil), .(Nil,Nil))

Since the first component .(Nil, a∗ ◦ Nil) is not allowed to perform any action and the
second one ends, the whole system performs a and halts.

By comparing these two approaches it is possible to note that in the first one, the
controller program allowed more than one correct behavior, i.e., either X1 or X2 could
perform the first a action. This is possible since it has a centralized view of what all the
components do with respect to their allowed behavior. When one of the two executes the
action a, the other should not do it after.

On the other hand, the decentralized controller programs are independent. For this
reason we chose a priori which behavior we are going to enforce. We have chosen to
allow the second component to do the a action. In this way we do not consider all possible
right behaviors of the components even if, at the end, also in this case, at the global level
the system is secure.

4.6 Synthesis of Web services orchestrator
In this section we show how it is possible to apply our approach based on partial model
checking, process algebra and satisfiability procedure for temporal logic, to deal with Web



98 Chapter 4

Services.
In particular we put our attention on the problem of the synthesis of a Web Service

orchestrator in a timed setting, i.e., we want to find an orchestrator process that, given a
network of services and a user’s request, is able to manage the services in order to satisfy
the request.

According to the Section 2.3.4, it is possible to model each service, described inBPEL,
by a timedCCS process.

We consider an orchestrator process as a monitor that coordinates and composes ser-
vices in order to satisfy a user’s request. We apply the same techniques used in [93, 98]
and described in Section 4.1 and Section 4.2 to guarantee that a system is secure.

Let us consider to have a network of services made up of n endpoints and that each of
them provides a service.i.e., we consider P1, . . . , Pn, n finite-state processes that model
the behavior of n services of the considered network. Being P1, . . . , Pn finite state pro-
cesses, the satisfiability problem that we are going to solve is decidable.

Moreover we assume that sets of actions of processes Pi are pairwise disjoint, i.e.,
let Li and Lj be the sets of actions respectively of Pi and Pj then Li ∩ Lj = ∅. This
assumption guarantees that all possible synchronization between processes are established
and coordinated by the orchestrator process.

Let φ be an equational µ-calculus formula that expresses a possible request of an user.
We want to find a processO, that is the orchestrator process, that by managing P1, . . . , Pn

satisfies the request φ.
In order to do this we define a process algebra operator, denoted by ., said orchestrat-

ing operator whose semantics definition is the following:

O τ−→ O′

O . P
τ−→ O′ . P

P τ−→ P ′
O . P

τ−→ O . P ′
O a−→ O′ P

a−→ P ′

O . P
a−→ O′ . P ′

O tick−→ O′ P
tick−→ P ′

O . P
tick−→ O′ . P ′

By applying the last semantics rule we consider the elapsing of time. As a matter of fact,
we consider the possibility that P performs a tick action. In this case the orchestrator
process O permits it.

Hence we can formalize the composition problem as follows:

∃O O . P |= φ (4.19)

where P = P1‖ . . . ‖Pn.
We want to reduce the validity problem described in the Formula (4.19) to a satis-

fiability problem by exploiting the partial model checking function with respect to the
orchestrating operator .. For this reason we define the partial evaluation function with re-
spect to . according to the operational semantics definition of the operator. Its definition
is given in Table 4.5. The following proposition, similar to Lemma 2.6, holds.



Synthesis of controller programs 99

Z//.P = Z.P

(Z =σ φD)//.P = ((Z.P =σ φ//.P )(D)//.P )

[α]φ//.P =

{ ∧
P

α−→P ′ [α]φ//.P ′ if P
α−→ P ′

T if P 6 α−→ α 6= τ

[τ ]φ//.P = [τ ](φ//.P ) ∧∧
P

τ−→P ′ φ//.P ′

〈α〉φ//.P =

{ ∨
P

α−→P ′〈a〉φ//.P ′ if P
α−→ P ′

F if P 6 α−→ α 6= τ

〈τ〉φ//.P = 〈τ〉(φ//.P ′) ∨
∨

P
τ−→P ′ φ//.P ′

φ1 ∨ φ2//.P = (φ1//.P ) ∨ (φ2//.P )
φ1 ∧ φ2//.P = (φ1//.P ) ∧ (φ2//.P )
T//.P = T
F//.P = F

Table 4.5: Partial evaluation function for . operator.

Proposition 4.14 Let P and Q be two finite state processes,

Q . P |= φ iff Q |= φ//.P

Hence, by using the partial evaluation function, we are able to evaluate the behavior of
the composition of services directly into the request of the user. Moreover it permits to
underline which is the behavior of the orchestrator in order to guarantee that the request
is satisfied according to the semantics definition of the operator ..

In order to understand better how partial model checking with respect to . operator
works, we show a simple example.

Example 4.2 Let φ = [α]φ′ be an user’s request. We want to evaluate the formula φ with
respect to the . operator and a process P . According to the rule for the box modality in
Table 4.5, the formula φ//.P is satisfied by O if, whenever P performs the action α, also
O performs the same action. This is taken into account by the first case of the formula,
i.e.,

∧
P

α−→P ′ [α]φ//.P ′ . On the other hand, if P does not performs α then the formula
becomes always T.

Applying the partial model checking we are able to reduce the problem described in For-
mula 4.19 as follows:

∃O O |= φ′

where φ′ = φ//.P .
According to Theorem 2.2, it is possible to find a model for a given equational µ-

calculus formula. Thus we synthesize an orchestrator process for a given request in a
timed setting.

Since we are considering finite-state processes, the following result holds.

Theorem 4.7 The problem described in Formula (4.19) is decidable.
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4.6.1 An example
Let us suppose there is an user that want to organize a trip. Let us suppose that a such
user makes the following request to a possible network of services:

After booking an hotel I need to receive a confirmation before booking a flight.

Let Actt = {b h, b f, b c, conf, τ, tick} be the set of actions, where b h permits to
book an hotel, conf is the confirmation from the hotel, b f is the booking of the flight
and b c permits to reserve a car. By assuming that a possible confirmation can arrive
immediately or after an amount of time, that we model by a tick action, we model the
user’s request by an equational µ-calculus formula φ as follows:

φ = 〈b h〉(〈conf〉〈b f〉T ∨ 〈tick〉〈conf〉〈b f〉T)

This means that after booking the hotel the confirmation arrives immediately and the user
books the flight or some time passes before the confirmation arrives and then the user
books the flight.

Let us consider two processes P1 and P2 such that

P1 = b h.tick.conf.0
P2 = b f.(τ.0 + P ′

2)
P ′

2 = b c.0

This means that P1 allows to book an hotel and gives back the confirmation and P2 allows
to book a flight or to book a flight and reserve a car.

After the application of partial model checking we obtain φ//.P = φ′ as follows:

φ′ = 〈b h〉〈tick〉〈conf〉〈b f〉T
Hence, as model for φ′, we can consider the following process:

O = b h.tick.conf.b f.0

Looking at the semantics definition of ., the execution ofO . P consists on the following
sequence of transitions:

b h.tick.conf.b f.0 . (b h.tick.conf0‖b f.(τ.0 + P ′
2))

↓ b h
tick.conf.b f.0 . (tick.conf0‖b f.(τ.0 + P ′

2))
↓ tick

conf.b f.0 . conf0‖b f.(τ.0 + P ′
2)

↓ conf
b f.0 . 0‖b f.(τ.0 + P ′

2)
↓ b f

0 . 0‖(τ.0 + P ′
2)

At this time the process ends without booking the car. This is exactly what the user re-
quired. As a matter of fact the orchestrating operator does not consider additional services
that are not required by the user, as, in this case, the reservation of a car.
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4.7 Related work on synthesis
In [87] the authors provided a preliminary work in which there are presented several tech-
niques for automatically synthesizing systems enjoying a very strong security property,
i.e., SBSNNI (see [49]). This is also called P BNDC in [54]. In both these works the
authors did not deal with control theory.

