
 

C
 

Consiglio Nazionale delle Ricerche 
 

 

 

  

  

  

Specification and Analysis of Information Flow 
Properties for Distributed Systems 

  

  
  

  

RR..  GGoorrrreerrii,,  FF..  MMaarrttiinneellllii,,  II..  MMaatttteeuuccccii  

    
 
 
 
 

 
IIT TR-12/2010 

 

Technical report 
 
 
 
 

Febbraio  2010 

 
 
 
 
 
 
 

Iit 
 

Istituto di Informatica e Telematica  



Specification and Analysis of Information Flow

Properties for Distributed Systems∗

Roberto Gorrieri
Università di Bologna, Bologna, Italy

gorrieri@cs.unibo.it

Fabio Martinelli
IIT CNR, Pisa, via Moruzzi, 1 - 56125 Pisa, Italy

fabio.martinelli@iit.cnr.it

Ilaria Matteucci
IIT CNR, Pisa, via Moruzzi, 1 - 56125 Pisa, Italy

ilaria.matteucci@iit.cnr.it

February 2, 2010

Abstract

We present a framework for the specification and the analysis of infor-
mation flow properties in partially specified distributed systems, i.e., sys-
tems in which there are several unspecified components located in different
places. First we consider the notion of Non Deducibility on Composition
(NDC for short) originally proposed for nondeterministic systems and
based on trace semantics. We study how this information flow property
can be extended in order to deal also with distributed partially specified
systems. In particular, we develop two different approaches: the cen-
tralized NDC (CNDC) and the decentralized NDC (DNDC). According
to the former, there is just one unspecified global component that has
complete control of the n distributed locations where interaction occurs
between the system and the unspecified component. According to DNDC,
there is one unspecified component for each distributed location, and the
n unspecified components are completely independent, i.e., they cannot
coordinate their efforts or cooperate. Surprisingly enough, we prove that
centralized NDC is as discriminating as decentralized NDC. However,
when we move to Bisimulation-based Non-Deducibility on Composition,
BNDC for short, the situation is completely different. We prove that
centralized BNDC (CBNDC for short) is strictly finer than decentralized

∗Work partially supported by EU-funded project “Software Engineering for Service-
Oriented Overlay Computers”(SENSORIA) and by EU-funded project “CONSEQUENCE”.
Preliminary results reported in the [12].

1



BNDC (DBNDC for short), hence proving the quite expected fact that
a system that can resist to coordinated attacks is also able to resist to
simpler attacks performed by independent entities. Hence, by exploiting
a variant of the modal µ-calculus that permits to manage tuples of ac-
tions, we present a method to analyze when a system is CBNDC and/or
DBNDC, that is based on the theory of decomposition of formulas and
compositional analysis.

Keyword: Information flow properties, distributed systems, compositional
theory, contexts.

1 Introduction

Information flow analysis is considered one of the main techniques for studying
confidentiality in computer systems. Information flow properties aim at defin-
ing the way the information may flow among different entities of a compound
system. For instance, these properties may define constraints on the kind of in-
formation flow that can be set among different groups of entities with different
security levels (e.g., high and low). Usually, the goal is to prevent any possible
flow from the confidential (high) level to the public (low) one.

Several formalizations have been proposed in the literature to capture the
intuitive idea of flow of information. Most of them originate from the basic idea
of Non Interference, NI for short, proposed in [11] on deterministic machines
with outputs: Basically one wants that low output variables do not depend on
high inputs. This intuitive notion has been then extended to trace based models.
Assume there are two groups of users, G and G′, and, given any input sequence
of actions γ, let γ′ be its subsequence obtained by deleting all the actions of
users in G. G is non interfering with G′ if and only if for every input sequence
γ, users in G′ obtain the same outputs after the execution of γ and γ′.

This basic notion has been also adapted and generalized to the richer setting
of nondeterministic labelled transition systems. Among the many definitions de-
rived from NI (see e.g., [5, 7, 19, 26]), here we consider the Non Deducibility
on Composition property (NDC, [5]). Intuitively, a system is NDC if, by in-
teracting with every possible high level user, it always appears the same to low
level users, so that no information at all can be deduced by low level users. The
above idea can be instantiated in a lot of ways, by choosing a particular way of
interacting between systems and various criteria of equivalence. First we con-
sider trace equivalence: A system E is NDC if E \H (i.e., E where all high level
actions are prevented) is trace equivalent to E in parallel with any high level
process Π where all the high actions in H are restricted (hence cooperation on
high actions is forced). In other words, the low view of the behavior of system
E is not modified by the presence of process Π, that can be considered as an
intruder that tries to break the system. Observe that this definition is given by
considering at most one possible intruder (high user).

We can obtain a bisimulation based NDC by simply replacing trace equiv-
alence with bisimulation equivalence. We consider the notion of Bisimulation

2



Non Deducibility on Compositions, BNDC for short, that was proposed in [5, 7].
Also in this case the definition is given by considering at most one possible high
user.

The goal of this work is to extend the idea of NDC and BNDC also to
distributed systems, where the possible intruders can be more than one and
may also coordinate their efforts. In particular, the framework we present in
this paper is composed of a first part in which we describe our approach for the
specification of NDC and BNDC for distributed systems, and of a second part,
in which we present a technique for analysis of BNDC based properties.

A distributed system is modelled as a transducer [17], i.e., a context which
can receive in input, say, n actions in different locations and which may produce
a tuple of outputs. Intuitively, a context of the form C(X1, . . . , Xn) can be seen
as a distributed partially specified system [20, 21, 22, 25], i.e., a system C with
holes, where the components X1 . . . Xn are not specified. These unspecified
components are meant to be the potential intruders of the system.

We want to study whether such contexts respect information flow properties,
in particular those based on the NDC and BNDC idea, whatever the possible
intruders are. In both cases, we proceed by following two different approaches:
A centralized approach and a decentralized one.

We first consider the NDC property. Given the context C(X1, . . . , Xn),
where each Xi denotes a hole in the system, we may define decentralized NDC
(DNDC for short) as the NDC property where the n intruders act independently,
without communicating or coordinating their activities. A system satisfying
decentralided NDC should resist to distributed attacks conducted by n inde-
pendent intruders. Then, we introduce the concept of centralized NDC (CNDC
for short) in which the n intruders are centrally controlled and thus considered
as a unique context which performs a vector of n actions, ã = (a1, . . . , an). A
system satisfying CNDC should resist to distributed attacks conducted by n
cooperating intruders (or by one single intruder that has complete control of
the n locations in which interaction with the system is possible).

Interestingly enough we prove the quite surprising result that CNDC is as
discriminating as DNDC. Then, we consider the BNDC property and we discover
that, when trace semantics is replaced by the more discriminating bisimulation
semantics, the results above are completely different.

As expected, centralized BNDC (CBNDC, for short) is proved to be finer
than decentralized BNDC (DBNDC, for short). Still, the weaker notion is mean-
ingful because, as a matter of fact, a system that is centralized BNDC is able to
resist also to strongly coordinated attacks that, in a real-life distributed envi-
ronment, might not be possible. We provide a simple counterexample showing
that the reverse implication does not hold, i.e., a context which is decentralized
BNDC, but not centralized BNDC.

Once we have specified our problem, we extend the analysis framework for
BNDC described in [20, 21, 22, 25] to CBNDC and DBNDC properties. Indeed,
by using a variant of the modal µ-calculus, we characterize these properties by
logic formulas. Then, by using partial model checking [1], that is a compositional
analysis techniques, we are able to analyze these properties.

3



More in detail, we use the characteristic formula φ̃, i.e., a logical formula
that characterizes the behavior of the system without high users, to describe the
expected correct behavior of the system. Then we check that the system, even
when composed with its inner high processes, always enjoys this formula. As a
matter of fact, to analyze the CBNDC property we have to solve the following
problem:

∀X ∈ Cn
0,H \Hm(C(X)) |= φ̃ (1)

where \Hm denotes that all n-tuple of high level actions are prevented.
Instead, to analyze the DBNDC property, being ϕ̃ the characteristic formula

of the system without high users, we have to solve the following problem:

∀{X1, . . . , Xn} ⊆ C1
0,H \Hm(C(X1, . . . , Xn)) |= ϕ̃ (2)

In both cases we have an universal quantification: In (1) on all possible n-ary
contexts and in (2) on all possible products of unary contexts. Using the property
transformer function W (see [17]), i.e., a function that permits to evaluate a
given temporal logic with respect to a known context, we isolate the property
the unspecified part of the system has to satisfy in order to be sure that the
whole distributed system is CBNDC and/or DBNDC. Indeed the problem in
(1) is reduced as follows:

∀X ∈ Cn
0,H X |= W(\Hm ◦ C, φ̃) (3)

where ◦ is the composition operation between context. In a similar way, the
problem in (2) is reduced by using the property transformer as follows:

∀{X1, . . . , Xn} ⊆ C1
0,H X1 × . . .×Xn |= W(\Hm ◦ C, ϕ̃) (4)

where × is the product operation between contexts.
We provide two different analysis methods for solving the problems (3) and

(4). In the centralized case, a temporal logic formula has to be valid for all
possible n-ary contexts, since we have a unique global component that controls
all distributed locations. Such global component can be seen as a process that
performs n-tuple of actions. Hence, to solve this validity problem, we exploit a
validity procedure for modal logic formulas (e.g., [3, 27]) as it has been already
done in [20, 21, 22, 25] for studying BNDC property. As a matter of fact, solving
a validity problem means proving that a given formula is always true, i.e., every
possible system satisfies it.

On the other hand, in the decentralized case, we appeal to the procedure
of decomposition of formulas in [17]: Finding a decomposition of a formula ϕ̃
means finding a product formula, i.e., a product of unary formulas φ1× . . .×φn,
which is equivalent to ϕ̃. In particular, we are interested in finding a weak de-
composition, called safe decomposition, i.e., a product formula which logically
implies ϕ̃. Once we obtain this decomposition, to verify DBNDC we verify
if each unknown component of the system satisfies one of the formulas of the
product, i.e., ∀i = 1, . . . , n ∀X X |= φi. In this way we have n validity problems
that can be solved, as before, by exploiting a validity procedure for modal logic

4



formulas. If all the formulas are satisfied then also ϕ̃ is so.

This paper is organized as follows. Section 2 recalls some notions about
contexts, logic and compositional theory. Section 3 presents our framework
for the specification of information flow properties for distributed systems and
Section 4 shows our framework for the analysis of such properties. In Section
5 a comparison with related work is reported. In Section 6 we draw some
conclusions.

