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Abstract
In this paper we propose an application of the action refinement theory for en-

forcing security policies at different levels of abstraction by using process algebra
controller operators.

Let us consider a system that cooperates with a possible untrusted component
managed by a programmable controller operator in such a way that the considered
composed system is secure, i.e., the composed system works as expected. Firstly,
the considered system is specified at a high level of abstraction. Successively, we
refine it by applying a refinement function in such a way that we pass through
different abstraction levels.

Here we investigate on the set of features a refinement function needs to have
for guaranteeing that a considered system, which is secure at high level, once re-
fined is still secure regardless the behaviour of the implementation of the untrusted
component. Indeed, by applying an action refinement function, it is possible to
refine the system, the controller program and the possible untrusted component as
if they were three independent entities, in such a way that their implementation
does not depend on each other. Hence the capability of the controller operator to
make the system secure regardless the behaviour of the untrusted component at
high level, is also preserved at a lower level.

Keyword: Action refinement function , controller operator, enforcing security prop-
erty.

1 Introduction
In the development of software components, it is quite often required to relate systems
belonging to different abstraction levels. In particular, a lot of work has been done
∗Work partially supported by EU-funded project “Software Engineering for Service-Oriented Overlay

Computers”(SENSORIA), by EU-funded project FP7-214859 CONSEQUENCE (Context-aware data-centric
information sharing) and by EU-funded project FP7-231167 “CONNECT” (Emergent Connectors for Eter-
nal Software Intensive Networked Systems).
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to study the transition from the specification (high level of abstraction) to the imple-
mentation (low level of abstraction) of a component. Such a transition is referred to as
refinement procedure.

The basic idea is that, given two processes P and r(P ), r(P ) is the refinement of P
if it is described at a deeper level of detail than P . In this paper we refer to the action
refinement theory developed in [1, 2, 3]. Indeed, in combination with our framework
for enforcing secure systems through the usage of process algebra controller operators
(see, e.g., [4, 5]), we show how and when it is possible to enforce security property
through different levels of abstraction. As a matter of fact, here we investigate the
features that an action refinement function needs to have in order to be suitable for
guaranteeing that a system, secured at high level of abstraction, results secure also
once refined.

Referring to [4, 5], we enforce security properties at high level of abstraction by
exploiting a process algebra controller operator denoted by .T . It works by monitoring
a target system, the system we want to check, and terminating any execution that is
about to violate the security policy being enforced. Using our formalism, let S be the
system we want to make secure. Let X be a target system, that interacts with S. We
monitor X through the usage of a controller program Y according to the semantics
definition of .T (Y .T X). Thus the specification of the whole system at high level
of abstraction is S‖A(Y .T X), where A is a set of all possible malicious actions that
can be performed by an attacker. S and Y .T X synchronize their behaviour on A
according to the semantics definition of the CSP parallel operator ‖A (e.g., [6]).

Let P be a security policy represented by a process that describes the “correct”
behaviour of the system, i.e., the expected behaviour that the considered system must
have. We consider that a system is secure whenever its behaviour is compliant w.r.t.
the behaviour described by P . For our purpose, the notion of compliance coincides
with the notion of weak simulation relation [7], denoted by ¹, that guarantees that all
actions executed by the system are also executed by the policies. Speaking in terms
of security and recalling the results presented in [8, 9], if the system is weakly similar
to the policy P this means that it does not perform actions that are not allowed by the
policy. This guarantees that the system is secure.

Hence, at a high level of abstraction the problem of enforcing security policy by .T

is specified as follows:

∀X ∈ EA S‖A(Y .T X) ¹ P (1)

where EA represents the set of malicious high level processes, i.e., processes that per-
form actions in A.

As mentioned above, in this paper we investigate on the set of features a refinement
function [1, 2, 3] needs to have in order to be suitable for guaranteeing that a secure
system at high level, once refined is still secure. Indeed, starting from Statement (1)
in which we have a secure system, we prove that, once we apply an action refinement
function with certain features, the system at a lower level of abstraction is still secure,
regardless of the behaviour of the implementation of the possible malicious component.
To do this, we first have to find which are the assumptions we have to guarantee about
the refinement function r in order to be sure that it is suitable for preserving security
properties. Secondly, we have to prove the following results:
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• the refinement function is distributive with respect to the parallel operator and
the controller operator .T . In such a way that we are able to conclude that the
refinement of the system S‖A(Y .T X), r(S‖A(Y .T X)), is r(S)‖r̃(A)r(Y ) .T

r(X) where r(S), r(Y ) and r(X) are the refinement of S, Y and X respectively
and where r̃(A) ⊆ ActC represents the alphabet of the processes obtained during
the refinement procedure of the action in A and ActC is the set of concrete
actions.