In [124] the author has defined the notion of enforcement mechanism as a mechanism
that work by monitoring a target system and terminating any execution that is about to
violate the security policy being enforced. The policy that enforcement mechanisms can
enforced are safety properties. Hence the author have defined security automata as finite
state automata that are able to recognize safety properties. Successively, starting from
the work of Schneider, Ligatti et al. in [19, 20] have analyzed the space of security
policies that can be enforced by monitoring programs at runtime. Such programs are
automata that examine the sequence of program actions and transform the sequence when
it deviates from the specified policy. The simplest such automaton truncates the action
sequence by terminating a program. Such automata are commonly known as security
automata. In Chapter 3, we have shown how we are able to model the behavior of these
automata by exploiting process algebras and logics. In this Chapter we have extended this
result by showing how our approach permits us also to synthesize a controller program
that effectively makes the system secure. The synthesis problem is not addressed nor in
[124] neither in [19, 20].

The synthesis of controllers is a framework addressed also in other research areas
(e.g., see [7, 75, 122, 135]).

Our works on controller mechanisms starts from the necessity to make systems secure
regardless the behavior of possible intruders, i.e., we suppose that the system we con-
sider works in parallel with a unknown components, that represent a possible malicious
agent, and we have developed mechanisms to guarantee the system is secure whatever the
behavior of the possible malicious agent is.

A lot of work has been done in order to study and analyze systems to guarantee the
they satisfy certain security properties. In this chapter we have presented how the logical
approach based on open system paradigm for the security analysis, in particular for the
specification and verification (see [85]) can be extended also to synthesize mechanisms
able to force a system to guarantee security properties.

In literature there are many works dealing with the sytnhesis problem. For instance, in
[63, 119] the authors have showed mechanisms to synthesize safety properties. However
they expressed safety properties by using linear time logic. They develop two method:
off-line and inline. In particular they deal with past time linear temporal logic, denoted
by ptLTL, in order to have a linear complexity. In fact every ptLTL formula may be en-
coding by an LTL one and the model checking for a LTL formula has linear complexity.
In particular the complexity of their algorithm is O(n×m) where n is the number of the
states of the trace and m is the size of the formula. In the off-line approach they create a
monitor that runs in parallel with the executing program, receiving events from the run-
ning program, and checking on-the-fly that the formulas are satisfied. In this approach
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the formulas to be checked are given in a separate specification. In the second inline ap-
proach, formulas are written as comments in the program test, and are then expanded into
the code.

Many other approaches to the controller synthesize problem are based on game theory
(see [5, 74, 82, 88]). As a matter of fact, different kinds of automata are used to model
properties that must be enforced. Games are defined on the automata in order to find
the structure able to satisfy the given properties. For instance in [5], the authors deal
with the synthesis of controllers for discrete event systems by finding a winning strategies
for a parity games. In this framework it is possible to extend the specifications of the
supervised systems as well as the constraints on the controllers by expressing them in
the modal µ-calculus. In order to express un-observability constraints, they propose an
extension of the modal mu-calculus in which one can specify whether an edge of a graph
is a loop. This extended µ-calculus still has the interesting properties of the classical one.
The method proposed in this paper to solve a control problem consists in transforming this
problem into a problem of satisfiability of a µ-calculus formula so that the set of models
of this formula is exactly the set of controllers that solve the problem. On the contrary, we
synthesize controllers that work by monitoring only the possible un-trusted component of
the system. Moreover they do not addressed any security analysis, i.e., they synthesize
controller for a given process that must be controlled. On the contrary we synthesize
controllers that make the system secure for whatever behavior of unknown components.
Our controller are synthesized without any information about the process they are going
to control.

In [113, 117, 118] the authors developed a theory for the synthesis of the maximally
permissive controller. The authors have proposed general synthesis procedure which al-
ways computes a maximal permissive controller when it exists. However they generate
a maximal permissive controller given knowing the behavior of the process they are go-
ing to control. On the contrary, we do not nothing a priori on the possible behavior of a
possible malicious agent whose behavior we want to control.

Related work on synthesis of controller for distributed systems

In Section 4.5, we have proposed a framework based on contexts and logic to deal with
the problem of the synthesis of controllers for distributed systems. As a matter of fact, we
have proposed two different ways to enforce security properties also when we are treating
systems in which more then one components is unspecified.

In [10] the problem of the synthesis of controllers is studied. They start from their
previous work, [11], in which they deal with the decentralized control problem of several
communicating supervisory controllers, each with different information, that work in con-
cert to exactly achieve a given legal sub-language of the uncontrolled system’s language
model. In [10] the author presents a procedure for finding an optimal communication
policy, if one exists, for the a class of finite controllers. In our work, in addition to ex-
plicit un-trusted components, we deal with the problem of the distributed control but we
consider independent controllers, i.e., we present a method to synthesize decentralized
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controllers that work independently one each other on different unspecified components
of the system in such a way the whole system is secure.

It is worth also to mention approaches that directly try to build correct systems (rather
than controlling potentially incorrect ones as we do). For instance in [37] the authors
present an automatic synthesis procedure for distributed system having a flexible spec-
ification language and a reasonable computational complexity. They use asynchronous
automata.

Related work on synthesis of Web Services orchestration

In the literature a lot of works deal with web services composition through formal meth-
ods. For instance several works deal with a possible modeling of by process algebras (see
[8, 9, 31, 47, 123]) or by automata (see [115]).

In [14, 16] the authors have developed a static approach to deal with the composition
of web services problem by the usage of plans. In particular they use a distributed, en-
riched λ-calculus for describing networks of services. Both, services and their clients,
can protect themselves, by imposing security constraints on each other’s behavior. Then,
service interaction results in a call-by-property mechanism (see [15]), that matches the
client requests with services.

The planning approach is followed also by Pistore et al. (see e.g., [109, 110]) in order
to generate an orchestrator. As a matter of fact, the authors have proposed a novel planning
framework for the automated composition of Web Services in which, given a set of BPEL
abstract specifications of published Web Services, and given a composition requirement,
they generate automatically a BPEL concrete process that interacts asynchronously with
the published services. Basically they compose all services and then, after building all
possible plans, they extract the plan that satisfies the user’s request.

In Section 4.6, we treated the problem of the automatic composition of services by
exploiting a different approach with respect to the previous cited works. Our approach
permits us to treat the problem also in a timed setting, topic that is not addressed in [109,
110]. Our approach is general because we can define other process algebra orchestrating
operator and, by defining a partial model checking function according to the operational
semantics definition of such operators, we can combine services in different ways.

Also Zavattaro et. al deals with the problem of composition on services. They have
studied choreography more than orchestration. They have introduced a formal model for
representing choreography. Their model is based on a declarative part and on a conver-
sational one. The declarative part of their choreography formal model is based on the
concept of role that represents the behavior that a participant has to exhibit in order to
fulfill the activity defined by the choreography. Each role can store variables and exhibit
operations.

In [30] the authors have formalized the concept of orchestrator as a process, associ-
ated to an identifier, that is able to exchange information, represented by variables, with
other processes. This model takes inspiration form the abstract non-executable fragment
of BPEL and abstracts away from variables values focussing on data-flow. Orchestrators
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are executed on different locations, thus they can be composed by using only the parallel
operator (‖). Processes can be composed in parallel, sequence and alternative composi-
tion. Communication mechanisms model Web Services One-Way and Request-Response
operations. In our approach the communication between services is managed by the or-
chestrator process that permits interactions between several services. By partial model
checking we evaluate the behavior of the composition in the request formula and the or-
chestrator process is a monitor that guarantees the composition behaves according the
request. In this way we can synthesize the orchestrator process as a model of the resulting
formula.