2 Background

In this section we recall some preliminary notions about contexts theory and
modal logic referring to [17].

2.1 Context

First of all, we recall the definition of context.

Definition 2.1 A context system C is a structure C = (〈Cm
n 〉n,m, Act, 〈→n,m

〉n,m) where Cm
n is a set of n-to-m contexts; Act is a set of actions; Act0 =

Act ∪ {0} where 0 6∈ Act is a distinguished no-action symbol, Actk0 is a tuple of
k actions in Act0, and →n,m⊆ Cm

n × (Actn0 ×Actm0 )×Cm
n is the transduction-

relation for the n-to-m contexts satisfying (C, ã, 0̃, D) ∈→n,m if and only if
C = D and ã = 0̃ for all contexts C, D ∈ Cm

n .

For (C, ã, b̃, C ′) ∈→n,m we usually write C
b̃−→̃
a C ′, leaving the indices of → to be

determined by the context, and we interpret this as:

Consuming the actions ã, the context C can produce the actions b̃ becoming
into C ′.

In a transduction C
b̃−→̃
a C ′, certain components in ã and/or b̃ can be 0 indicating

that the corresponding internal process and/or external observer is not involved
in the transduction. In particular the last condition of →n,m means that a
context can always and only produce nothing without consuming anything.

In order to give some example of contexts, we present here how it is possible
to see process algebra operators as contexts.

Example 2.1 Finite CCS process algebra [24] can be seen as a context system
with the following contexts: prefix a∗ ∈ C1

1 for a ∈ Act, restriction \L ∈ C1
1

where L ⊆ Act. Choice and parallel context +, ‖ ∈ C1
2 ; inaction Ñil ∈ Cm

n for
any n and m, with Nil abbreviating the inaction process in C1

0 . There are also
the identity context In ∈ Cn

n and the projection Πi
n ∈ C1

n. The semantics defini-
tion of finite CCS contexts is reported in Table 1. ¥

5



Inaction:

C
0̃−→̃
0 C for all C

Prefix:
a∗

a−→
0 I1

Restriction:
\L

a−→a \L a 6∈ L

Choice:

(1) +
a−−−→

(a, 0) Π1
2 (2) +

a−−−→
(0, a) Π2

2 for a ∈ Act

Projection:

Πi
n

a−−→
i(a) Πi

n

Identity:

In

ã−→̃
a In

Parallel:

(1) ‖
τ−−−→

(a, ā) ‖ (2) ‖
a−−−→

(a, 0) ‖ (3) ‖
a−−−→

(0, a) ‖
where i(a) ∈ Actn0 with the ith component being a and all the others being 0.

Table 1: Semantics of CCS context system.

2.1.1 Operations between contexts

Several operations are allowed between contexts.

Composition of contexts.

Definition 2.2 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. A

composition on C is a dyadic operation ◦ on contexts such that whenever C ∈ Cm
n

and D ∈ Cr
m then D ◦ C ∈ Cr

n. Furthermore, the transductions for a context
D ◦ C with C ∈ Cm

n and D ∈ Cr
m are fully characterized by the following rule:

C
b̃−→̃
a C ′ D

c̃−→̃
b D′

D ◦ C
c̃−→̃
a D′ ◦ C ′

where ã = (a1, . . . , an), b̃ = (b1, . . . , bm) and c̃ = (c1, . . . , cr) are vectors of
actions.

We often write C(P ) to denote a composed context C ◦ P .

Example 2.2 In order to explain how the composition between contexts works,
we recall an example given in [17].

6



Let a.b.Nil be a standard CCS term. It can be built from the constructs as
a∗◦b∗◦Nil. Using the inference rule for composition, we can infer the following
transitions:

a∗
a−→
0 I1 b∗ ◦Nil

0−→
0 b∗ ◦Nil

a∗ ◦ b∗ ◦Nil
a−→
0 I1 ◦ b∗ ◦Nil

and
−

I1

b−→
b I1

b∗
b−→
0 I1 Nil

0−→Nil

b∗◦Nil
b−→I1◦Nil

I1 ◦ b∗ ◦Nil
b−→ I1 ◦ I1 ◦Nil

Obviously, a composed context of the form Im ◦ C has the same behavior as
C itself. ¥

Product of contexts. In order to represent a system with n holes, we use a
n-to-1 context C ∈ C1

n. If C is combined with a context D ∈ Cn
m, we obtain

C ◦D ∈ C1
m. If m = 0 then we obtain a process. The context D, in this case,

provides a simultaneous expansion of the n holes in C. To allow the expansion
of the n holes to be carried out independently, it is defined an independent
combination of n contexts as D1 × . . . × Dn, where Di ∈ C1

mi
, i = 1, . . . , n

and Di is intended as an expansion of the i’th hole of C in such a way that
m =

∑n
i=1 mi. This motivates the following construct of (independent) products

of contexts.

Definition 2.3 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. A

product on C is a dyadic operation × on contexts, such that whenever C ∈ Cm
n

and D ∈ Cs
r then C ×D ∈ Cm+s

n+r . Furthermore the transduction for a context
C ×D are fully characterized by the following rule:

C
b̃−→̃
a C ′ D

d̃−→̃
c D′

C ×D
b̃d̃−→̃
ac̃ C ′ ×D′

where juxtaposition of vectors ã = (a1, . . . , an) and c̃ = (c1, . . . , cr) is the vector
ãc̃ = (a1, . . . , an, c1, . . . , cr) and juxtaposition of vectors b̃ = (b1, . . . , bm) and
d̃ = (d1, . . . , ds) is the vector b̃d̃ = (b1, . . . , bm, d1, . . . , ds).

We usually write the combined process C(P1, . . . , Pn) as a shorthand for C ◦
(P1 × . . . × Pn). Since we consider asynchronous contexts, it is not required
that all the components P1, . . . , Pn contribute in a transition of the combined
process C(P1, . . . , Pn), i.e., some of the Pi could perform a 0 action.

Example 2.3 Also in this case, since in the rest of the paper composition and
product operations are the most useful for our purposes, we recall an example
already presented in [17].

7



Let a.Nil + b.Nil be a standard CCS term. It can be composed from the
constructs as + ◦ (a∗ ◦ Nil × b∗ ◦ Nil). Using the inference rules we have the
following transitions:

a∗
a−→
0 I1 Nil

0−→Nil

a∗◦Nil
a−→I1◦Nil

b∗
b−→
0 I1 Nil

0−→Nil

b∗◦Nil
b−→I1◦Nil

a∗ ◦Nil × b∗ ◦Nil
(a,b)−→ I1 ◦Nil × I1 ◦Nil

Composing (a∗ ◦Nil × b∗ ◦Nil) with context + we have:

+
a−−−→

(a, b) Π1
2 a∗ ◦Nil × b∗ ◦Nil

(a,b)−→ I1 ◦Nil × I1 ◦Nil

+ ◦ (a∗ ◦Nil × b∗ ◦Nil) a−→ Π1
2 ◦ (I1 ◦Nil × I1 ◦Nil)

where the behavior of Π1
2 ◦ (I1 ◦ Nil × b∗ ◦ Nil) is behavioral equivalent to

Nil. Hence, in accordance with the standard CCS transition relation, a.Nil +
b.Nil

a−→ Nil. ¥

Feed-back on contexts. In order to deal with iteration, a construction of
feed-back on contexts is defined, such that whenever C ∈ Cn

n then C† ∈ Cn
0 and

C† is equivalent to C ◦ C†. Formally, we have the following definition.

Definition 2.4 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. A

feed-back on C is a unary operation † on contexts of C such that, whenever
C ∈ Cn,n then C† ∈ Cn

0 . Furthermore, the transduction for a context C† with
C ∈ Cn

n is fully characterized by the rule:

C
b̄−→̄
a C ′ C† ā−→ D

C† b̄−→ C ′ ◦D

In order to understand the meaning of this operator we recall the following
example in [17].

Example 2.4 Let us consider the CCS process defined as X = a.X. It can be
realized as the context (a∗)†. Indeed, using the inference rule of the feed-back,
we obtain the following transition:

a∗
a−→
0 I1 (a∗)† 0−→ (a∗)†

(a∗)† a−→ I1 ◦ (a∗)†

and in fact this is the only transition for (a∗)†.

¥

8



2.1.2 Open systems as transducers

According to [17], the theory of contexts is useful to model and analyze dis-
tributed partially specified systems, i.e., systems in which more than one com-
ponent is unspecified. As a matter of fact, a partially specified system can be
formalized by contexts as a system of the form C(X1, . . . , Xn), where C denotes
the known part of the system and X1, . . . , Xn denote components still remain-
ing unknown. In process algebra, the partial implementation C(X1, . . . , Xn)
can be described as an expression with X1, . . . , Xn as free variables that may
be replaced by closed expression P1, . . . , Pn. By syntactically replacing each Xi

by the corresponding Pi, we get the closed expression C(P1, . . . , Pn).
In this way we have a general framework that permits us to consider a

complex and general scenario. Indeed, when we consider a partially specified
system, several scenarios can be considered in order to obtain a closed system.
In the easiest case, the number of the unspecified components is one. In this
case there is a unique hole that a process can fill in. On the other hand, if we
consider a system in which there are several holes, we may distinguish from two
different approaches for the analysis of such systems: By considering all n holes
as a unique hole of cardinality n (in this case we put a central process that
performs a vector of n actions), or by considering several independent unary
processes whose product closes the expression.

Example 2.5 Let C1 = h∗1 ◦ l∗1 ◦h∗1 ◦Nil and C2 = h∗2 ◦ l∗2 ◦Nil be two contexts.
Let us consider a context C ∈ C1

2 built as a composition of several contexts as
follows:

C = ‖ ◦ (\{h1,h2,h̄1,h̄2} ◦ ‖(C1 ×X1))× (\{h1,h2,h̄1,h̄2} ◦ ‖(C2 ×X2))

Here we have explicitly denoted by X1 and X2, in C1
0 , the free variables in C1

0

of the contexts in order to make the context readable. Being ‖ ∈ C1
2 , C1 and C2

in C1
0 it is not difficult to see that C is effectively in C1

2 . X1 and X2 represent
respectively the first and the second unspecified component of the context C ∈ C1

2 .
Informally, this context forces the synchronization on actions h1, h2. This

permits us, as we will see in the following, to control sequences of executions of
low actions, such as l1 and l2.