• the refinement function preserves the weak simulation. This permits to conclude
that:

∀r(X) r(S)‖r̃(A)(r(Y ) .T r(X)) ¹ r(P )

More generally we are able to conclude that:

∀X ∈ Er̃(A) r(S)‖r̃(A)(r(Y ) .T X) ¹ r(P )

where EActC
represents the set of all possible malicious processes described at

high level. This statement means that, since the implementation of each com-
ponent S, Y and X of the system is independent from each other, the refined
systems can be made secure by the refinement of the controller operator r(Y )
regardless of the behaviour of the implementation of the target, i.e., for all pos-
sible r(X). Hence, provided that the system is secure at the specification level,
it remains secure also at implementation level.

An advantage of this result is that, once we have proved that a system is secure at the
specification level, we are able to implement it in such a way that it is secure also at
lower level regardless of the implementation of the possible untrusted component. The
only requirement is that the implementation of such possible untrusted component is
described at the same abstraction level of the program controller. Moreover, our ap-
proach permits to control only the possible untrusted part of the system at whatever
level of abstraction we are talking about.

This paper is organized as follows: Section 2 recalls some background notions
about process algebra and action refinement techniques. Section 3 presents our ap-
proach to the application of the refinement theory for enforcing security policies at
different levels of abstraction. Section 4 describes a simple example in which the ap-
plication of the refinement procedure guarantees the enforcement of a security policy
along the TCP/IP stack. Section 5 compares our work with what already exists in
literature and Section 6 concludes the paper.

2 Background
In this section we are going to recall some notions about process algebra operators and
refinement functions.
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2.1 A process algebra
The universe of interest is modelled by exploiting process algebra [6, 10] formalisms
in which processes autonomously and concurrently can proceed in their computation
but they have also the possibility to communicate and synchronize among themselves.
They can perform actions which may represent computation steps.

Let Act be a set of action names, ranged over by a, b, c . . . and an invisible action
τ that models the internal, non observable action. Furthermore, let X be a termination
predicate and E be a set of processes ranged over by P,Q, E, F . . ..

The syntax of the considered process algebra is the following:

P ::= 0 | a.P | P ;P | P + P | P‖AP | P [f ] | P/A

where A ⊆ Act and the relabelling function f : Act 7→ Act must be such that f(τ) =
τ .

Informally, the meaning of these operators is the following: 0 is the term that does
nothing; a (closed) term a.P represents a process that performs an action a and then
behaves as P . The term P ;P describes the sequences of two components. At the be-
ginning it executes all actions of the first component, then starts to execute the second
one. The term P + P represents the non-deterministic choice: choosing the action
of one of the two components means dropping the other. The term P‖AP is the syn-
chronous parallel operator on the set of action A. Any action in A is performed when
both the components of the term perform it. On the other hand, all actions not included
in A are performed whenever one of the two components performs it. The process
P/A is the hiding operator and behaves like P but the actions in A are replaced by τ ;
the process P [f ] behaves like P , though its actions are renamed through relabelling
function f .

The operational semantics of the presented process algebra is described by a la-
belled transition system (E , Act,→), where E is the set of all terms and →⊆ E ×
Act × E is a transition relation defined by structural induction as the least relation
generated by the set of the structural operational semantics rules of Table 1. The tran-
sition relation → defines the usual concept of derivation in one step. As a matter of
fact P

a−→ P ′ means that process P evolves in one step into process P ′ by executing
action a ∈ Act. The transitive and reflexive closure of

⋃
a∈Act

a−→ is written →∗. In
particular we use the notation P

τ−→∗
P ′ (P ε=⇒ P ′ or P

τ=⇒ P ′), in order to denote
that P and P ′ belong to the reflexive and transitive closure of τ−→. Also, P

a⇒ P ′ if
P

τ−→∗
Pτ

a−→ P ′τ
τ−→∗

P ′ where Pτ and P ′τ denote intermediate states1.
Moreover, the basic one-step transitions are extended to τ -abstracting transitions in

the usual way:

P
σ=⇒ P ′ ⇔ P

a1...an=⇒ P ′ ⇔ P
τ−→∗ a1−→ τ−→∗

. . .
τ−→∗ an−→ τ−→∗

P ′

where Act∗ is the set of sequences of actions and σ ∈ Act∗.
Given a process P , Der(P ) = {P ′|P →∗ P ′} is the set of its derivatives. A

process P is said finite state if Der(P ) is finite. Sort(P ) is the set of names of actions
that syntactically appear in process P .