No one of these papers treat the synthesis of orchestrator problem in a timed setting.
In the literature there are some works on modeling a timed BPEL with formal method.
For instance, in [71] the authors propose the Web Service Timed Transition System model,
which adopts the formalism of timed automata for capturing the specific aspects of Web
Service domain. In this formalism, the fact that the operation takes certain amount of
time is represented by time increment in the state, followed by the immediate execution
of the operation. Intuitively, WSTTS is a finite-state machine equipped with set of clock
variables. The values of these clock variables increase with the elapsing of time. Thus a
Web Service composition is represented as a network of several such automata, where all
clocks progress synchronously. The semantic of WSTTS is defined as a labeled transition
system, where either the time passes or a transition from one state to another immediately
takes place. In [21, 22] the authors have discussed the augmentation of business protocols
with specifications of temporal abstractions, focusing in particular on problems related to
compatibility and replaceability analysis. In [43] the authors, firstly, have defined a timed
automata semantics for the Orc language, introduced in order to support a structured
way of orchestrating distributed web services. Orc is intuitive because it offers concise
constructors to manage concurrent communication, time-outs, priorities, failure of sites
or communication and so forth. The semantics of Orc is also precisely defined. Timed
automata semantics is semantically equivalent to the original operational semantics of
Orc. In [76] the authors introduce COWS, calculus for orchestration of web services,
as a new foundational languages for service oriented computing, whose design has been
influenced by BPEL. It combines in an original way a number of ingredients borrowed
from process calculi.

However all these papers deal with the modeling of web services in a timed setting
but they do not treat the problem of the synthesis of an orchestrator process.
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A Tool for the Synthesis

In this chapter we describe the tool that we have implemented in order to automatically
generate controller programs for enforcing safety properties. As a matter of fact we have
developed a tool for generating controller program for a chosen controller operator for
safety properties, i.e., one among the controller operators .T , .S , .I and .E defined in
Section 3.2.1.

The tool consists of two main modules, going after the theoretical approach described
in the previous two chapters. The first one is the MuDiv tool developed by Nielsen and
Andersen, that implements the partial model checking function for process algebra oper-
ators (see [2, 3]) and a second one is the Synthesis module implemented in O’Caml 3.09
(see [78]).

The Mudiv tool takes in input a system S and a formula of equational µ-calculus, φ,
and calculate φ′ = φ//S

that is the partial evaluation of φ with respect to the system S.
The second part implements a satisfiability procedure for formulas in that described

safety porpoerties (see Section 4.1) referring to the satisfiability procedure developed by
Walukiewicz in [131] for a modal µ-calculus formula. In particular it generates a model
for φ′, that is the output of the MuDiv tool. This model is also a controller program for a
one of the four controller operators .T , .S , .I and .E . It is possible to note that if φ is in
safety properties, i.e., a formula without µ fixpoint, also φ′ is a formula of the same kind
(see Table 2.14).

5.1 Synthesis tool
Now we describe more in detail the architecture of our implementation. As we have
already said, it takes in input a system S and a formula φ and gives in output a process
Y , described as a labeled graph, that is a model for φ′, the formula obtained by the partial
evaluation of φ by S. According to the theory developed in previous chapter a such Y
guarantees S‖(Y . X) satisfies φ whatever X is.

The tool is made up of two main parts (see Figure 5.1.a)): The first part implements the
partial model checking function; the second one, by referring the satisfiability procedure,
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−controllers.ml

MuDiv

b) A zoom of the Synthesis module

a) The architecture of the whole tool

Translator

−calc.ml

−fparser.ml
−flexer.ml

Synthesis−convert.ml
−types_for.ml

−goodgraph.ml
−model.ml
−simplify.ml

−main.ml
−printGraph.ml

Synthesis
φ′ = φ//S Y

Y

φ, S

φ′ = φ//S

φ′mod

Figure 5.1: Architecture of the tool.

generates a process Y . In particular, it permits to obtain a controller program Y for each
controller operators .K.

In Figure 5.1 there is a graphical representation of the architecture of the whole tool
that we explain in more detail in the following section.

5.1.1 Architecture of the tool

As we have already said, the tool is made up of two main parts: The MuDiv module and
the Synthesis module.

MuDiv tool

The first module of our tool consists in the MuDiv module. It is a tool for verifying
concurrent systems. It is based on the technique of partial model checking described in
[3]. The technique uses the equational µ-calculus to express the modal requirements and
parallel composition of finite labeled transition systems to construct the model.

It has been developed in C++ by J.B. Nielsen and H.R. Andersen. The result is a
non interactive batch program, where the input is provided as one or more input files,
describing the model and the requirements. The output is the result of the model check
and it is presented on the standard output or written to a file.
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Synthesis module

The second module of our tool is the Synthesis one. It is able to build a model for a given
modal µ-calculus formula by exploiting the satisfiability procedure. It is developed in
O’caml 3.09 (see [78]) and it is described better in Figure 5.1.b) in which we can see that
it consists of two submodules: the Translator and the Synthesis.

The Translator module. It manages the formula φ′, output of the MuDiv module in
order to obtain a formula that can be read from the Synthesis module. It “translates” φ′

from an equational to a modal µ-calculus formula. This translation is necessary because
the Walukiewicz’s satisfiability procedure was developed for modal µ-calculus formulas
instead the partial model checking was developed for equational µ-calculus ones. It is
important to underline that we do not implement the satisfiability procedure described by
Walukievicz for all the µ-calculus formulas. Anyway our implementation is referred to it.

The Translator module consists in several functions:

• fparser.ml and flexer.ml that permit to read the MuDiv output file and
analyze it as input sequence in order to determine its grammatical structure with
respect to our grammar.

• The function calc.ml calls flexer.ml and fparser.ml on a specified file.
In this way we obtain an equational µ-calculus formula φ′ according to the type that
we have defined in

• type for.ml. The last function, convert.ml, translates the equational µ-
calculus formula φ′ in the modal one φ′mod.

The Synthesis module. It implements a satisfiability procedure for safety properties,
referred to satisfiability procedure described by Walukievicz in [131].

Given a modal µ-calculus formula, φ′mod, we build a graph by following the set of
axioms of the satisfiability procedure. For that reason we define the type graph as a
list of triple (n, a, n) ∈ GNode×Act×GNode where GNode is the set of graph nodes.
Each node of the graph represents a state L(n) of the graph. Each node is characterized
by the set of formulas that it satisfies.

In model.ml we build the entire graph for the given formula φ′mod. It takes as input
a pair in GNode × Graph and, in a recursive way, builds the graph. Referring to [131].
we check if the graph that we have generated is effectively a model or a refutation for
φ′mod by using the function goodgraph.ml. This function takes in input a graph and
gives back the boolean value TRUE if the graph is a model, FALSE otherwise and it halts.
These two functions, model.ml and goodgraph.ml, work in pair in order to find a
graph in which φ′mod is satisfied. At the beginning we give in input a node labeled by φ
and Empty Graph, that represents the empty graph. Then, in a recursive way, we build
the graph by checking it at each step by applying the function goodgraph. ml. It is
important to note that the graph that we generate has some transitions that are labeled by
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an action and some transition that come from the semantics of logical operations. If we
are able to build the entire graph we use the function simplify.ml to extract exactly
the process that is a model for φ′mod. Such process consists in the graph in which all nodes
that are linked by logical operation are considered as a single node. In this way at the end
we obtain a labeled transition system that represents a process. Such process is a model
for φ′mod.

In order to synthesize a process Y that is a model of φ′mod as well as a controller pro-
gram for a chosen controller operator, we have implemented the function controllers.
ml. By using this function we relabel Y according with the controller operator we want
to use as it is prescribed by Proposition 4.2. In this way we obtain four different processes
Y = Y [fT ], because fT is the identity function on Act, Y [fS], Y [fI ] and Y [fE].

In this submodule there are other functions:

• printGraph.ml that permits to print the graph as a sequence of nodes, each of
them labeled by a list of formulae, connected one each other by arrows labeled by
an action.

• The function main.ml that calls all the other functions and permits to create the
executable file (.exe).

Performance

For our experiments we have used a pc with a CPU Intel core duo T2600 2.16GHz, 1GB
RAM and an operative system linux Fedora Core 6 kernel 2.6.19.1.

We have observed the behavior of the Synthesis module, i.e., we have analyzed the
performance only of this module because it is the part of the tool that effectively generates
the controller program.

We have tested several formulas with different dimension and we have noticed that the
amount of time spent from the machine to generate the monitors is directly proportional to
the dimension of the formulas we have to enforce, i.e., the amount of spent time increases
with the size of the formula. The results we have observed are summarize in Table 5.1.