In order to obtain a closed expression we have to combine C with a context
in C2

0 . Such a context could be a binary context such as, for instance, P =
(h̄1, 0)∗ ◦ (h̄1, 0)∗ ◦ (0, h̄2)∗ ◦ Ñil. Or the product of a couple of contexts in C1

0 ,
for instance P1 = h̄1

∗ ◦ h̄1
∗ ◦Nil and P2 = h̄2

∗ ◦Nil. As a matter of fact, the
product P1×P2 is a context in C2

0 as required. In this case the closed expression
is C ◦ (P1 × P2).

Referring to Definition 2.2, the context C ◦ P behaves according to the fol-
lowing rule:

P
(h̄1,0)−→ P ′ C

τ−−−−→
(h̄1, 0)C ′

C(P ) τ−→ C ′(P ′)
(5)

9



where P ′ = (h̄1, 0)∗ ◦ (0, h̄2)∗ ◦ Ñil and C ′ = ‖ ◦ (\{h1,h2h̄1,h̄2} ◦ ‖(C ′1 × X1) ×
\{h1,h2,h̄1,h̄2} ◦ ‖(C2 × X2)) where C ′1 = l∗1 ◦ h∗1 ◦ Nil. Obviously this is the
first transition. The rest of the transduction is omitted, but it is possible to
calculate the following steps by applying the composition rule. At the end we
obtain that C(P ) has the same behavior as τ∗ ◦ l∗1 ◦ τ∗ ◦ τ∗ ◦ l∗2 ◦ Nil. This is
the only maximal sequence of actions allowed for this composition of contexts.
As a matter of fact, informally, if C2 pretends to perform the first action, it is
forbidden by the restriction \{h1,h2,h̄1,h̄2}.

Let us now consider the distributed case. Referring to how the contexts are
built, the first transition may be one of the following two:

P1
h̄1−→P ′1 P2

0−→P2

P1×P2
(h̄1,0)−→ P ′1×P2

−
C

τ−−−−→
(h̄1,0)C′

C(P1, P2)
τ−→ C ′(P ′1, P2)

P2
h̄2−→Nil′ P1

0−→P1

P1×P2
(h̄2,0)−→ P1×Nil

−
C

τ−−−−→
(h̄2,0)C′

C(P1, P2)
τ−→ C ′(P1, Nil)

It is possible to note that, in the distributed case, there exists the possibility
that the first step is performed by P2 and C2, then we can also obtain a se-
quence starting with τ∗ ◦ l2 ◦ . . .. This cannot happen in the centralized case.
¥

2.1.3 Behavioral equivalences

In order to have a method to compare behaviors of contexts, we recall some
definitions of behavioral equivalences. We start with the definition of trace
equivalence for contexts.

Let us start by giving some notations used in the following.
Let us consider τ̃ as a tuple of actions in which there are no actions different

from τ or 0. Let ã = (a1, . . . , an) be a vector of actions in Actn0 . Then ˇ̃a = ã
when ai 6= τ for all i = 1, . . . , n, or ˇ̃a = ã[0\τ ] where all the occurrence of the τ
actions in the vector are replaced by the no action 0. In particular ˇ̃τ = τ̃ , i.e., if
the vector is composed only by τ or 0 actions, the substitution is not performed.

Then, notation C
τ̃=⇒ C ′ denotes that C and C ′ belongs to the reflexive and

transitive closure of τ̃−→. Also, C
ˇ̃a=⇒ C ′′ iff C

τ̃=⇒ ˇ̃a−→ τ̃=⇒ C ′′.
Let γ = ã1 . . . ãn ∈ Actn0\{τ̃} be a sequence of vectors of actions, i.e., a trace,

where Actn0\{τ̃} is the set of vectors of actions of length n without the n-tuple
τ̃ .

Let γ̌ = ˇ̃a1 . . . ˇ̃an be a sequence of vectors of actions in which each occurrences

of τ actions in each vector has been replaced by 0. C
γ̌

=⇒ C ′ iff C
ˇ̃a1=⇒ ...

ˇ̃an=⇒ C ′

Let C ∈ Cn
0 be a context, then the set of traces of C is Tr(C) = {γ̌|∃C ′ C

γ̌
=⇒

C ′}.

10



Definition 2.5 Let C,D ∈ Cn
0 be two contexts. We define the relation of trace

inclusion, denoted by ≤T as follows:

C ≤T D iff Tr(C) ⊆ Tr(D)

Moreover, C and D are trace equivalent, denoted by ≈T , iff Tr(C) = Tr(D).

Other behavioral equivalences are defined for contexts. We just recall the defini-
tions of simulation and bisimulation equivalences [24] by distinguishing between
a strong version and a weak one.

Definition 2.6 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system. Then

an n-to-m strong simulation R is a binary relation on Cm
n such that, whenever

(C, D) ∈ R and ã ∈ Actn0 , b̃ ∈ Actm0 , then the following holds:

if C
b̃−→̃
a C ′, then D

b̃−→̃
a D′ for some D′ with (C ′, D′) ∈ R

We write C ≺ D in case (C, D) ∈ R for some n-to-m simulation R.
A strong bisimulation is a relation R such that both R and R−1 are strong

simulations. We represent with ∼ the union of all the strong bisimulations.

Now we are able to give the definition of weak bisimulation by considering
that, in the rest of the paper, we use it with respect to contexts in Cn

0 . Hence we
consider a definition that is an extension of the definition of weak bisimulation
given by Milner in [24] for processes, that, as we have already said, can be seen
as contexts in C1

0 .

Definition 2.7 Let C = (〈Cn
0 〉0,n, Act, 〈→0,n〉0,n) be a context system. Then

a 0-to-n weak simulation R is a binary relation on Cn
0 such that, whenever

(C, D) ∈ R and ã ∈ Actn0 , then the following holds:

if C
ã−→ C ′, then D

ˇ̃a=⇒ D′ for some D′ with (C ′, D′) ∈ R.

We write C ¹ D in case (C, D) ∈ R for some 0-to-n simulation R.
A weak bisimulation is a relation R such that both R and R−1 are weak

simulations. We denote with ≈ the union of all the weak bisimulations.

Theorem 2.1 ([17]) ∼ is preserved by composition, product and feed-back of
contexts.

2.2 Modal language and property transformer for con-
texts

In order to express properties of contexts, we recall a variant of the modal µ-
calculus, proposed in [17]. This variant allows minimum and maximum fixed
points to be used freely and interchangeably.

11



JTKρ = Γ JFKρ = ∅ JXKρ = ρ(X)
Jφ1 ∨ φ2Kρ = Jφ1Kρ ∪ Jφ2Kρ Jφ1 ∧ φ2Kρ = Jφ1Kρ ∩ Jφ2Kρ
J〈a〉φKρ = {γ ∈ Γ|∃γ′ : γ

a−→ γ′ ∧ γ′ ∈ JφKρ}
J[a]φKρ = {γ ∈ Γ|∀γ′ : γ

a−→ γ′ ⇒ γ′ ∈ JφKρ}
Jlet maxD inφKρ = JφK(DνJDKρ)
Jlet minD inφKρ = JφK(DµJDKρ)

and

DνJX1 = φ1 . . . Xn = φnKρ = νρ′ρ{Jφ1Kρ′\X1, . . . , JφnKρ′\Xn}
DµJX1 = φ1 . . . Xn = φnKρ = µρ′ρ{Jφ1Kρ′\X1, . . . , JφnKρ′\Xn}

Table 2: Semantics clauses.

Definition 2.8 Let L be a set of labels (or actions), ranged over by a; let V be
a set of variables, ranged over by X. The sets of formulas FV,L (ranged over
by φ) and declarations DV,L (ranged over by D) over V relative to L are built
up according to the following, mutually recursive, abstract syntax:

φ ::= T | F | X | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ |
let max D in φ | let min D in φ

D ::= X1 = φ1 . . . Xn = φn

The above logic is a propositional modal logic with 〈a〉φ and [a]φ providing the
two relativized modalities. The declaration in the let-constructs, introduces
simultaneous recursively specified properties. The concepts of free and bound
variables are defined as usual; in particular we call a formula closed if it con-
tains no free variables. We shall use standard notation φ[ψ/X] to describe the
substitution of ψ for all free occurrences of the variable X in φ.

The interpretation of the introduced logic is given with respect to a Labelled
Transition System, LTS for short, that is a structure (Γ, L,→), where Γ is the
set of states, L is the set of actions and →⊆ Γ×L×Γ is the transition relation.
The interpretation of a closed formula is given as the set of states satisfying
the formula. The semantics of formulas is given with respect to an environment
ρ = V → P(Γ). The semantics definition is given inductively on the structure
of formulas and declarations as in Table 2, with ν and µ being the maximum
and minimum fixed point operators, respectively.

This logic is useful for expressing interesting properties. In particular mini-
mum fixed point constructs allow for expressing liveness properties (“something
good happens”), whereas maximum fixed point constructs allow for expressing
safety properties (“nothing bad can happen”).

Example 2.6 The following formula expresses that any configuration that is
reached by an a-transition satisfies the property φ:

letmax X = φ ∧ [a]X in X

12



On the other hand, if we are interested to express that some configuration reach-
able by a-transition satisfies φ we use the following formula:

letmin X = φ ∨ 〈a〉X in X

¥

2.2.1 Characteristic formulas

The main theorem of Hennessy and Milner in [16] shows that the non-recursive
part of the logic characterizes bisimilarity in the sense that two closed processes
are bisimilar just in case they satisfy the same (non-recursive) formulas. The
theorem is subject to the assumption that the underlying transition system is
image-finite, i.e., for any process γ and action a the set {γ′|γ a−→ γ′} is finite.
However, one half of the characterization theorem is valid for any transition
system: whenever two configurations are bisimilar they will satisfy the same
formulas. Even with the addition of recursion, no formula is able to distinguish
between bisimilar configurations.

In this paper we are interested to the existence of characteristic formula φ for
a n-ary process P ∈ Cn

0 . Hence, here, we extend the definition of characteristic
formulas with respect to weak bisimulation, as given in e.g., [21], by considering
n-ary processes. Indeed we consider vectors of actions instead of single actions.

Considering weak bisimulation, internal actions of a process can be matched
by zero or more internal steps of the other process.