1We can use the short notation P
τ−→∗ a−→ τ−→∗

P ′ when the intermediate states are not relevant.
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0X
PX QX
(P + Q)X

PX QX
(P ; Q)X

PX QX
(P‖AQ)X

PX
(P/A)X

PX
(P [f ])X

a.P
a−→ P

P
a−→ P ′

P ; Q a−→ P ; Q

PX Q
a−→ Q′

P ;Q a−→ Q′

P
a−→ P ′

P + Q
a−→ P ′

Q
a−→ Q′

P + Q
a−→ Q′

P
a−→ P ′a 6∈ A

P‖AQ
a−→ P ′‖AQ

Q
a−→ Q′a 6∈ A

P‖AQ
a−→ P‖AQ′

P
a−→ P ′ Q

a−→ Q′a ∈ A

P‖AQ
a−→ P ′‖AQ′

P
a−→ P ′a 6∈ A

P/A
a−→ P ′/A

P
a−→ P ′a ∈ A

P/A
τ−→ P ′/A

Table 1: SOS system for process algebra.

2.1.1 A process algebra controller operator for enforcement.

The notion of enforcement mechanism we refer to was introduced in [11]. An enforce-
ment mechanism works by monitoring a target system and terminating any execution
that is about to violate the security policy being enforced.

[11] presents a specification of enforcement mechanisms as security automata
defined as a triple (Q, q0, δ) where Q is a set of states, q0 is the initial one and
δ : Act×Q → 2Q, where Act is a set of actions, is the transition function.

An enforcement mechanism works by processing a sequence a1a2 . . . of actions.
At each step only one action is considered and, for each action, we calculate the current
state set Q′ that is the set of the possible states reachable after performing the current
action, i.e., if the automaton is checking the action ai then Q′ =

⋃
q∈Q δ(ai, q). If the

automaton can make a transition on a given action, i.e., Q′ is not empty, then the target
is allowed to perform that step. The state of the automaton changes according to the
transition rules. Otherwise, the target execution is terminated. Thus, at every step, it
verifies if the action is in the set of the possible actions or not.

We follow the approach given in [12] to describe the behaviour of security automata
by using the process algebra notation. We use σ to denote a sequence of actions, · for
the empty sequence and τ 2 to represent an internal action.

We denote with E the controller program and with F the target. We work, without
loss of generality, under the additional assumption that E and F never perform the in-
ternal action τ since automata do not consider internal action. We define the controller

2In [12] internal actions are denoted by ·. According to the standard notation of process algebras, we use
τ to denote an internal action.
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operators .T as follows:
E

a→ E′ F a→ F ′

E .T F
a→ E′ .T F ′

This operator models Schneider’s automaton (when considering only deterministic au-
tomata) [4, 5]. Its semantics rule states that if E and F perform the same action, such
action is allowed and the controlled process E .T F performs it, otherwise it halts. It is
important to note that this operator is similar to the parallel operator ‖A defined above
when we consider A as the whole set of actions Act.

2.1.2 Behavioural equivalence: Simulation and Bisimulation.

Behavioural equivalences allow to compare the behaviour of different processes. We
recall the notion of strong and weak simulation and also strong and weak bisimulation.

Let us start with the strong version of the relation.

Definition 2.1 Let (E , Act,→) be an LTS of concurrent processes over the set of
actions Act, and letR be a binary relation over E . ThenR is called strong simulation,
denoted by ≺, over (E , Act,→) if and only if, whenever (P, Q) ∈ R we have:

if P
a−→ P ′ then ∃ Q′ s.t. Q

a−→ Q′ and (P ′, Q′) ∈ R
Recalling that the converseR−1 of any binary relationR is the set of pairs (Q,P ) such
that (P,Q) are in R, we give the following definition.