Policy Size User time System time
Only action a are allowed 7 0m0.005s 0m0.001s
It isn’t allowed open a new file while another file is open 16 0m0.007s 0m0.004s
Chinese Wall 16 0m0.006s 0m0.000s
It isn’t allowed performing three open action sequentially 25 0m0.021s 0m0.008s

Table 5.1: Synthesis module experiments results.
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5.1.2 A case study
In order to explain better how our tool works we present an example in which a system
must satisfy a safety property. We generate a controller program for each of the four
controllers defined in Section 3.2.1.

Let S be a system. We suppose that all users that work on S have to satisfy the
following rule:

You cannot open a new file while another file is open.

It can be formalized by an equation system D as follows:

Z1 =ν [τ ]Z1 ∧ [open]Z2

Z2 =ν [τ ]Z2 ∧ [close]Z1 ∧ [open]F

Truncation

We halt the system if an user try to open a file while another is already open. In this case
we generate a controller program Y for Y .T X and we obtain:

Y = open.close.Y

Y is a model for D.
In order to show how it works as controller program for Y .T X we suppose to have

a possible user X that tries to open two different files. Hence X = open.open.0.
Applying Y .T X we obtain:

Y .T X =

open.close.Y .T open.open.0
open−→ close.Y .T

open.0

Since Y and X are going to perform a different action, i.e. Y is going to perform close
while X is going to perform open, the whole system halts.

Suppression

We suppose to decide to suppress any possible open action that can violate the property
D. In this case we generate a controller program Y for the controller Y .S X . We obtain:

Y = −open.Y + open.Y ′

Y ′ = −open.Y ′ + close.Y

Let we suppose to be in the same scenario described for the previous operator. Let X be a
user that tries to open two different files. Hence X = open.open.0. Applying Y .S X
we obtain:

Y .S X = −open.Y + open.Y ′ .S open.open.0
open−→ −open.Y ′ + close.Y .S open.0

τ−→ Y ′ .S 0

The whole system halts again because, even if a wrong action is suppressed, this con-
trollers cannot introduce right actions.
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Insertion

Let Y be a controller program for the controller Y .I X . We obtain:

Y = +open.close.open.Y + open.Y ′

Y ′ = +open.close.open.Y ′ + close.Y

We consider X that tries to open two different files. Hence X = open.open.0. We
obtain:

Y .I X =
+open.close.open.Y + open.Y ′ .I open.open.0
open−→ +open.close.open.Y ′ + close.Y .I open.0
close−→ open.Y ′ .I open.0

open−→ Y ′ .I 0

We can note the Y permits X to perform the first action open. Then it checks that X is
going to perform another open by the action +open. Hence Y inserts an action close.
After this action it permits X to perform the action open. Since X does not perform any
another actions the whole system halts.

Edit

We consider to apply the controller operator Y .E X . The controller program that we
generate is the following:

Y = −open.Y + +open.close.open.Y + open.Y ′

Y ′ = −open.Y ′ + +open.close.open.Y ′ + close.Y

We suppose again that X = open.open.0. We have:

Y .E X =
−open.Y + +open.close.open.Y + open.Y ′.E

.Eopen.open.0
open−→

−open.Y ′ + +open.close.open.Y ′ + close.Y .E

.Eopen.0
close−→ open.Y ′ .E .Eopen.0

open−→ Y ′ .E 0

Also in this case, after the first action open, Y checks if X is going to perform another
open by the action +open and then it inserts the action close in order to satisfy the
property D. Then it permits to perform another open action.
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Conclusions and future work

In previous chapters we have illustrated some results towards a uniform theory for enforc-
ing security properties. In particular, we have extended a framework based on process
calculi and logical techniques, that have been shown to be suitable to model and verify
several security properties, to tackle also synthesis problems of secure systems.

Using a framework for the specification and verification of security properties, we
deal with the synthesis of secure systems, by showing:

1. several semantics definitions of process algebra controller operators;

2. how it is possible to synthesize controller programs for such controller operators.

Here, we summarize the results of this thesis.

Definition of enforcing mechanism. The first thread regards the run-time enforcement
of security properties. Our approach is based on the open system paradigm. A
possible intruder, or a malicious agent, is modeled as an unknown component of the
system. Having to analyze a partially specified system, we wonder if there exists a
method to guarantee that such an open system behaves correctly, i.e., according to a
given security property, whatever the behavior of the possible malicious component
is.

To fulfill run-time enforcement, we propose two different mechanisms:

Process algebra controller operators. We define distinguished process algebra con-
troller operators . for the enforcement of safety properties and information
flow properties.
These controller operators work by only monitoring the possible un-secure
components, because the known part of the system is evaluated into the for-
mula by using the partial model checking technique. This is an advantage
of our approach because it could not be always possible to monitor the whole
distributed architecture, while it could be possible for some of its components.
In particular, we would like to have a method that only constraints un-trusted
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components, e.g., downloaded applets. Indeed, often not all the system needs
to be checked, or it is simply not convenient to check it as a whole.
Moreover, we define controller contexts to deal with distributed systems with
more than one unknown component. We develop two mechanisms of enforce-
ment: a centralized mechanism and a decentralized one.

On-line partial model checking. This method uses the idea that at run-time we
can consider only the execution trace of the unknown component. For that
reason, at each step of the computation, we can evaluate, by partial model
checking with respect to the prefix operator, if the action that the target is
going to perform violates the security of the system or not.

Synthesis of controller program for the given controller operators. The second thread
regards the possibility to generate a process guaranteeing that our system is secure
whatever the behavior of its unknown component is. Our approach permits to treat
several problems by using an unique framework. As a matter of fact, we synthesize
controller programs for enforcing safety properties and information flow properties.
Also, we are able to deal with systems in a timed setting and with parameterized
systems. Finally, we treat the problem of properties composition.

We show that it is possible to use a uniform way, based on few concepts of concur-
rency and temporal logic theory for specifying, verifying and synthesizing secure
systems.

By using the same approach based on open systems, we solve the problem of finding
a possible implementation of a controller program, that, by monitoring the target,
replaces the unknown component, in such a way that the whole system is secure.

For each controller operator . we study the behavioral equivalence that holds be-
tween the process Y . X and the controller program Y . According to a given oper-
ator ., we are able to enforce safety properties or information flow properties. It is
worth noticing that controller operators for safety properties (.K) are less strict than
controller operators for information flow (.∗). As a matter of fact, Y .K X ¹ Y ,
on the contrary Y .∗ X ≈ Y . This means that, also according to the semantics
definition of these operators, whenever we are going to enforce an information flow
property, the behavior of the target is almost completely covered by the behavior of
the controller program.

In both cases it is possible to replace Y .X with Y . Thus, according to the security
property we are considering, we reduce our original problem to a validity problem.
In this way, by applying a satisfiability procedure, we obtain a controller program
Y that is a model for the formula we want to enforce and a controller program for
the controller operator we have chosen. However, the satisfiability problem for µ-
calculus formulas is decidable in exponential time in the dimension of the formula.

Moreover, we solve the synthesis problem in several scenarios.
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• We synthesize controller contexts to deal with distributed systems with more
than one unknown component, for both centralized and decentralized mecha-
nisms.
In the first case, we generate a unique controller program that monitors all
the unspecified components. In the second case, we synthesize a controller
program for each unspecified components of the system in such a way that,
by composing the properties enforced by each controller program, we obtain
the security property that the global system must satisfy. Here, we define con-
troller contexts for enforcing safety properties, as future work we are working
to extend this results also to information flow properties.

• By using our approach, we are able to synthesize also orchestrator processes
for composing web services. We define a process algebra operator for or-
chestrating processes and we define the partial model checking function with
respect to the semantics definition of this operator. As future work, we aim to
apply our approach to allow a secure composition of web services.

The implementation phase. We present a tool for the synthesis of a controller program.
The tool merges our implementation of a satisfiability procedure based on the Walu-
kiewicz’s algorithm and the partial model checking technique. In particular, starting
from a system and a formula describing a security property, the tool generates a
process that, by monitoring a possible un-trusted component, guarantees that the
system with an unspecified component satisfies the required formula whatever the
target is.
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[31] J. Cámara, C. Canal, J. Cubo, and A. Vallecillo. Formalizing wsbpel business
processes using process algebra. Electr. Notes Theor. Comput. Sci., 154(1):159–
173, 2006.