Let 〈〈ã〉〉 be a weak version of the modality 〈ã〉, introduced as abbreviation
and defined as follows, e.g., [21]:

〈〈ε̃〉〉φ def
= let min Z = φ ∨ 〈τ̃〉Z in Z 〈〈ã〉〉φ def

= 〈〈ε̃〉〉〈ã〉〈〈ε̃〉〉φ

Moreover, let [[ã]] be a weak version of the modality [ã], introduced as abbrevi-
ation as follows:

[[ε̃]]φ
def
= let max Z = φ ∧ [τ̃ ]Z in Z [[ã]]φ

def
= [[ε̃]][ã][[ε̃]]φ

Now we are able to give the following definition.

Definition 2.9 Given a n-ary finite state process P , its characteristic formula
with respect to weak bisimulation is given by the formula φ = let max DP in ZP

where DP is the declaration system associated to the process P defined with
respect to the variable ZP . It consists of a system of equations of the form
ZP ′ = φ′, one for each P ′ ∈ Der(P ), where each ZP ′ is a variable and φ′ is the
characteristic formula of P ′ defined recursively as follows:

ZP ′ = (
∧

ã;P ′′:P ′ ã⇒P ′′

〈〈ˇ̃a〉〉ZP ′′) ∧ (
∧

ã

([[ã]](
∨

P ′′:P ′
ˇ̃a⇒P ′′

ZP ′′)))

13



W(C,T) = T W(C,F) = F W(C, X) = XC

W(C, φ1 ∧ φ2) = W(C, φ1) ∧W(C, φ2) W(C, φ1 ∨ φ2) = W(C, φ1) ∨W(C, φ2)
W(C, 〈b̃〉φ) =

∨
C

b̃−→̃
a D

〈ã〉W(D, φ) W(C, [b̃]φ) =
∧

C
b̄−→̃
a D

[ã]W(D, φ)

W(C, let max D in φ) = let max DT in W(C, φ)
W(C, let min D in φ) = let min DT in W(C, φ)

where
DT = {XC = W(C, φ)|C ∈ Cm

n , X = φ ∈ D}

Table 3: Definition of property transformer.

2.2.2 Property transformer function

According to [17], it is possible to define the property transformer function W
for contexts as in Table 3. The property transformer is introduced in order to
isolate which is the necessary and sufficient conditions that the unspecified part
of the system has to satisfy. The following theorem holds.

Theorem 2.2 ([17]) Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a context system.

Let φ be a closed formula and let C ∈ Cm
n . Then for any Q ∈ Cn

0 the following
equivalence hold:

C(Q) |= φ ⇔ Q |= W(C, φ)

Hence, this theorem allows us to find, given the context C and the property φ,
the weakest property W(C, φ) that has to be satisfied by the combination of the
unspecified components of the system.

2.3 Some information flow properties

Information flow properties are a particular class of security properties which
aim at controlling the way information may flow among different entities. They
have been first proposed as a means to ensure confidentiality, in particular to
verify if access control policies are sufficient to guarantee the secrecy of (possibly
classified) information. Indeed, even if access control is a well studied technique
for system security, it may be impossible to find an access control policy which
guarantees that no information leak.

In the literature, there are many different security definitions reminiscent of
the information flow idea, each based on some system model (see [5, 7, 19, 26]).
The central property for this paper is Non Deducibility on Composition (NDC,
see [5]).

Exploiting the relation of bisimulation, we obtain the notion of Bisimulation
Non Deducibility on Compositions, BNDC for short, proposed in [5, 7] as a

14



generalization of the classical idea of Non-Interference [11] to nondeterministic
systems.

2.3.1 NDC and BNDC properties

To describe information flow properties, we can consider two users, High and
Low interacting with the same computer system. We wonder if there is any flow
of information from High to Low.

In [4, 5, 6, 7] a family of information flow security properties called Non
Deducibility on Compositions (NDC, for short) was proposed. Intuitively, a
system is NDC if, by interacting with every possible high level user, it always
appears the same to low level users, so that no information at all can be deduced
by low level users. The above idea can be instantiated in a lot of ways, by
choosing a particular way of interacting between systems and various criteria
of equivalence. First we consider trace equivalence, thus NDC is described in
terms of CCS process algebra [24]as follows:

E is NDC iff ∀ Π ∈ High users , (E‖Π)\H ≈T E\H
where H is a set of high actions. It is possible to give the definition of NDC by
using contexts.

Definition 2.10 Let Sort(Π) be the set of actions that occurs in Π and let H
be the set of high actions. Let C1

0,H = {Π | Sort(Π) ⊆ H ∪ {τ}} be the set of
High users. E ∈ C1

0 is NDC if and only if ∀ Π ∈ C1
0,H\H(‖(E ×Π)) ≈T \H(E)

We can obtain a bisimulation based NDC by simply replacing ≈T with ≈. In
particular, in [6, 7], the authors argue that BNDC is the right choice. Also in
this case we give the definition of BNDC by exploiting the semantics of contexts
as follows.

Definition 2.11 Let Sort(Π) be the set of actions that occurs in Π and let H
be the set of high actions. Let C1

0,H = {Π | Sort(Π) ⊆ H ∪ {τ}} be the set of
High users. E ∈ C1

0 is BNDC if and only if ∀Π ∈ C1
0,H we have \H(‖(E×Π)) ≈

\H(E).

Proposition 2.1 ([6, 7]) Let C ∈ C1
0 be a context.

C ∈ BNDC =⇒ C ∈ NDC

The viceversa does not hold, as the following example shows.

Example 2.7 ([6, 7]) Let E = +((τ∗◦l∗◦Nil)×(τ∗◦h∗◦l∗◦Nil)) be a context in
C1

0 . According to [6, 7], E ∈ NDC. However E 6∈ BNDC; indeed if we consider
Π = h̄∗ ◦Nil, then \H(‖(E×Π)) behaves as +((τ∗ ◦ l∗ ◦Nil)×(τ∗ ◦τ∗ ◦ l∗ ◦Nil))
while \H(E) behaves as +((τ∗ ◦ l∗ ◦Nil)× (τ∗ ◦Nil)). ¥

15



3 Specification of Information flow property for
distributed systems

In this section we want to extend the definitions of NDC and BNDC given for
processes to the case of partially specified distributed systems described here as
context.

Example 3.1 Let us consider a system:

C = ((h∗0 ◦ l∗0)
†‖X0)\{h0,h̄0}‖((h∗1 ◦ l∗1)

†‖X1)\{h1,h̄1}

where, in order to make this example more readable, we use the infix nota-
tion. Let us interpret l0 and l1 as bit 0 and 1 respectively. According to how
we choose X0 and X1 it is possible to generate sequences of 0 and 1 obtain-
ing (possible infinite) traces that represent information that (indirectly) flows
from high to low. As a matter of fact, the high level user is able to generate
a string of 0s and 1s that represents a message that a low level user receives.
¥

3.1 Specification of NDC for distributed systems

According to the definition of NDC, there is a universal quantification on all
possible high users. Hence it is possible to specify the NDC property as a context
S = \H(‖(E × )), where there is a hole in which we have to consider a high
user.

Here we analyze a partially specified system C in which there are more than
one high user. Indeed we consider the unspecified components of the context C
as high users, i.e., if C ∈ C1

n there are n high processes in C1
0 .

There is however some flexibility in the way the unspecified components
can behave. We consider two different approaches: The centralized approach,
CNDC, and the decentralized one, DNDC.

First we give the following notational definition.

Definition 3.1 Let H ⊆ Act be the set of high actions and let Hn ⊆ Actn be
the set of n-tuples of high actions. The context \Hn ∈ Cn

n is defined by the
following rule:

\Hn

ã−→̃
a \Hn ã 6∈ Hn

where ã 6∈ Hn means that, being ã = (a1, . . . , an) there does not exist any ai ∈ H
for i = 1, . . . , n.

Let us start with the centralized one.

Definition 3.2 Let C ∈ Cm
n be a generic context. C ∈ CNDC iff

∀X ∈ Cn
0,H \HmC(X) ≈T \HmC(Ñil)

where Ñil is the n-ary context that does not perform any action.

16



As before we have a universal quantification in the specification that is difficult
to manage. Referring to the theory developed in [9], we want to give a static
characterization of CNDC by using a particular context Topn ∈ Cn

0 that is
a a feed-back context on all possible n-tuples of high actions. Its semantics
definition in pseudo-CCS1 is Topn =

∑
ã∈Hn ã∗ ◦ Topn, where Hn is a set of

typles of actions in H, and semantically defined as follows:

Topn ã−→ Topn

for any ã ∈ Hn. This context allows for all possible n-tuples of high actions.
The following result holds, whose proof is postponed to the Appendix.

Proposition 3.1 Let C ∈ Cm
n be a generic context.

C ∈ CNDC ⇔ \HmC(Topn) ≈T \HmC(Ñil)

This means that the NDC property is statically characterized by a single context,
namely the Topn context. In this way the universal quantification on all possible
high users is embedded into the context Topn.

Now, let us consider the decentralized approach.

Definition 3.3 Let C ∈ Cm
n be a generic context. C ∈ DNDC iff

∀X1, . . . , Xn ∈ C1
0,H \HmC(X1, . . . , Xn) ≈T \HmC(Nil, . . . , Nil)

Also in this case, by exploiting the context Top1 we prove (see the Appendix)
the following result.

Proposition 3.2 Let C ∈ Cm
n be a generic context.

C ∈ DNDC ⇔ \HmC(Top1, . . . , T op1) ≈T \HmC(Nil, . . . , Nil)

Hence, also in the decentralized case, it is possible to statically characterize
DNDC.

In order to study the relation that exists between CNDC and DNDC we give
the following proposition (proof in the Appendix).

Proposition 3.3 Let C ∈ Cm
n be a generic context.

C ∈ CNDC ⇔ C ∈ DNDC

Hence there is no difference between the two approaches if we consider trace
equivalence as the behavioral relation between contexts in the analysis of the
information flow properties. This means that, in this setting, there is no dif-
ference if the system is attacked by n independent malicious agents with no
knowledge of each other or by n attackers that manage to violate a system in a
collaborative way.

In the next subsection, we will show that this is no longer the case if bisim-
ulation is used in place of trace semantics. Hence, according to what Focardi
and Gorrieri have already concluded about the analysis of systems with only
one high user ([6, 7]), also in presence of several high components, the BNDC
property turns out to be more interesting and appropriate than NDC.

1We define it in CCS because the context notations makes this definition too cumbersome.