Definition 2.2 A strong bisimulation is a relation R s.t. both R and R−1 are strong
simulations. We represent with ∼ the union of all the strong bisimulations.

In the strong simulation and bisimulation we haven’t assumed a distinguished role for
the τ action. In order to abstract from those actions when comparing two systems, we
recall the weak version of simulation and bisimulation as follows.

Definition 2.3 Let (E , Act,→) be an LTS of concurrent processes over the set of
actions Act, and let R be a binary relation over E . Then R is called weak simulation,
denoted by ¹, over (E , Act,→) if and only if, whenever (P, Q) ∈ R we have:

if P
a−→ P ′ then ∃ Q′ such that Q

a=⇒ Q′ and (P ′, Q′) ∈ R
Recalling that the converseR−1 of any binary relationR is the set of pairs (Q,P ) such
that (P,Q) are in R, we give the following definition.

Definition 2.4 A weak bisimulation is a relation R such that both R and R−1 are
weak simulations.

Two processes P and Q are weakly bisimilar if there exists a bisimulation R such
that (P, Q) ∈ R. The maximal weak bisimulation is ≈ which is the union of every
weak bisimulation. It is easy to check that this relation is still a weak bisimulation and
moreover is reflexive, symmetric and transitive.
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r∗(0) := 0
r∗(a.P ) := r(a); r(P )
r∗(P + Q) := r∗(P ) + r∗(Q)
r∗(P ; Q) := r∗(P ); r∗(Q)
r∗(P‖AQ) := r∗(P )‖r̃(A)r

∗(Q) if r is distinct on A
r∗(P [f ]) := r∗(P )[f ] if fd{a|r(a) 6= a} is the identity function
r∗(P/A) := r∗(P )/r̃(A) if r preserves A

Table 2: Syntactic Refinement.

2.2 Action Refinement
Here we recall the notion of action refinement by following the theory developed in
[1, 2, 3].

Let ActAb be the set of abstract actions and ActC be the set of concrete actions.
Moreover, let EActAb

and EActC be the set of high and low level processes, whose
actions are in ActAb and ActC , respectively. A refinement function r maps abstract
actions to concrete processes, where the notion of abstract and concrete are accompa-
nied by a change of alphabet, the implementation of a specification S is given by the
syntactic substitution of a concrete process r(a) for actions a in S.

For our purpose, in order to avoid unnecessary complications, we single out the
fragment of refinement terms, R, that can be used as the refinement of abstract actions
as follows:

P ::= 0 | a.P | P + P

According to [3], the terms in R have to satisfy some specific criteria. Indeed, if a
process P is a refinement of an atomic action, then it is required that P is:

• non-empty, i.e., a visible abstract action cannot simply disappear during refine-
ment.

• eventually terminating, i.e., the refinement of a given action cannot “get stuck”
during execution.

Here we consider a syntactic action refinement. For a given refinement function
r : ActAb → RC , syntactic substitution can be formalized as a partial function
r∗ : EActAb

⇀ EActC
, defined according to the set of rules in Table 2.

For each action a ∈ ActAb, let r̃(a) be the alphabet of a refinement term r(a), i.e.,
r̃(a) = Sort(r(a)). Now we recall the following definition, largely used in the rest of
the paper.

Definition 2.5 ([3]) Let r : ActAb → RC be a refinement function and A ⊆ ActAb a
subset of actions.

• r is said to preserve A if r̃(a) ∩ r̃(b) = ∅ for all a ∈ A and b ∈ ActAb\A;

• r is said to be distinct on A if the following conditions hold:
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– for all distinct a ∈ A and b ∈ ActAb, r̃(a) ∩ r̃(b) = ∅;

– for all a ∈ A and all sub processes P +Q of r(a), Sort(P )∩Sort(Q) = ∅.

In other words, a refinement function r preserves a certain set A ⊆ ActAb if there is no
overlap between the actions occurring in the refinement of (the elements of) A and of
(the elements of) ActAb\A. On the other hand, r is distinct on A if also the refinement
of different actions in A have disjoint alphabets, and the images of individual actions
in A contain no more than a single instance of any action. This implies that a distinct
refinement function is also deterministic and a deterministic refinement on A means
also that it preserves A.

3 Application of Refinement to enforcement
In this section we show how and when the action refinement theory, recalled in the
previous section, combined with our framework on controller operators, is suitable for
enforcing security properties at lower level of abstraction.