[32] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Supervisory control of discrete
event processes with partial observations. IEEE, Trans. Automat. Contr., 33:249–
260, 1988.

[33] R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the modal
mu-calculus. In CAV ’92: Proceedings of the Fourth International Workshop on
Computer Aided Verification, pages 410–422, London, UK, 1993. Springer-Verlag.

[34] R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the
alternation-free modal mu-calculus. In K. G. Larsen and A. Skou, editors, CAV,
volume 575 of Lecture Notes in Computer Science, pages 48–58. Springer, 1991.

[35] F. Corradini, D. D’Ortenzio, and P. Inverardi. On the relationships among four
timed process algebras. Fundam. Inform., 38(4):377–395, 1999.



118 Bibliography

[36] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static-
analysis of programs by construction or approximation offixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 238–252, Los Angeles, California, 1977. ACM
Press, New York, NY.
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Appendix A

Technical Proofs

A.1 Technical proofs of Chapter 3
In this section we provide the proofs of results described in Chapter 3.

In order to prove Propositions 3.1, 3.2, 3.3, 3.4, firstly we note that in our controller
operators the halt condition is not explicitly given because this occurs when there are
no rules that could be applied, i.e., when premises of all rules are not verified. As we
have already noticed, also in security automata described in Section 3.2.1, the action τ
in the stop rule of each automaton is an internal action that is not really performed. So
in our proofs, without loss of validity, we can omit the stop case because, looking at the
semantics of each operator, it is easy to understand that the stop rule of each automata is
equivalent to the halt condition of respectively operator.

In particular we prove that each security automaton is strong bisimilar to the respective
controller operator. This guarantees that they satisfy the same µ-calculus formula (see
[116]).

Proposition 3.1 Let

Eq =
∑

a∈Act

{
a.Eq′ iff δ(a, q) = q′

0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of a truncation automaton (Q, q0, δ) is also derivable from Eq .T F and vice-versa.

Proof: Let RT be the following relation:

RT = {((σ, q), Eq .T F ) : (σ, q) ∈ −→Act×Q, F
σ7→}

where F
σ7→ means that F will perform a sequence of actions σ. We prove that RT is a

strong bisimulation equivalence.

• Assume that the truncation automata performs a T-Step (σ, q)
a−→T (σ′, q′). Hence

σ = a; σ′.
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We want to prove that:

∃P E .T F
a−→ P ∧ ((σ′, q′),P) ∈ RT

For the definition of the process Eq we have that Eq a−→ Eq′ because, referring to
δ(a, q), the action a it is allowed in the state q.

According to the definition of RT , we know that F
σ7→. Hence exists F ′ such that

F
a−→ F ′ σ′7→, since σ = a; σ′.

According to the semantic definition of .T ,

E
a−→ E ′ F

a−→ F ′

E .T F
a−→ E ′ .T F ′

if Eq a−→ Eq′ and F
a−→ F ′ then Eq .T F

a−→ Eq′ .T F ′. Hence, the process P
exists and it is Eq′ .T F ′.

• Assume that Eq .T F
a−→ Eq′ .T F ′ and F ′ σ′7→.

We want to prove that:

∃(σ, q)′ (σ, q)
a−→T (σ, q)′ ∧ (Eq′ .T F ′, (σ, q)′) ∈ RT

Referring to the semantics definition of .T operator we have that Eq a−→ Eq′ . This
means that δ(a, q) = q′. Hence σ = a; σ′. For the rule T-Step, (σ, q)

a−→T (σ′, q′).
So the couple that we are looking for is (σ′, q′).

2

Proposition 3.2 Let Eq,ω =

∑
a∈Act





a.Eq′,ω iff ω(a, q) = + and δ(a, q) = q′

−a.Eq′,ω iff ω(a, q) = − and δ(a, q) = q′

0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of a suppression automaton (Q, q0, δ, ω) is also derivable from Eq,ω .S F and vice-versa.

Proof: The scheme of this proof is similar to the one used into the previous proof. Let

RS = {((σ, q), Eq,ω .S F ) : (σ, q) ∈ −→Act×Q,F
σ7→}

be a relation. We have to prove that it is a strong bisimulation relation.
According to the definition of the transition rules of suppression automata and .S

operators, we can divide this proof in two cases:



Technical Proofs 129

• Let ((σ, q), Eq,ω .S F ) be in RS . Let us suppose that (σ, q)
a−→S (σ′, q′) then

σ = a; σ′ and Eq,ω a−→ Eq′,ω. We want to prove that:

∃P Eq,ω .S F
a−→ P ∧ ((σ′, q′),P) ∈ RS

According to the definition of RS , exists F ′ such that F
a−→ F ′ σ′7→. Hence, for the

first rule of .S and by definition of Eq,ω, using a similar reasoning of the proof of
Proposition 3.1, we have the thesis by taking P .

= Eq′,ω .S F ′.

Let (Eq,ω.S F, (σ, q)) be inRS and Eq,ω.S F
a−→ Eq′,ω.S F ′. We should prove that

there exists a (σ, q)′ such that (σ, q)
a−→S (σ, q)′ and (Eq′,ω .S F ′, (σ, q)′) ∈ RS .

For the rule S-StepA we have that (σ′, q′) is the solution we are looking for. The
reasoning is similar to one made in the previous proof.

• Let ((σ, q), Eq,ω .S F ) be in RS and (σ, q)
τ−→S (σ′, q′). We have to prove that

∃P Eq,ω .S F
τ−→ P ∧ ((σ′, q′),P) ∈ RS

According to the definition of Eq,ω we have that Eq,ω −a−→ Eq′,ω. Since σ = a; σ′

then F
a−→ F ′ σ′7→. Hence P .

= Eq′,ω .S F ′ and ((σ′, q′), Eq′,ω .S F ′) ∈ RS .

Now assume that (Eq,ω .S F, (σ, q)) be in RS and Eq,ω .S F
τ−→ Eq′,ω .S F ′. We

prove that

∃(σ, q)′ (σ, q)
τ−→S (σ, q)′ ∧ (Eq′,ω .S F ′, (σ, q)′) ∈ RS

For the rule S-StepS we have that (σ′, q′) is the solution we are looking for. The
reasoning is similar to the previous one. As a matter of fact, looking at the semantics
definition of the suppression automaton we have two possible transitions labeled by
τ . However, we require that (σ, q)′ also satisfies that (Eq′,ω .S F ′, (σ, q)′) ∈ RS .
Hence, since E changes state and goes in the state q′, we chose (σ′, q′) as solution.

2

Proposition 3.3 Let Eq,γ =

∑
a∈Act





a.Eq′,γ iff δ(a, q)
+a.b.Eq′,γ iff γ(a, q) = (b, q′)
0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of an insertion automaton (Q, q0, δ, γ) is also derivable from Eq,γ .I F and vice-versa.

Proof: Let RI be the following relation:

RI = {((σ, q), Eq,γ .I F ) : (σ, q) ∈ −→Act×Q,F
σ7→}

We want to prove that RI is a strong bisimulation. We have two cases:
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• The first case is similar of Proposition 3.1. As a matter of fact, let ((σ, q), Eq,γ .I F )
be in RI and (σ, q)

a−→I (σ′, q′). We have to prove that

∃P Eq,γ .I F
a−→ P ∧ ((σ′, q′),P) ∈ RI

By the first rule of .I and by definition of Eq,γ ,using a similar reasoning of the
proof of Proposition 3.1, we have the thesis by taking P .

= Eq′,γ .I F ′.

Let (Eq,γ .I F, (σ, q)) be inRI and Eq,γ .I F
a−→ Eq′,γ .I F ′. We should prove that

there exists a (σ, q)′ such that (σ, q)
a−→I (σ, q)′ and (Eq′,γ .I F ′, (σ, q)′) ∈ RI . For

the rule I-Step we have that (σ′, q′) is the solution we are looking for. The reasoning
is similar to the previous one.