17



3.2 Specification of BNDC for distributed systems

According to [8, 20, 21, 22, 25], the BNDC property can be analyzed by using
the open system paradigm (see [20, 21, 22, 25]).

As we have already done in the previous section for the NDC property, we ex-
tend the specification of BNDC property to distributed systems by considering
that more than one high level user interacts with the system. Also in this case,
we consider these high level users as unspecified components of a distributed
system modelled by a context, e.g., if C ∈ C1

n there are n high processes in C1
0 .

We distinguish between a centralized notion of BNDC (CBNDC) and a de-
centralized one (DBNDC).

Definition 3.4 Let C ∈ Cm
n be a context and let Cn

0,H be the set of n-ary high
contexts. C is CBNDC iff:

∀X ∈ Cn
0,H \Hm(C(X)) ≈ \Hm(C(Ñil))

where Ñil is the n-ary context that does not perform any action.

Definition 3.5 Let C ∈ Cm
n be a context and let C1

0,H be the set of unary high
contexts. C is DBNDC if and only if:

∀X1, . . . , Xn ∈ C1
0,H \Hm(C ◦ (X1 × . . .×Xn)) ≈ \Hm(C ◦ (Nil × . . .×Nil))

where, according to the rule of the product operation, the product X1× . . .×Xn

is a context in Cn
0,H

We show that CBNDC is a property strictly finer than DBNDC. First, the next
proposition shows the implication CBNDC ⇒ DBNDC. Then, the following
example shows that the reverse implication does not hold.

Proposition 3.4 Let C be a context in Cm
n . If C is CBNDC, then C is also

DBNDC.

Proof : It is enough to observe that for any D ∈ C1
0,H × ... × C1

0,H (for n
times), there exists D′ ∈ Cn

0,H such that D and D′ are strongly bisimilar.
¤

However the vice-versa of the Proposition 3.4 does not hold as the following
example shows.

Example 3.2 Let us consider now a context D ∈ C1
2 such that D = τ∗ ◦ l∗1 ◦

Nil + τ∗ ◦ l∗2 ◦Nil +(τ∗ ◦ l∗1 ◦Nil‖τ∗ ◦ l∗2 ◦Nil)+C where C is the same context
of Example 2.5.

In order to make this example readable we use the infix notation that is more
suitable than the prefix one in order to point out why the two approaches differ.

As in Example 2.5, first we combine D with another context P = (h̄1, 0)∗ ◦
(h̄1, 0)∗ ◦ (0, h̄2) ∈ C2

0 . Here we show that D is not CBNDC. As a matter of fact
by calculating D◦Ñil we obtain τ∗◦l∗1◦Nil+τ∗◦l∗2◦Nil+(τ∗◦l∗1◦Nil‖τ∗◦l∗2◦Nil).

18



On the contrary, by considering P = (h̄1, 0)∗ ◦ (h̄1, 0)∗ ◦ (0, h̄2), we obtain that
D◦P is τ∗ ◦ l∗1 ◦Nil+τ∗ ◦ l∗2 ◦Nil+(τ∗ ◦ l∗1 ◦Nil‖τ∗ ◦ l∗2 ◦Nil)+τ∗ ◦ l∗1 ◦τ∗ ◦τ∗ ◦ l∗2
that it is not weakly bisimilar to D ◦ Ñil.

Now, we want to prove that D is DBNDC. It is not difficult to note that the
possible contexts that can interact with D and make an attack are P1 = h̄1

∗ ◦
h̄1
∗ ◦Nil and P ′1 = h̄1

∗ ◦Nil, for the first component, and P2 = h̄2
∗ ◦Nil for the

second one. It is possible to prove that both \H(D(P1, P2)) ≈ \H(D(Nil, Nil))
and \H(D(P ′1, P2)) ≈ \H(D(Nil, Nil)). Hence C is DBNDC2.

First of all we calculate:

\H(D(Nil,Nil)) = τ∗ ◦ l∗1 ◦Nil + τ∗ ◦ l∗2 ◦Nil + (τ∗ ◦ l∗1 ◦Nil‖τ∗ ◦ l∗2 ◦Nil)

In the first case, by calculating D ◦ (P1 × P2) we obtain:

τ∗◦l∗1◦Nil+τ∗◦l∗2◦Nil+(τ∗◦l∗1◦Nil‖τ∗◦l∗2◦Nil)+(τ∗◦l∗1◦τ∗◦Nil‖τ∗◦l∗2◦Nil)

that it is weakly bisimilar to τ∗◦ l∗1 ◦Nil+τ∗◦ l∗2 ◦Nil+(τ∗◦ l∗1 ◦Nil‖τ∗◦ l∗2 ◦Nil)
In the second case, by calculating D ◦ (P ′1 × P2) we obtain:

τ∗ ◦ l∗1 ◦Nil+τ∗ ◦ l∗2 ◦Nil+(τ∗ ◦ l∗1 ◦Nil‖τ∗ ◦ l∗2 ◦Nil)+(τ∗ ◦ l∗1 ◦Nil‖τ∗ ◦ l∗2 ◦Nil)

that it is weakly bisimilar to τ∗◦l∗1 ◦Nil+τ∗◦l∗2 ◦Nil+(τ∗◦l∗1 ◦Nil‖τ∗◦l∗2 ◦Nil).
It is interesting to note that the context P ∈ C2

0 is an example of a process
that can not be written as the product of two unary contexts, i.e., there do not
exist P1, P2 ∈ C1

0 such that P1 × P2 is weakly bisimilar to P . Hence the main
difference between the CBNDC and DBNDC is that, in the centralized case, the
universal quantification is made on contexts in Cn

0 semantically strictly larger
than C1

0 × . . .× C1
0︸ ︷︷ ︸

n

. ¥

To sum up, if we consider the trace equivalence as behavioral equivalence among
contexts, we do not have any difference between the centralized and decentral-
ized approaches for information flow specification, i.e., there are no differences
between CNDC and DNDC. On the other hand, if we consider bisimulation
equivalence, the two approaches are different. This depends on the fact that
it is not possible to give a static characterization of BNDC in terms of a finite
context (see [9]). Since the BNDC property is a particular case of both CBNDC
and DBNDC, we can conclude that there is no finite context playing the same
role as Topn for the trace case for statically characterizing neither CBNDC nor
DBNDC.

4 Analysis of Information Flow for distributed
systems

In this section we focus our attention on the analysis of BNDC in distributed
systems. In particular, we analyze CBNDC and DBNDC by following a logical

2To be complete we have also to prove that \H(D(Nil, P2)) ≈ \H(D(Nil, Nil)),
\H(D(P1, Nil)) ≈ \H(D(Nil, Nil)) and \H(D(P ′1, Nil)) ≈ \H(D(Nil, Nil)). These follow
obviously, so we decide to show the two more difficult cases.

19



approach based on characteristic formulas.
It is important to note that the analysis of CNDC and DNDC consists of

proving if two closed systems are trace equivalent or not (Proposition 3.1 and
Proposition 3.2). In the literature there are a lot of mechanisms that performs
this kind of check (see e.g., [18]). So it is not the matter of this paper.

4.1 Analysis of CBNDC property

For the analysis of the CBNDC property we propose a logical approach exploit-
ing characteristic formulas.

Since the context \Hm(C(Ñil)) is a closed context in Cm
0 we are able to find

its characteristic formula φ̃. Hence, it is possible to give a logical specification
of the CBNDC property equivalent to the one given in the Definition 3.4 as
follows.

C ∈ Cm
n ∈ CBNDC iff ∀X ∈ Cn

0,H \Hm(C(X)) |= φ̃ (6)

In order to solve this problem, we exploit the property transformer function (see
Section 2.2.2) in such a way that we reduce this problem to a validity one. For
simplicity of notation, let D = \Hm ◦C. Hence we have the following reduction:

∀X ∈ Cn
0,H X |= W(D, φ̃) (7)

In this case, since X can be seen as a process that performs a n-tuple of actions
instead of a single one, it is possible to apply an already existing verification
method for modal logic (e.g., see [3]).

Example 4.1 Coming back to Example 3.1, let us consider again the following
context C ∈ C1

2 .

((h∗0 ◦ l∗0)
†‖X0)\{h0,h̄0}‖((h∗1 ◦ l∗1)

†‖X1)\{h1,h̄1}

where X0 and X1 are two variable in C1
0 . In order to verify if this context is CB-

NDC, we consider the characteristic formula of \{h0,h̄0,h1,h̄1}(C(Ñil)) that is F.
In this case we can easily conclude that C is not CBNDC. ¥

4.2 Analysis of DBNDC property

Also in the decentralized case, a universal quantification occurs and also in this
case we appeal to the notion of characteristic formulas. As a matter of fact, we
consider the characteristic formula ϕ̃ of the context \Hm(C(Nil× . . .×Nil)) ∈
Cm

0 . As before we apply the property transformer function for evaluating the
behavior context D = \Hm ◦ C. Hence we have to solve the following problem:

∀{X1, . . . , Xn} ⊆ C1
0,H X1 × . . .×Xn |= W(D, ϕ̃) (8)

It is interesting to note that Statement (8) is a particular instance of the problem
in Statement (7) and so it is solvable as before.

However, since in the decentralized case we have n independent components
that interact with the system, we would like to solve our problem by considering

20



n unary validity problem instead of a n-ary one. To do this we should find a
decomposition of the formula ϕ̃′ = W(D, ϕ̃) into unary formulas φ′1, . . . , φ

′
n such

that:
|=× φ′1 × . . .× φ′n ⇔ ϕ̃′

where each φ′1, . . . , φ
′
n has to be satisfied independently by the components

X1, . . . , Xn.
To do this, we find which property each component has to satisfy in order

to guarantee that the whole system is DBNDC, i.e., it satisfies W(D, ϕ̃) = ϕ̃′.
We exploit the procedure of decomposition of an n-ary formula φ described

in [17].

Definition 4.1 Given an n-ary formula φ, we look for a product formula, φ1×
. . .× φn where each φi, i = 1, . . . , n, is a unary formula in such a way that we
have:

Q ∈ Jφ1 × . . .× φnK⇔ ∃P1 ∈ Jφ1K . . . ∃Pn ∈ JφnK s. t. Q ∼ P1 × . . .× Pn

where Q is a n-ary contexts and P1, . . . , Pn are unary contexts.