Let P be a policy. According to [8, 9], the simulation relation guarantees that all
actions executed by the system are also executed by the policies, i.e., the system does
not perform actions that are not allowed by the policy. This guarantees that the system
is secure.

Let S be the system whose behaviour must be compliant with policy P . We restrict
ourselves to consider a subset of processes made of sequences of actions, + and ‖A

where A ⊆ ActAb is the set of all possible malicious actions in ActAb and for every
Q = Q1‖AQ2, Sort(Q2) ⊆ A. We name this subset of processes as E⊂.

At specification level, we ensure that the following statement:

∀X ∈ EA S‖A(Y .T X) ¹ P (2)

holds by controlling the behaviour of the possible malicious component X through the
usage of a controller program Y that monitors X according to the semantics of .T .

The aim of this section is to provide a proof of the following statement: if a sys-
tem is secure at high specification level then the same system, once refined through a
refinement function r, will still be secure at a lower level of abstraction, regardless the
behaviour of a possible malicious component. Such a malicious component has to be
described at the same level of abstraction of the rest of the refined system. In order to
guarantee this, we assume that r respects the following features:

• the refinement function r represents a syntactic refinement, i.e., hereafter r and
r∗ coincide;

• the refinement function r is distinct on Act;

• the refinement function r is the identity function w.r.t. the internal action τ ;

Let r be an action refinement function with the features listed above. We prove the
following theorem.
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Theorem 3.1 Let S‖A(Y .T X) be a secure system, i.e., it is weakly similar to P . Let
r(S), r(Y ), r(X) and r(P ) be the syntactic refinement of S, Y , X and P w.r.t. r
respectively. The following relation holds:

∀r(X) ∈ Er̃(A) r(S)‖r̃(A)(r(Y ) .T r(X)) ¹ r(P )

This means that, given a secure system, once this is refined by applying a refinement
function r to each of its components, it is still secure also at a lower level.

To prove Theorem 3.1 we have to show that refinement function r preserves the
weak simulation.

Let us start by proving the following lemma.

Lemma 3.1 Let P, Q and E be processes in E⊂ then

P‖AQ ¹ E ⇒ r(P )‖r̃(A)r(Q) ¹ r(E)

According to the semantics definition of .T , Y .T X ∈ E⊂ because both Y and X
perform only actions in A and Y .T X performs action performed by both Y and X .
Hence Sort(Y .T X) ⊆ Sort(X). Moreover, referring to the definition of syntactic
refinement, r(Y .T X) = r(Y ) .T r(X). Hence, the proof of Theorem 3.1 follows
directly from Lemma 3.1.

This result permits us to guarantee that the implementation by the refinement func-
tion r of the controller program Y does not depend on the behaviour of the implemen-
tation of the target X . Hence r(Y ) makes the system secure for all possible r(X).

Hence, we have proven that whenever a given system is secure at specification level,
this remains secure after a syntactic refinement also at implementation level regardless
of the implementation of the possible malicious component.

Moreover, we are able to guarantee that the system is still secure at implementa-
tion level regardless the behaviour of the untrusted component under the additional
assumption that the behaviour of the malicious agent is described at the same level of
abstraction as the rest of the system. Hence the following Corollary of Theorem 3.1
holds.

Corollary 3.1 In the same hypotheses of the previous theorem we can also prove that:

∀X ∈ Er̃(A) r(S)‖r̃(A)(r(Y ) .T X) ¹ r(P )

where Er̃(A) is the set of all possible malicious processes described at a concrete level.

Proof: It follows by noticing that (r(Y ) .T X) ¹ r(Y ) for any X ∈ Er̃(A) and from
the fact the ¹ is a pre-congruence w.r.t. to the operators of the calculus.

2

4 An example: Refinement through the TCP/IP levels
Referring to [13], we propose a simple example of a possible application of the frame-
work we have described in the previous sections.
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The TCP/IP protocol suite implements the standard connection model of computer
network with four layers: application, transport, network and link. Here we consider
the refinement between the application and the transport level:

Application layer is the interface between the applications and the network (client-
side protocol). The network concepts involved at this level are Daemons and
Terminal servers.

Transportation layer manages the host-to-host communications. The network con-
cepts involved at this level are Hosts and ports.