• Let ((σ, q), Eq,γ .I F ) be in RI and (σ, q)
b−→I (σ, q′). We have to prove that:

∃P Eq,γ .I F
b−→ P ∧ ((σ, q′),P) ∈ RI

For the definition of Eq,γ , we have that Eq,γ +a.b−→ Eq′,γ . According to the definition

of RI , F
σ7→, hence exists F

a;σ′7→ . Then, for the second rule of .I , Eq,γ .I F
b−→

Eq′,γ .I F . So P is Eq′,γ .I F and ((σ, q′), Eq′,γ .I F ) ∈ RI .

Now, let (Eq,γ .I F, (σ, q)) be in RI and Eq,γ .I F
b−→ Eq′,γ .I F . We prove that

∃(σ, q)′ (σ, q)
b−→I (σ, q)′ ∧ (Eq′,γ .I F, (σ, q)′) ∈ RI

For the rule I-Ins we have that (σ, q′) is the solution we are looking for. The reason-
ing is similar to the previous one.

2

Proposition 3.4 Let

Eq,γ,ω =
∑

a∈Act





a.Eq′,γ,ω iff δ(a, q) = q′ and ω(a, q) = +
−a.Eq′,γ,ω iff δ(a, q) = q′ and ω(a, q) = −
+a.b.Eq′,γ,ω iff γ(a, q) = (b, q′)
0 othw

be a controller program and let F be the target. Each sequence of actions that is an output
of an edit automaton (Q, q0, δ, γ, ω) is also derivable from Eq,γ,ω .E F and vice-versa.

Proof: In order to prove this lemma, we give the relation of bisimulationRE which exists
between edit automata and the controller operator .E as follows:

RE = {((σ, q), Eq,γ,ω .E F ) : (σ, q) ∈ −→Act×Q,Eq,γ,ω .E F ∈ P , F
σ7→}

We have to prove that it is a strong bisimulation.
We have three cases and their proofs following the reasoning made in the proofs of

Proposition 3.2 and Proposition 3.3.
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• Let ((σ, q), Eq,γ,ω .E F ) be in RE and (σ, q)
a−→E (σ′, q′). We have to prove that:

∃P Eq,γ,ω .E F
a−→ P ∧ ((σ′, q′),P) ∈ RE

In this case, Eq,γ,ω a−→ Eq′,γ,ω. Moreover F
a−→ F ′ σ′7→ then Eq,γ,ω .E F

a−→
Eq′,γ,ω .E F ′. Thus P is Eq′,γ,ω .E F ′ and ((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE .

Let (Eq,γ,ω .E F, (σ, q)) be in RE and Eq,γ,ω .E F
a−→ Eq′,γ,ω .E F ′. We have to

prove that:

∃(σ, q)′ (σ, q)
a−→E (σ, q)′ ∧ (Eq′,γ,ω .E F ′, (σ, q)′) ∈ RE

For the rule E-StepA we have that (σ′, q′) is the solution we are looking for. The
reasoning is similar to the one made in the previous proof.

• Let ((σ, q), Eq,γ,ω .E F ) be in RE and (σ, q)
τ−→E (σ′, q′). We have to prove that:

∃P Eq,γ,ω .E F
τ−→ P ∧ ((σ′, q′),P) ∈ RE

We have that Eq,γ,ω −a−→ Eq′,γ,ω. Moreover F
a−→ F ′ σ′7→ then Eq,γ,ω .E F

τ−→
Eq′,γ,ω .E F ′. Thus (Eq,γ,ω .E F )′ is Eq′,γ,ω .E F ′ and ((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE .

Let (Eq,γ,ω .E F, (σ, q)) be in RE and Eq,ω .E F
τ−→ Eq′,γ,ω .E F ′. We prove that

∃(σ, q)′ (σ, q)
τ−→E (σ, q)′ ∧ (Eq,γ,ω .E F ′, (σ, q)′) ∈ RE

For the rule E-StepS we have that (σ′, q′) is the solution we are looking for. The
reasoning is similar to the previous one.

• Let ((σ, q), Eq,γ,ω .E F ) be in RE and (σ, q)
b−→E (σ, q′). We prove that

∃P Eq,γ,ω .E F
b−→ P ∧ ((σ, q′),P) ∈ RE

According to the third rule of .E , if Eq,γ,ω cannot performs the action a to go
into the stateEq′,γ,ω, i.e., the action a is not allowed to be performed in the state
q according to the definition of the function γ, and Eq,γ,ω +a.b−→ Eq′,γ,ω, F

a−→
F ′ then Eq,γ,ω .E F

b−→ Eq′,γ,ω .E F . So (Eq,γ,ω .E F )′ is Eq′,γ,ω .E F and
((σ, q′), Eq′,γ,ω .E F ) ∈ RE .

Let (Eq,γ,ω .E F, (σ, q)) be in RE and Eq,γ,ω .E F
b−→ Eq′,γ,ω .E F . We prove that

∃(σ, q)′ (σ, q)
b−→ (σ, q)′ ∧ (Eq′,γ .E F, (σ, q)′) ∈ RE

For the rule E-Ins we have that (σ, q′) is the solution we are looking for. The rea-
soning is similar to the previous one.

2
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A.2 Technical proofs of Chapter 4
In this section we provide the proofs of results described in Chapter 4.

Proposition 4.2 For every K ∈ {T, S, I, E} Y .K X ¹ Y [fK] holds, where fK is a
relabeling function depending on K. In particular, fT is the identity function on Act and

fS(a) =

{
τ if a = −a
a othw fI(a) =

{
τ if a = +a
a othw

fE(a) =

{
τ if a ∈ {+a,−a}
a othw

In order to prove this proposition we prove the following four lemmas. The proof of the
proposition comes trivially from the proofs of the lemmas.

Lemma A.1 The following relation holds

Y .T X ¹ Y [fT ] (A.1)

where fT is the identity function.

Proof: We prove that the following relation is a weak simulation:

ST = {(E .T F,E[fT ])|E, F ∈ E}

Note that being fT the identity function we could omit it without loss of generality.
Assume that E .T F

a→ E ′ .T F ′ with the additional hypothesis that F
a→ F ′ then, by

the rule of .T we have that E
a⇒ E ′ and (E ′ .T F ′, E ′) ∈ ST according to the semantics

definition of .T .
It is not difficult to note that, following a similar reasoning it is also possible to prove

that Y .T X ¹ X .

2

Lemma A.2 The following relation holds

Y .S X ¹ Y [fS] (A.2)

where fS is the same of Proposition 4.2.

Proof: We prove that the following relation is a weak simulation:

SS = {(E .S F, E[fS])|E,F ∈ E}
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There are two possible cases: The first one is when E .S F performs the action a. The
proof of this case is the same of the proof of Lemma A.1. The second case occurs when
E .S F

τ−→ E ′ .S F ′. This means that E
−a−→ E ′ and F performs an action a that can

not be visible from an external observer. Applying the relabeling function fS to E we
obtain E1 = E[fS] such that E1

τ−→ E ′
1, where E ′

1 is E ′[fS] and (E ′ .S F ′, E ′
1) ∈ SS for

semantics definition of .S .

2

Lemma A.3 The following relation holds

Y .I X ¹ Y [fI ] (A.3)

where fI is the same of Proposition 4.2.

Proof: We prove that the following relation is a weak simulation:

SI = {(E .I F,E[fI ])|E, F ∈ E}

There are two possible cases: The first one is when E .I F performs the action a. The
proof of this case is the same of the proof of Lemma A.1. The second case occurs when
E .I F

b−→ E ′ .I F means that E
+a.b−→ E ′ and F performs an action a that E should

not perform in order to go in the state E ′. Applying the relabeling function fI to E we
obtain E1 = E[fI ] such that E1

b
=⇒ E ′

1. where E ′
1 is E ′[fI ] and (E ′ .S F ′, E ′

1) ∈ SI for
semantics definition of .I .

2

Lemma A.4 The following relation holds

Y .E X ¹ Y [fE] (A.4)

where fE is the same of Proposition 4.2.