For a product formula φ, we write |= φ if φ is satisfied by all n-ary processes of
any context system. In this case, we say that φ is valid. Moreover |=× φ if φ
is satisfied by all n-product processes P1 × . . . × Pn of any context system. In
this case φ is weakly valid. According to [17], note that, for a product formula
φ, the notions of validity and weak validity coincide.

The quest of decomposition can be formally stated as the search for a single
product formula φ1 × . . .× φn such that:

|=× φ1 × . . .× φn ⇔ φ

Usually there does not exist a single product formula φ1 × . . . × φn such that
|=× φ1 × . . .× φn ⇔W(C, φ). Whenever φ is a finite formula, i.e., it is neither
let max nor let min, there exists a finite decomposition, i.e., a finite collection
of product formulas 〈φi

1 × . . .× φi
n〉i∈I , where I is and index set, such that

|=×
∨

i∈I

φi
1 × . . .× φi

n ⇔W(C, φ)

Definition 4.2 A disjunctive product formula,
∨

i∈I φi
1 × . . .× φi

n is said to be
saturated, provided that for any product formula ϕ1 × . . .× ϕn

|= ϕ1 × . . .× ϕn ⇒
∨

i∈I

φi
1 × . . .× φi

n

is equivalent to

|= ϕ1 ⇒ φi
1 . . . |= ϕn ⇒ φi

n for some i ∈ I

21



(i) |=× T ⇔ T×T
(ii) |=× F ⇔ T× F ∨ F×T
(iii) |=× φ1 × ψ1 ∧ φ2 × ψ2 ⇔ (φ1 ∧ φ2)× (ψ1 ∧ ψ2)
(iv) |=× 〈(a, b)〉(φ× ψ) ⇔ (〈a〉φ)× (〈b〉ψ)
(v) |=× [(a, b)](

∨
i φi × ψi) ⇔ ∨

i([a]φi)× ([b]ψi)

where in (v)
∨

i φi × ψi is assumed to be saturated.

Table 4: Weak equivalences for decomposition of properties (see [17]).

It is important to note that every general disjunctive product formula can be
saturated [17]. Moreover, there exist weak equivalences that provide the means
for decomposing properties. Table 4 reports the equivalences that, according to
[17], are all weakly valid.

The following theorem holds. The interested reader can find all the theory
in [17].

Theorem 4.1 Let φ be a n-ary finite formula. Then there exists a disjunctive
product formula

∨
i∈I ϕi

1 × ϕi
n weakly equivalent to φ such that

|=× φ ⇔
∨

i∈I

ϕi
1 × . . .× ϕi

n

Hence, whenever ϕ̃′ = W(D, ϕ̃) is a finite formula, by applying Theorem 4.1 we
have that |=× ϕ̃′ ⇔ ∨

i∈I ϕ
′i
1 × . . . × ϕ

′i
n . Moreover, by considering that every

disjunctive product formula can be saturated, it is possible to solve the problem
in Statement (8) by solving the following one:

∀{X1, . . . , Xn} ⊆ C1
0,H X1 × . . .×Xn |=× φ′1 × . . .× φ′n

where φ′1 × . . .× φ′n implies
∨

i∈I ϕ
′i
1 × . . .×ϕ

′i
n . Hence, according to Definition

4.1, the verification problem in Statement (8) can be reduced to n problems of
the form:

∀ X ∈ C1
0 X |= φ′i i = 1, . . . , n

This is a classical validity problem that, according to [3, 27], for finite state
processes is decidable. Here we follow a similar reasoning made in [20, 21, 22, 25]
for analyzing BNDC. Then, by finding a solution for each of these n problems
we obtain the solution for the general problem.

In order to explain how this theory works, we show the following example.

Example 4.2 Let us consider the context D ∈ C1
2 of Example 3.2 that is not

DBNDC. To prove that, firstly we calculate the characteristic formula ϕ of the
context D(Nil, Nil).

ϕ = let max XD in φ

22



where
φ = 〈〈l1〉〉T ∧ 〈〈l2〉〉T ∧ 〈〈l1〉〉〈〈l2〉〉T ∧ 〈〈l2〉〉〈〈l1〉〉T

According to the analysis theory we have presented above, D ∈ DBNDC when

∀{X1, X2} ⊆ C1
0,H X1 ×X2 |= W(D, ϕ)

where in this case

ϕ̃′ = W(D, ϕ) = 〈h1, 0〉T ∧ 〈0, h2〉T ∧ 〈h1, h2〉T
Since φ does not depend by XD, we can consider ϕ a finite formula. According
to the weak equivalences in Table 4, a decomposition of ϕ̃′ is the following:

〈h1〉T×T ∧T× 〈h2〉 ∧ 〈h1〉T× 〈h2〉T ⇔ 〈h1〉T× 〈h2〉T
Hence solving the following statement

∀{X1, X2} ⊆ C1
0,H X1 ×X2 |= 〈h1〉T× 〈h2〉T

is equivalent to solve the following two ones:

∀X1 X1 |= 〈h1〉T
∀X2 X2 |= 〈h2〉T

Since neither of these statements hold for all implementation of the unknown
components X1 and X2, we conclude that D is not DBNDC. ¥

Example 4.3 Coming back to Example 3.1, let us consider again the following
context C ∈ C1

2 .

((h∗0 ◦ l∗0)
†‖X0)\{h0,h̄0}‖((h∗1 ◦ l∗1)

†‖X1)\{h1,h̄1}

where X0 and X1 are two variables in C1
0 . In order to verify if this context

is DBNDC, we consider the characteristic formula of \{h0,h̄0,h1,h̄1}(C(Nil ×
Nil)) that is F. In this case we can easily conclude that C is not DBNDC.
¥

Now, let us consider the case when ϕ̃′ is not a finite formula. According to
[17], a safe (or sufficient) decomposition may be established. This means that
is possible to find a product formula φ′1 × . . .× φ′n such that

|=× φ′1 × . . .× φ′n ⇒ ϕ̃′

In this case, φ′1 × . . .× φ′n is said to be the safe decomposition of φ.
When we are considering safe decompositions the concept of weak validity

and validity coincide. We prove the following result (see Appendix).

Theorem 4.2 Let ϕ̃ be a generic n-ary formula in the considered modal logic.
Then there exists a safe decomposition of ϕ̃, i.e., there exists a product formula
φ1 × . . .× φn such that

|= φ1 × . . .× φn ⇒ ϕ̃

23



Thus, also when ϕ̃′ = W(D, ϕ̃) is not a finite formula we are able to decompose
it in such a way that the following holds:

∀{X1, . . . , Xn} ⊆ C1
0,H X1 × . . .×Xn |= φ′1 × . . .× φ′n

Hence, also in this case, the verification problem in Statement (8) can be reduced
to n problems of the form:

∀ X ∈ C1
0 X |= φ′i i = 1, . . . , n

Finding a solution for each of these n problems we have the solution of the
general problem. As a matter of fact, once we prove that each formula φ′i is valid
we are able to conclude that the product φ′1× . . .×φ′n is valid too, remembering
that concepts of validity and weak validity coincide on product formulas. Hence,
since φ′1× . . .×φ′n is a safe decomposition for ϕ̃′, we have found a safe condition
for verifying DBNDC. This means that if the safe decomposition is valid then
the system is DBNDC.

5 Related work

A lot of work has been done in order to specify and analyze information flow
properties such as NDC and BNDC, e.g., see [20, 21, 22, 25]. Most of this work,
however, is done by considering only one possible high user that interacts with
the system.

In [2] the authors have studied which could be the effect of the environment
on the information flow security in a multilevel system. They introduce the
notion of secure contexts for a class of processes as a parametric notion with
respect to both the observation equivalence and the operation to characterize the
low level views of a process. In particular they also show that BNDC and NDC,
are just special instances of the general notion. Our work can be considered an
extension of this one in which we consider more than one high user.

In [10] the authors have studied the information flow properties in the set-
ting of mobile agents. They have considered a distributed system with several
unspecified locations and have studied when the system is secure with respect to
information flow considering that an agent performs a different action for each
different location. They refer to this property as mobile BNDC, M BNDC for
short. Moreover they study the relation that exists between Persistent BNDC
and M BNDC. However they do not present any verification method in order
to analyze M BNDC. Moreover in our approach, there are several high users
that can also interact. This is not the case of M BNDC in which a single
process passes from a location to another by performing a set of actions in each
location, sequentially.

In [13, 14, 15], the author aims to formalize a notion of “network timing
attacks”. [13] introduces for the first time a particular process algebra, called
Network Security Process Algebra (nSPA) for reasoning about security prop-
erties and, in particular, information flow properties in a timed setting. In

24



particular, it investigates different locations of a process in systems with inter-
connection networks of heterogeneous structure where some connections might
influence the system security. [14] presents a formal model for description of
passive and active timing attacks, that in [15] is extended by introducing the
concept of probability in the definition and analysis of such attacks. Hence,
the author formulates information flow in terms of probabilities. In particular,
[13] it is studies the case in which an attacker exploits several high level pro-
cesses that can cooperate. Our work exploits context theory, in place of nSPA,
to specify the presence of several high level processes that interact with the
given system. In particular, we contribute on this line of research by specifying
and analyzing information flow properties also when there are several high level
processes but they work independently on each other.

In [28], Tini pointed out that in general BNDC is not compositional with
respect to all the process algebras operators. This results is an extension of the
one given in [22], in which there is the proof that BNDC is not compositional
with respect to parallel operators. Moreover, in [28], he has defined several
properties stronger than BNDC in order to have properties that are composi-
tional with respect to process algebras operators. In this work we have proposed
a different specification of the problem that takes into account the environment
of the system.

6 Conclusion and future work

In this paper we present a possible extension of the approach, based on the open
system paradigm used to specify and analyze information flow properties with
one high level user, to deal with such a systems in which more than one high
level user is active.

In particular, in this research, we focus our attention on BNDC and NDC
properties by showing methods to specify and verify both centralized and de-
centralized NDC and BNDC.

We aim to extend this work by considering that some unspecified components
of the analyzed partially specified system can perform low actions. In particular
we could consider that the unspecified components of the system are not only
possible malicious agents but could also be generic processes that can perform
high actions as well as low ones.

Moreover we intend to deal with enforcement mechanisms for monitoring
information flow properties in distributed system. In particular, we would like
to extend the work in [23] to define and synthesize controller operators also for
the properties defined in this work.