Let us consider a network composed by two terminal servers, H1 and H2, that are the
only agents of the considered system. Moreover, let us suppose that daemons are send
and receive, where these two actions denote the daemons of sending or receiving
mails. Hence the set of abstract actions is ActA = {send, receive}. The expected
behaviour of H1 and H2 is the following:

H1 = send.H1 + receive.H1

H2 = receive.H2

The policy of the systems, denoted by P , says that H1 is allowed to send and receive
mail, instead H2 is only allowed to receive when H1 receives them. It cannot send
mail. Hence we have that P can be expressed in process algebra at application level as
follows:

P = H1‖{receive}H2

Assuming we know that H1 is a trusted component, i.e., it performs only allowed ac-
tions, but we are not sure that H2 behaves correctly. Hence we control this components,
in order to make the system secure. Let Y = receive.Y be a controller operator,
then it is easy to see that

H1‖{receive}(Y .T H2) ¹ P

Now, let us move to the transportation level, in which the ports must be specified.
Hence, the action refinement function r applied to the considered daemons is the fol-
lowing:

r(send) = socket25.sendmail
r(receive) = socket993.receivemail

where 25 is the port of SMTP daemons that allows to send mails, and 993 is the port
of IMAP daemons that permits us to receive mails. It is not difficult to see that r is
allowable and distinct. Indeed it is non-empty, there is no τ action. Each action is
mapped in a finite sequence of actions, distinct from one another.

Applying the refinement to our system we have that H1 and H2 are peers of the
transportation layer, hence their communications take place on specified ports. Thus
they are refined as:

r(H1) = socket25.sendmail.r(H1) + socket993.receivemail.r(H1)
r(H2) = socket993.receivemail.r(H2)

10



Moreover the refinement of the policy P is

r(P ) = r(H1)‖{socket993,receivemail}r(H2)

Through the same refinement, we have r(Y ) = socket993.receivemail.r(Y ).
Hence it is not difficult to verify that

r(H1)‖{socket993,receivemail}(r(Y ) .T r(H2)) ¹ r(P )

Moreover we have:
∀H{socket993,receivemail}

2

r(H1)‖{socket993,receivemail}(r(Y ) .T H
{socket993,receivemail}
2 ) ¹ r(P )

where H
{socket993,receivemail}
2 is a concrete process. As a matter of fact, whatever

the behaviour of the second component of the parallel composition is, the refinement
of the controller program r(Y ), guarantees that the system is correct.

5 Related work
Much work has been done in developing process refinement theories, although not
much work has been done dealing with refinement in security.

In [14] the authors use action refinement for security issues. They give a definition
of the refinement function on process algebra terms, similar to the one given in [1]
that we have used in this paper. They are focused on the analysis of security issues, in
particular the analysis of information flow properties. Our approach, instead, is focused
on enforcing security properties through different levels of abstraction.

In [13] the authors present a case study on analysis of refinement. Indeed, using
Event-B they refine a controller for a security property across all the different network
layers of the TCP/IP stack and prove that such refinement is valid. On the other hand,
here we present a general framework for security properties that are yet satisfied in the
transition through different abstraction levels by refinement procedure.

Referring to the framework of policies refinement, in [15] KAOS is introduced.
This is a goal oriented methodology to analyze and refine requirements, especially,
security requirements. KAOS is based on several models which give different perspec-
tives to the situation analysed. A policy template can be used with KAOS in order to
refine policies. The template is filled in for each security requirement and refined ac-
cording to the goal refinements until they reach an implementation detail level. KAOS
is suitable for the refinement process because of its library of refinement patterns that
have been proved and can be reused in concrete situations. Refinement is formally de-
fined in KAOS and can be easily checked using model checking tools like Spin, KAOS
etc. Properties like completeness, correctness and minimality that a refinement must
verify are clearly defined and have been used to verify the refinement patterns. In ad-
dition to it refinement suit, KAOS offers other interesting mechanisms to reason on
security requirement. An advantage of our work w.r.t. KAOS, is that we are able to
refine enforcement mechanisms. In KAOS the enforcement is not treated specifically.
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Also in [16] the authors refer to the policy refinement problem as the passage from
the high specification level of a system to the implementation of the system itself guar-
anteeing that the goals are achieved. There are no considerations neither investigation
about security aspects.