Proof: We prove that the following relation is a weak simulation:

SE = {(E .E F,E[fE])|E, F ∈ E}

There are three possible cases: The first one occurs when E .E F performs the action a.
The proof of this case is the same of the proof of Lemma A.1. The other two cases are the
following:

• if E .E F
τ−→ E ′ .E F ′ then we want to find a E ′[fE] such that E[fE]

τ−→ E[fE]′.
Referring to the second rule of the edit automata E .E F

τ−→ E ′ .E F ′ when
E

−a−→ E ′. Through the relabeling function fE we have E[fE]
τ−→ E ′[fE] and

(E ′ .E F ′, E ′[fE]) ∈ SE as in proof of the Lemma A.2.
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• If E .E F
b−→ E ′ .E F then we want to find a E ′[fE] such that E[fE]

b
=⇒ E[fE]′.

Referring to the last rule of edit automata E .E F
b−→ E ′ .E F when E

+a.b−→
E ′. Through the relabeling function fE we have E[fE]

b
=⇒ E ′[fE] and (E ′ .E

F,E ′[fE]) ∈ SE as in proof of the Lemma A.3.

2

Lemma 4.1: Let φ ∈ ∀∧µC and ψ = X where X =ν

∧
a∈Act([a]F ∨ (〈a〉X ∧ [a]X)). If

φ is satisfiable then φ ∧ ψ is satisfiable.

Proof : The formula X =ν

∧
a∈Act([a]F ∨ (〈a〉X ∧ [a]X)), or its equivalent formulation

in modal µ−calculus νX.
∧

a∈Act([a]F ∨ (〈α〉X ∧ [a]X)), holds in every state (i.e., it is
a tautology). As a matter of fact, by this formula we are able to consider actions that are
performed, i.e., it is satisfied X =ν 〈a〉X∧ [a]X as well as actions that are not performed,
i.e., it is satisfied [a]F. Hence let E be a model of φ then E is also a model for φ ∧ ψ.

2

Proposition 4.5: Given a formula φ ∈ ∀∧µC, a maximal deterministic model E of this
formula exists.

In order to prove this proposition we firstly prove the following lemma.

Lemma 4.2: Let E ′ |= φ with φ ∈ ∀∧µC. Let E be the canonical structure of φ∧ψ, then
the following relation holds:

E ′ ¹ E

Proof : We define the following relation:

R = {(E ′, E)|∃φ,E ′ |= φ ∈ ∀∧µC and E |= φ ∧ ψ

and E is the canonical structure for φ ∧ ψ}
and prove that R is a simulation.

Let us suppose that E ′ a−→ E ′
1. We want to know if exists E1 such that E

a
=⇒ E1

and (E ′
1, E1) ∈ R. Since E ′ |= φ and E ′ performs an action a then E ′ |= 〈a〉ϕ where

ϕ is a generic µ-calculus formula. Hence φ ∧ 〈a〉ϕ 6≡ F. According to the definition of
ψ = X , X =ν

∧
a∈Act\{τ}([α]F ∨ (〈a〉X ∧ [a]X)), it is not difficult to note that E, being

a model for φ ∧ ψ, performs the action a and goes in a process E ′ that trivially satisfies
that (E ′

1, E1) ∈ R by considering T as formula.

2
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Proof of proposition 4.5: It is necessary to prove that such E is a model for φ, that it
is a maximal model and that it is a deterministic process. By Lemma 4.1 it follows that E
is a model for φ. Being E the canonical structure, it is easy to note that it is deterministic
because it performs only one action 〈 〉 and so every rule that permits to construct it has
only a premise (see rule all). The maximality follows from Lemma 4.2.

2

Proposition 4.6 If both E and F are weakly time alive, also E .K F is weakly time alive.

In order to prove this proposition we prove four lemmas, one for each of the four opera-
tors. We remaind that we are working on the additional assumption that E and F do not
perform action τ .

Lemma A.5 If both E and F are weakly time alive, also E .T F is weakly time alive.

Proof : We want to prove that for all (E .T F )′ ∈ Der(E .T F ), (E .T F )′ tick
=⇒. Since E

and F are weakly time alive we have:

• for all E ′ ∈ Der(E) E ′ tick
=⇒

• for all F ′ ∈ Der(F ) F ′ tick
=⇒

Because of we are working under the additional assumption that E and F do not perform
τ action, the transition tick

=⇒ can be reduced to a single step transition tick−→. Hence, from
the fact that both E and F are weakly time alive, we know that ∃E ′, F ′ that perform tick−→.
According to the semantics definition of .T , (E .T F )′ = E ′ .T F ′ tick

=⇒
2

Lemma A.6 If both E and F are weakly time alive, also E .S F is weakly time alive.

Proof : In this case the prove is very similar to the previous one, so we omit it.

2

Lemma A.7 If both E and F are weakly time alive, also E .I F is weakly time alive.

Proof : The proof in this case is just a bit different. We want to prove that for all (E.IF )′ ∈
Der(E .I F ), (E .I F )′ tick

=⇒. Since E and F are weakly time alive we have:

• for all E ′ ∈ Der(E) E ′ tick
=⇒

• for all F ′ ∈ Der(F ) F ′ tick
=⇒
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Because of we are working under the additional assumption that E and F do not perform τ

action, the transition tick
=⇒ can be reduced to a single step transition tick−→. If both processes

perform the tick action then (E .I F )′ = E ′ .I F ′. If the tick action is inserted by E in
the transition, F does not perform any action. Since F ∈ Der(F ), we have (E .I F )′ =

E ′ .I F and, referring to the second semantics rule of .I , E ′ .I F
tick
=⇒ because also F

tick
=⇒

since F ∈ Der(F ).

2

Lemma A.8 If both E and F are weakly time alive, also E .E F is weakly time alive.

Proof : We omit the proof because it comes directly from Lemma A.6 and Lemma A.7.

2

Proposition 4.7 Let E and F be two processes and φ ∈ Frµ. If F ¹t E then E |= φ ⇒
F |= φ.

Proof : The proofs is similar to the proof of the result in [29] for the un-timed setting
because of, referring to the Definition 2.25, by introducing the tick action, the definition
of weak simulation does not change.

2

Proposition 4.8 For every K ∈ {T, S, I, E} Y .K X ¹t Y [fK] holds, where fK is a
relabeling function depending on K. In particular, fT is the identity function on Act1 and

fS(α) =

{
τ if α = −α
α othw fI(α) =

{
τ if α = +α
α othw

fE(α) =

{
τ if a ∈ {+α,−α}
α othw

Proof : The proof is similar to the one of the Proposition 4.2 in Appendix A.2. As a
matter of fact we have to consider the simulation condition on tick action is verified. As
we can see from the definition of relabeling function, the tick action is consider as the
other action in Act. It does not influence the definition of relabeling functions.

2

Proposition 4.9 The operators .′ and .′′ enjoy Assumption 4.3.

Proof: We prove the proposition for the operator .′. With the same argument we can
prove that the proposition holds also for .′′ operator.

We show that the following relation is a strong bisimulation:

R = {(E .′ F,E) | E,F ∈ E}
1Here the set Act must be consider enriched by control actions.
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(E .′ F,E) ∈ R : Assume that (E .′ F, E) ∈ R and (E .′ F,E)
a−→ (E .′ F, E)′.

According to given semantics rules, (E .′ F )′ can be E ′ .′ F or E ′ .′ F ′. For
both of this cases, we have that there exists E ′ such that E

a−→ E ′. We have also
(E ′ .′ F,E ′) ∈ R or (E ′ .′ F ′, E ′) ∈ R. It’s depend on which semantics rule of .′

we have applied.

(E, E .′ F ) ∈ R : Assume that is true the converse of the relationR and we have E
a−→

E ′. Using one of the two rules that we have for the monitoring operator .′, we can
have two different options for (E .′ F )′. In both cases exists (E .′ F )′ such that
(E .′ F )

a−→ (E .′ F )′ and (E ′, (E .′ F )′) ∈ R.

2

Proposition 4.10 Let E and F be two finite-state processes. If both E and F are weakly
time alive, also E .′ F and E .′′ F are weakly time alive.