References

[1] Andersen, H. R.: Partial Model Checking, LICS ’95: Proceedings of the
10th Annual IEEE Symposium on Logic in Computer Science, IEEE Com-

25



puter Society, 1995, ISBN 0-8186-7050-6.

[2] Bossi, A., Macedonio, D., Piazza, C., Rossi, S.: Information flow in secure
contexts, J. Comput. Secur., 13(3), 2005, 391–422, ISSN 0926-227X.

[3] Bradfield, J., Stirling, C.: Handbook of Process Algebra, chapter Modal
logics and mu-calculi: an introduction, Elsevier, 2001, 293–330.

[4] Focardi, R.: Analysis and Automatic Detection of Information Flows in
Systems and Networks, Ph.D. Thesis, Department of Computer Science,
University of Bologna, 1998.

[5] Focardi, R., Gorrieri, R.: A Classification of Security Properties for Process
Algebras, Journal of Computer Security, 3(1), 1994/1995, 5–33.

[6] Focardi, R., Gorrieri, R.: The Compositional Security Checker: A Tool for
the Verification of Information Flow Security Properties, IEEE Transac-
tions on Software Engineering, 27, 1997, 550–571.

[7] Focardi, R., Gorrieri, R.: Classification of Security Properties (Part I: In-
formation Flow), FOSAD ’00: In International School on Foundations of
Security Analysis and Design, 2171, Springer-Verlag, 2001, ISBN 3-540-
42896-8.

[8] Focardi, R., Gorrieri, R., Martinelli, F.: Classification of Security Proper-
ties - Part II: Network Security, FOSAD II, 2002.

[9] Focardi, R., Martinelli, F.: A Uniform Approach for the Definition of Se-
curity Properties, FM ’99: Proceedings of the Wold Congress on Formal
Methods in the Development of Computing Systems-Volume I, Springer-
Verlag, London, UK, 1999, ISBN 3-540-66587-0.

[10] Focardi, R., Rossi, S.: Information Flow Security in Dynamic Contexts,
CSFW ’02: Proceedings of the 15th IEEE workshop on Computer Security
Foundations, IEEE Computer Society, Washington, DC, USA, 2002, ISBN
0-7695-1689-0.

[11] Goguen, J. A., Meseguer, J.: Security Policy and Security Models, Proc.
of the 1982 Symposium on Security and Privacy, IEEE Press, 1982.

[12] Gorrieri, R., Martinelli, F., Matteucci, I.: Towards information flow prop-
erties for distributed systems, In Proceedings of the 3rd VODCA Views On
Designing Complex Architectures, 2008, To appear.

[13] Gruska, D. P.: Network Information Flow, Fundam. Inform., 72(1-3),
2006, 167–180.

[14] Gruska, D. P.: Observation Based System Security, Fundam. Inform.,
79(3-4), 2007, 335–346.

26



[15] Gruska, D. P.: Probabilistic Information Flow Security, Fundam. Inform.,
85(1-4), 2008, 173–187.

[16] Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concur-
rency, J. ACM, 32(1), 1985, 137–161, ISSN 0004-5411.

[17] Larsen, K. G., Xinxin, L.: Compositionality Through an Operational Se-
mantics of Contexts, Journal of Logic and Computation, 1(6), December
1991, 761–795.

[18] Levy, P. B.: Infinite Trace Equivalence, 21st Annual Conference on Math-
ematical Foundations of Programming Semantics (MFPS XXI), 155, Else-
vier Science B.V., May, 2006.

[19] Lowe, G.: Semantic models for information flow, Theor. Comput. Sci.,
315(1), 2004, 209–256, ISSN 0304-3975.

[20] Martinelli, F.: Formal Methods for the Analysis of Open Systems with
Applications to Security Properties, Ph.D. Thesis, University of Siena,
Dec. 1998.

[21] Martinelli, F.: Partial Model Checking and Theorem Proving for Ensuring
Security Properties, CSFW ’98: Proceedings of the 11th IEEE workshop
on Computer Security Foundations, IEEE Computer Society, Washington,
DC, USA, 1998, ISBN 0-8186-8488-7.

[22] Martinelli, F.: Analysis of security protocols as open systems, Theoretical
Computer Science, 290(1), 2003, 1057–1106.

[23] Martinelli, F., Matteucci, I.: Synthesis of Local Controller Programs for
Enforcing Global Security Properties, ARES, IEEE Computer Society,
2008.

[24] Milner, R.: Communication and Concurrency, Prentice Hall, London, 1989.

[25] R.Focardi, R.Gorrieri, F.Martinelli: Real-time Information Flow Analysis,
IEEE JSAC, 21(1), Jan 2003, 20–35.

[26] Ryan, P. Y. A., Schneider, S. A.: Process Algebra and Non-interference,
Proceedings of the 1999 IEEE Computer Security Foundations Workshop,
IEEE Computer Society, 1999, ISBN 0-7695-0201-6.

[27] Street, R. S., Emerson, E. A.: The propoitional µ-calculus is elementary,
Eleventh International Colloquim in Automata, Languages and Program-
ming, 172 of LNCS, 1984, 465–472.

[28] Tini, S.: Rule formats for compositional non-interference properties, J.
Log. Algebr. Program., 60-61, 2004, 353–400.

[29] Winskel, G.: On the compositional checking of validity (extended abstract),
CONCUR ’90: Proceedings on Theories of concurrency : unification and
extension, LNCS 458, Springer-Verlag, Amsterdam, The Netherlands, 1990,
ISBN 0-387-53048-7.

27



A Technical proofs

Before the proofs of Proposition 3.1 and 3.2 we give the following lemmata.

Lemma A.1 ∀X ∈ Cn
0,H X ≺ Topn

Proof: Let S be the binary relation defined as follows:

S = {(C, Topn)|C ∈ Cn
0,H}

The thesis follows immediately if relation S is a strong simulation. But this
derives trivially from the definition of Topn, as it can perform any vector of
high actions. Indeed, if C

ã−→ C ′, then Topn ã−→ Topn with (C ′, T opn) ∈ S.
Hence we have the thesis.

¤

Lemma A.2 Let C, D ∈ Cn
0 be two contexts. The following hold:

• C ≺ D ⇒ C ≤T D

• C ∼ D ⇒ C ≈T D

Proof:

• If C ≺ D then, if C
ã−→ C ′, there exists D′ such that D

ã−→ D′ with
C ′ ≺ D′. This means that computations of length one performed by C
are matched by corresponding computations of length one performed by
D. Inductively, one can prove that if C

ã1−→ C1
ã2−→ C2 . . .

ãn−→ Cn, then
D

ã1−→ D1
ã2−→ D2 . . .

ãn−→ Dn with Cn ≺ Dn. This ensures that any trace
of C, that can be obtained by abstracting on the sequence ã1ã2 . . . ãn, is
also a trace of D.

• For the definition of bisimulation, C ∼ D implies that C ≺ D and D ≺ C.
Hence, for the previous point of this lemma, we have that Tr(C) ⊆ Tr(D)
and Tr(D) ⊆ Tr(C). This implies that C ≈T D.

¤

Proposition 3.1 Let C ∈ Cm
n a generic context.

C ∈ CNDC ⇔ \HmC(Topn) ≈T \HmC(Ñil)

Proof: Since

C ∈ CNDC iff ∀X ∈ Cn
0,H \HmC(X) ≈T \HmC(Ñil)

the proof is divided into two parts:

28



⇒ Since ∀X ∈ Cn
0,H \HmC(X) ≈T \HmC(Ñil), it holds obviously also for

Topn. Hence \HmC(Topn) ≈T \HmC(Ñil).

⇐ We prove that \HmC(Ñil) ≤T \HmC(X) ≤T \HmC(Topn).

For Lemma A.1, X ≺ Topn. Since ≺ is a pre-congruence for context, i.e.,
it is a congruence and a pre-order, we have that \HmC(X) ≺ \HmC(Topn).
Hence, for Lemma A.2, \HmC(X) ≤T \HmC(Topn).

A similar reasoning is done by noticing that Ñil ≺ X. Hence, by applying
the previous lemmata, we have that \HmC(Ñil) ≤T \HmC(X).

To sum up \HmC(Ñil) ≤T \HmC(X) ≤T \HmC(Topn) ≈T \HmC(Ñil).
Hence \HmC(X) ≈T \HmC(Ñil).

¤

Proposition 3.2 Let C ∈ Cm
n be a generic context.

C ∈ DNDC ⇔ \HmC(Top1, . . . T op1) ≈T \HmC(Nil, . . . Nil)

Proof: Since

C ∈ DNDC iff (∀X1, . . . , Xn ∈ C1
0,H \HmC(X1, . . . , Xn) ≈T \HmC(Nil, . . . , Nil))

the proof is divided into two parts:

⇓ Since ∀X1, . . . , Xn ∈ C1
0,H \HmC(X1, . . . , Xn) ≈T \HmC(Nil, . . . , Nil), it

holds obviously also for Top1. Hence \HmC(Top1, . . . , T op1) ≈T \HmC(Nil, . . . , Nil).

⇑ We prove that \HmC(Nil, . . . , Nil) ≤T \HmC(X1, . . . , Xn) ≤T \HmC(Top1, . . . , T op1).

For Lemma A.1, each Xi for i = 1, . . . , n Xi ≺ Top1. Since ≺ is a pre-
congruence for the operation of context, i.e., it is a congruence and a
pre-order, we have that

\HmC(X1, . . . , Xn) ≺ \HmC(Top1, . . . , T op1).

Hence, for Lemma A.2, \HmC(X1, . . . , Xn) ≤T \HmC(Top1, . . . , T op1).

A similar reasoning is done by noticing that Nil ≺ Xi for all i = 1, . . . , n.
Hence, applying the previous lemmas, we have that \HmC(Nil, . . . , Nil) ≤T

\HmC(X1, . . . , Xn).

To sum up \HmC(Nil, . . . , Nil) ≤T \HmC(X1, . . . , Xn) ≤T \HmC(Top1, . . . , T op1)
≈T \HmC(Nil, . . . , Nil). Hence \HmC(X1, . . . , Xn) ≈T \HmC(Nil, . . . , Nil).

¤

Proposition 3.3 Let C ∈ Cm
n a generic context.

C ∈ CNDC ⇔ C ∈ DNDC

29



Proof: According to Definition 3.2, C ∈ CNDC iff

∀X ∈ Cn
0,H \HmC(X) ≈T \HmC(Ñil)

Then, according to Definition 3.3, C ∈ DNDC iff

∀X1, . . . , Xn ∈ C1
0,H \HmC(X1, . . . , Xn) ≈T \HmC(Nil, . . . , Nil)

Hence, to prove Proposition 3.3, we have to prove the following double implica-
tion:

\HmC(Topn) ≈T \HmC(Ñil) ⇔ \HmC(Top1, . . . T op1) ≈T \HmC(Nil, . . . Nil)

In particular, we prove that the two contexts Topn and Top1 × . . .× Top1

︸ ︷︷ ︸
n

are

strong bisimilar. Then for Lemma A.2, we conclude that they are also trace
equivalent. Hence the two static characterizations coincide.

Hence, let R be a binary relation defined as follows:

R = {(Topn, T op1 × . . .× Top1

︸ ︷︷ ︸
n

)}

that we want to prove to be a bisimulation. Initially, (Topn, T op1 × . . .× Top1

︸ ︷︷ ︸
n

) ∈

R obviously.

If Topn ã−→ Topn, where ã−→=
(a1,...,an)−→ , we have to prove that there exists

C such that
Top1 × . . .× Top1

︸ ︷︷ ︸
n

ã−→ C

and (Topn, C) ∈ R.
For the semantics definition of Top1, we consider that the first component

of the product performs a1, the second one a2, and so on. Hence, from the
semantic definition of Top1, we have that Top1 ai−→ Top1 for i = 1, .., n. Hence,
the context C we are looking for is Top1 × . . .× Top1

︸ ︷︷ ︸
n

. Hence, the condition

(Topn, C) ∈ R holds trivially.
If Top1 × . . .× Top1

︸ ︷︷ ︸
n

ã−→ D we want to prove that there exists Top′n such

that Topn ã−→ Top′n and (D, Top′n) ∈ R. Since D, for the same reasoning
made before, is Top1 × . . .× Top1

︸ ︷︷ ︸
n

and Topn performs all the possible n-tuples

of high action and goes into itself, the thesis follows directly from the definition
of Topn.

Hence, being Topn and Top1 × . . .× Top1

︸ ︷︷ ︸
n

bisimilar, since the bisimulation

is a congruence for contexts (see Theorem 2.1), we have that

\HmC(Topn) ∼ \Hm(C(Top1, . . . T op1))

30



For Lemma A.2, \Hm(C(Topn)) ≈T \Hm(C(Top1, . . . T op1)).
Since \Hm(C(Ñil)) ≈T \HmC(Nil, . . . Nil) trivially, we have the thesis.

¤

Theorem 4.2 Let ϕ̃ be a generic n-ary formula in the considered modal logic.
Then there exists a safe decomposition of ϕ̃, i.e., there exists a product formula
φ1 × . . .× φn such that

|= φ1 × . . .× φn ⇒ ϕ̃

First of all, we give the following result used in the proof of the theorem.

Proposition A.1 Let φ(X) and ψ(X) two open modal µ-calculus formulas. If
φ(X) ⇒ ψ(X), i.e., JφK ⊆ JψK, then let max X = φ in X ⇒ let max X =
ψ in X.

Proof: The implication φ ⇒ ψ means that if S is a model of φ, i.e., S ⊆ JφK
then S is also a model for ψ. According to the semantics definition of the
maximum fix point given in [3]:

Jlet max X = φ in XK =
⋃
{S‖S ⊆ JφK} ⊆

⋃
{S‖S ⊆ JψK} = Jlet max X = ψ in XK

Hence let max X = φ in X ⇒ let max X = ψ in X.

¤

Proof: According to [17], without loss of generality, we can consider dyadic
closed formulas (contexts) and we can consider ϕ̃ as a formula of modal µ-
calculus, since the simultaneous recursion of our language is only a syntactic
facilitation. For that reason, in order to find a safe decomposition of ϕ̃, we can
refer to [29] in which a particular fragment of the modal µ-calculus, without the
∨ operator and the minimum fixpoint operator and in which the box modality
[a, b]φ is replaced by (a, b)φ = [a, b]φ ∧ 〈a, b〉T, is fully decomposed as product
of two unary formulas as follows:

|= T ⇔ T×T
|= 〈a, b〉φ ⇔ 〈a〉φ1 × 〈b〉φ2

|= (a, b)φ ⇔ (a)φ1 × (b)φ2

|= φ ∧ ψ ⇔ φ1 ∧ ψ1 × φ2 ∧ ψ2

|= let max X = φ in X ⇔ let max Y1 = φ1in Y1 × let max Y2 = φ2in Y2

where |= φ1 × φ2 ⇔ φ, |= ψ1 × ψ2 ⇔ ψ and Y1 × Y2 is the change of variable
related to X.

Our goal is finding a safe decomposition that is weaker than a fully one.
Hence, we want to prove that, that at least a safe decomposition exists for the
box modality, the ∨ operator and the minimun fixpoint operator.

Referring to Theorem 4.1, we know that finite formulas with box modality
and/or ∨ operator have a decomposition. So the problem is when these opera-
tors are combined in a formula with recursion. Hence we proceed by analyzing
each case separately.

31



φ = let min X = ψ in X : According to the definition of minimum fixpoint
given in [3], we have that (let min X = ψ in X) =

∨
α<k ψα(F) where

α is an ordinal, k is at worst the number of state of the system and
ψα = ψ(ψα−1(F)) where ψ0 = F. Hence, (let min X = ψ0 in X) = F,
let min X = ψα in X = ψ(let min X = ψα−1 in X) = ψα(F). We can
notice that if ψ1 = F the minimum fixpoint is already found and it if F.
On the other hand, if ψ1 = ψ(F) 6= F, we analyze how safely decompose
ψ(F) since ψ(F) ⇒ ∨

α<k ψα(F) = let min X = ψ in X. If it is a finite
formula, we are able to decompose it by exploiting weak equivalences in
Table 4 and then we conclude that:

|= φ1 × φ2 ⇔ ψ(F) ⇒
∨

α<k

ψα(F) = let min X = ψ in X

If ψ(F) is not a finite formula, it could be a minimum fixpoint so we
proceed as above and, since the formula is well defined, the procedure
ends. If ψ(F) is a maximum fixpoint, we proceed as described below.

φ = let max X = ψ in X : We proceed by induction on the structure of the
formula ψ.

• In the base case, ψ = T, we have, according to [29]:

|= let max X = T in X ⇔ let max Y1 = Tin Y1×let max Y2 = Tin Y2

• Let ψ = ψ1∧ψ2 be the considered formula. For inductive hypothesis
we have that ψ1 and ψ2 can be safely decomposed as |= ψ′1×ψ′′1 ⇒ ψ1

and |= ψ′2×ψ′′2 ⇒ ψ2. Hence, according to weak equivalences in Table
4:

|= (ψ′1 ∧ ψ′2)× (ψ′′1 ∧ ψ′′2 ) ⇔ (ψ′1 × ψ′′1 ) ∧ (ψ′2 × ψ′′2 ) ⇒ ψ1 ∧ ψ2 = ψ

and according to [29], having found a safe decomposition of ψ we
have:

|= let max Y1 = ψ′1∧ψ′2in Y1×let max Y2 = ψ′′1∧ψ′′2 in Y2 ⇒ let max X = ψ in X

• Let ψ = ψ1 ∨ ψ2 be the considered formula. Since we want to find a
safe decomposition of ψ, we chose the first formulas of the disjunc-
tion, in this case ψ1 and then, since ψ1 ⇒ ψ1 ∨ ψ2 and for inductive
hypothesis we know that |= ψ′1 × ψ′′1 ⇒ ψ1, by exploiting the Propo-
sition A.1 and referring to [29], we conclude that

|= let max X = ψ′1×let max X = ψ′′1 in X ⇒ let max X = ψ in X

⇒ let max X = ψ1 ∨ ψ2 in X

32



• Let ψ = [a, b]ϕ be the considered formula. In order to find a safe
decomposition, we refer to [29], by considering a strong version of box
modality that implies the considered one. Indeed (a, b)ϕ = [a, b]ϕ ∧
〈a, b〉ϕ ⇒ [a, b]ϕ. According [29] and since for inductive hypothesis,
there exists a safe decomposition for ϕ s.t. |= ϕ1 × ϕ2 ⇒ ϕ, we have
that |= [a]ϕ1∧〈a〉T×[b]ϕ2∧〈b〉T = (a)ϕ1×(b)ϕ2 ⇒ (a, b)ϕ ⇒ [a, b]ϕ.
Hence, by exploiting Proposition A.1:

|= let max X1 = [a]ϕ1 ∧ 〈a〉T in X1 × let max X2 = [b]ϕ2 ∧ 〈b〉T in X2 ⇒
let max X = (a, b)ϕ in X ⇒ let max X = [a, b]ϕ in X

Hence

|= let max X1 = [a]ϕ1∧〈a〉T in X1×let max X2 = [b]ϕ2∧〈b〉T in X2

⇒ let max X = ψ in X

• Let ψ = 〈a, b〉ϕ be the considered formula. For inductive hypothesis,
there exists a safe decomposition for ϕ s.t. |= ϕ1 × ϕ2 ⇒ ϕ, hence,
referring to [29]:

|= 〈a〉ϕ1 × 〈b〉ϕ2 ⇒ 〈a, b〉ϕ = ψ

By exploiting Proposition A.1, we conclude that:

|= let max X1 = 〈a〉ϕ1 in X1×let max X2 = 〈b〉ϕ2 in X2 ⇒ let max X = ψ in X

• Let ψ = let min X = ϕ in X be the considered formula. Accord-
ing to the definition of minimum fixpoint given in [3], we have that
let min X = ϕ in X =

∨
α<k ϕα(F) where α is an ordinal, k is

at worst the number of state of the system and ϕα = ϕ(ϕα−1(F))
and ϕ0 = F. Hence, let min X = ϕ0 in X = F, let min X =
ϕα in X = φ(let min X = ϕα−1 in X). Hence, there exists α′ s.t.
ϕα′ 6= F. In particular, if ϕ1 = F the minimum fixpoint is already
found and it if F. On the other hand, if ϕ1 = ϕ(F) 6= F, it is a for-
mula that, for inductive hypothesis we are able to safely decompose.
Let φ1 and φ2 s.t. |= φ1 × φ2 ⇒ ϕ(F) then

|= φ1 × φ2 ⇒ ϕ(F) ⇒
∨

α<k

ϕα(F) = let min X = ϕ in X

¤

33