Proof: We want to prove that for all (E .′ F )′ ∈ Der(E . F ) (E .′ F )′
tick⇒ . E and F are

weakly time alive so

• for all E ′ ∈ Der(E) E ′ tick⇒ , i.e., E ′ τ∗→ E1
tick→ E ′′ τ∗→

• for all F ′ ∈ Der(F ) F ′ tick⇒ , i.e., F ′ τ∗→ F1
tick→ F ′′ τ∗→

So ∃E ′, F ′ such that (E .′ F )′ = E ′ .′ F ′ and, referring to the semantics rules of .′

E ′ .′ F ′ τ∗→ E ′ .′ F1
τ→ E1 .′ F1

tick→ E ′′ .′ F ′′ τ∗→.
For the .′′ operators the proof is similar.

2

Proposition 4.11 The operator .′ and .′′, that works in a timed setting, enjoy Assumption
4.4.

Proof : We start by proving the proposition for .′. In particular we have to prove the
following sentence:

For every E and F we have E .′ F ≈t E.

In order to do that, we show that the following relation is a timed weak bisimulation:

R = {(E .′ F, E) | E, F ∈ E and F is weakly time alive}

We distinguish between action a and tick.
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• Assume that (E .′ F,E) ∈ R and (E .′ F )
a→ E ′ .′ F ′. According to the first

semantics rules of .′, there exists E
a

=⇒ E ′.

Assume that (E .′ F,E) ∈ R and (E .′ F )
a→ E ′ .′ F . In this cases the second rule

is applied and also in this case in premises there is E
a

=⇒ E ′.

Assume that (E .′ F, E) ∈ R and (E .′ F )
a→ E .′ F ′. In this case, F performs the

action τ and the third rule is applied. For the the reflexive and transitive closure of
τ→, we can consider E ′ = E by the action τ .

On the other hand, let us consider E
a→ E ′. Using the first or the second rule of

.′, we have two different options for (E .′ F )′. In both cases there exists (E .′ F )′

such that (E .′ F )
a⇒ (E .′ F )′ and (E ′, (E .′ F )′) ∈ R.

• Assume that (E .′ F, E) ∈ R and (E .′ F )
tick→ E ′ .′ F ′. We can note that this

transition is possible by application of the first rule, i.e., E
tick→ E ′ and F

tick→ F ′. So
we have obviously E ′ such that E

tick⇒ E ′.

Assume that (E, E .′ F ) ∈ R and E
tick→ E ′. We have to prove that there exists

(E.′F )′ such that (E.′F )
tick⇒ (E.′F )′. Since F is weakly time alive, we consider,

without loss of generality, that F
tick→ F ′ 2. Applying the first rule we obtain E ′.′F ′.

For the operators .′′ we have to prove the following sentence:

For every E and F we have E .′′ F ≈t E.

In order to do that, we show that the following relation is a timed weak bisimulation:

R = {(E .′′ F, E) | E, F ∈ E and F is weakly time alive}

We do not roundly give the proof because it is follows a reasoning very similar to the one
made for .′.

2

Lemma 4.3 Let φ be a safety property, conjunction of n safety properties, i.e., φ =
φ1 ∧ φ2 ∧ . . . ∧ φn where φ1, . . . φn are safety properties. Let Y1, . . . , Yn be n controller
programs such that ∀i such that 1 ≤ i ≤ n Yi |= φi. We have

∀X Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ

Proof : For induction on the number of the formulas in the conjunction n:

2In fact, being F weakly time alive we know that for all F ′ ∈ Der(F ), F ′ tick=⇒. This means that F may
perform a τ action a certain number of time. This is not a problem because it is sufficient to apply the third
rule of ¤′ as much time as the number of τ actions performed.
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n = 1: In this case φ = φ1. Hence Y = Y1 that is the controller program such that
Y .T X |= φ.

n ⇒ n + 1: Let φ be a formula such that φ = φ1 ∧ . . . ∧ φn+1 and Yn+1 be a controller
program such that for all possible X , Yn+1 .T X |= φn+1. For inductive hypothesis
we know that for all possible X , Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |=
φ1 ∧ . . . ∧ φn. We have to prove that

∀X Yn+1 .T (Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X))))) |= φ

For sake of simplicity, we denote by Y n the process Yn .T (Yn−1 .T (. . . .T (Y2 .T

(Y1.T X)))). We know that for all possible X , Yn+1.T X |= φn+1, so Yn+1.T Y n |=
φn+1. For Proposition 4.1 and Lemma A.9, Yn+1 .T Y n |= φ1 ∧ . . . ∧ φn. Hence,
for the definition of conjunction Yn+1 .T Y n |= φ.

2

Proposition 4.12 Let us consider the controller operator .T . It is possible to find Y1, . . . , Yn

controller programs such that. if Y1 .T X |= φ′1, . . . , Yn .T X |= φn then (Y1 .T . . . .T

Yn) .T X |= φ1 ∧ . . . ∧ φn.

In order to prove the previous proposition we prove some lemmas.

Lemma A.9 The following relation holds

Y .T X ¹ X (A.5)

Proof: We prove that the following relation is a weak simulation.

S = {(E .T F, F )|E,F ∈ E}
Assume that E .T F

a→ E ′ .T F ′ with the additional hypothesis that F
a→ F ′ then, by the

rule of .T we have that E
α⇒ E ′ and, obviously, (E ′ .T F ′, F ′) ∈ S .

2

Lemma A.10 Let φ, Y1, . . . , Yn be as in Lemma 4.3. We have that ∀X
Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ

⇓
(Yn .T . . . .T Y1) .T X |= φ

holds.

Proof : For induction on the number of controller programs n:

n = 1: Trivial.
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n ⇒ n + 1: For hypothesis we have that

1. ∀1 ≤ i ≤ n + 1, ∀X Yi .T X |= φi;

2.
∀X Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ

⇓
∀X (Yn .T . . . .T Y1) .T X |= φ

We want to prove that

∀X Yn+1 .T (Yn .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ
⇓

∀X (Yn+1 .T . . . .T Y1) .T X |= φ

For sake of simplicity we denote by Y n
.T

the process (Yn.T . . ..T Y1). For hypothesis
1 we can consider Y n as X so, Yn+1.T Y n

.T
|= φn+1. For Lemma 4.3 and hypothesis

2 Y n
.T

.T Yn+1 |= φ1 ∧ . . .∧ φn. Since Y n
.T

.T Yn+1 and Yn+1 .T Y n
.T

are bisimilar so
they satisfy the same formulas (see [126]). In particular Yn+1.T Y n

.T
|= φ1∧. . .∧φn.

Hence Yn+1 .T Y n
.T
|= φ. For Lemma A.9, we conclude that

∀X (Yn+1 .T . . . .T Y1) .T X |= φ

2

Proof Proposition 4.12: It follows directly from proofs of Lemma 4.3 and Lemma A.10.

2

Proposition 4.13 Given the system Pk‖X . If φ is an invariant formula for the system
P‖X then

∀X (∀n Pn‖X |= φ if and only if X |= φ)

Proof : The proof comes directly from the Lemma 2.6. As a matter of fact, according to
Lemma 2.6 and to Definition 4.3:

Pn‖X |= φ if and only if Pn−1‖X |= φ//P
≡ φ

Reiterating this procedure n times we obtain:

∀X (∀n Pn‖X |= φ if and only if X |= φ)

2



Technical Proofs 141

Proposition 4.14: Let P and Q be two finite state processes,

Q . P |= φ if and only if Q |= φ//.P

Proof (Sketch): The proof of this proposition is done by induction on the complexity of
the formula we consider. Here we give a sketch of the proof by proving the proposition
for conjunction. Following the reasoning in [3] we obtain the entire proof.

Let φ = φ1 ∧ φ2 be the considered formula. We want to prove that Q . P |= φ if and
only if Q |= φ//.P . Q . P |= φ if and only if Q . P |= φ1 ∧ φ2 if and only if Q . P |= φ1

and Q . P |= φ2. For inductive hypothesis, Q . P |= φ1 if and only if Q |= φ1//.P and
Q.P |= φ2 if and only if Q |= φ2//.P . Hence Q.P |= φ if and only if Q |= φ1//.P and
Q |= φ2//.P if and only if Q |= φ1//.P ∧ φ2//.P .

2