In [16] the authors refer to the policy refinement problem as the passage from the
high specification level of a system to the implementation of the system itself guaran-
teeing that the goals are achieved. As a matter of fact, in this paper, the authors have
presented an approach where a formal representation of a system, based on the Event
Calculus, can be used in conjunction with adductive reasoning techniques to derive the
sequence of operations that will allow a given system to achieve a desired goal. There
are no considerations neither investigation performed on security aspects. On the other
hand, here we present how it is possible to enforce safety properties across different
levels of abstraction.

[17] presents a slightly different notion of the refinement of policies: Policy re-
finement is the process that decomposes the high level policy relevant to a composite
system into a set of policies that are executed in its constituent parts to implement the
behaviour indented by the high level policy. This means that, in [17], a high level pol-
icy describes the global behaviour of the whole considered system, and, on the other
hand, a low level policy describes the behaviour of a single component of the system in
such a way that, when it is composed with the other components, the global behaviour
of the system satisfies the high level policy. In other words, the refinement procedure
described in [17] is a projection of a global policy into local ones whose composition
gives the global one again.

6 Conclusion and Future work
This work extends our previous one based on process algebra and logic for the specifi-
cation (e.g., see [18]), verification (e.g., see [19]) and automated synthesis of enforcing
mechanisms for secure systems (e.g., see [5]), with also refinement theory.

Indeed, in this paper we have presented a way for applying action refinement theory
for the enforcement of security properties at different specification levels. By starting
from our theory on process algebra operators (see [4, 5]) we have considered the pro-
cess algebra controller operator .T as enforcement mechanism for checking the be-
haviour of possible untrusted components. Referring to this operator, we have shown
how it is possible to refine a system, including the existing controller program, by
guaranteeing that the resulting one is yet secure (w.r.t. the refined security policy).

As future work, we aim to investigate the application of action refinement function
to other controller operators. Indeed, starting from the definition of security automata
given in [12, 20], in [4, 21] we have defined other three controller operators, .S , .I

and .E . Our goal will be the study of the necessary and sufficient conditions for the
validity of Theorem 3.1also for suppression, insertion and edit automata
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A Technical Proofs
To prove Lemma 3.1 we have to demonstrate the following results.

Lemma A.1 Let r be a syntactic action refinement. Let r be distinct on Act, determin-
istic and the identity on τ . The following holds

∀a ∈ Sort(P ) P
a−→ P ′ and r(a)

γ−→ R ⇒ r(P )
γ−→ V where V ∼ R; r(P ′)

where P is a process in E⊂.

Proof : Let us proceed by induction on the structure of P .

P = 0 in this case the thesis holds trivially.

P = a.P ′ According to the set of rules in Table 2, we have that

r(P ) = r(a.P ′) = r(a); r(P ′)

If r(a)
γ−→ R, according to the semantics definition of the sequences of pro-

cesses, since a 6= √
, then r(a); r(P ′)

γ−→ R; r(P ′). Hence r(P )
γ−→ V where

V is R; r(P ′).

14



P = P1 + P2 According to the set of rules in Table 2, we have that

r(P ) = r(P1 + P2) = r(P1) + r(P2)

According to the hypothesis P
a−→ P . We have two possibilities:

• P1
a−→ P ′1. In this case P behaves as P1, structurally simpler than P , so

P
a−→ P ′1. Hence r(P1)

γ−→ R; r(P ′1). Since r(P ) = r(P1)+ r(P2) then,
in this case r(P ) behaves as r(P1), so r(P )

γ−→ V where V is R; r(P ′1).
for the semantic definition of the choice operator +.

• P2
a−→ P ′2. In this case P behaves as P2, structurally simpler than P , so

P
a−→ P ′2. Hence r(P2)

γ−→ R; r(P ′2) Since r(P ) = r(P1) + r(P2) then,
in this case r(P ) behaves as r(P2), so r(P )

γ−→ V where V is R; r(P ′1).
for the semantic definition of the choice operator +.

P = P1‖AP2 According to the set of rules in Table 2, we have that

r(P ) = r(P1‖AP2) = r(P1)‖r̃(A)r(P2)

According to the hypothesis that r is distinct on Act we can infer that r preserves
each A ⊆ Act. Hence, if Sort(P2) ⊆ A then Sort(r(P2) ⊆ r̃(A).

For hypothesis P
a−→ P . We have two possibilities:

• P1
a−→ P ′1 and a 6∈ A. In this case P

a−→ P ′1‖AP2. For inductive hypoth-
esis, r(P1)

γ−→ R; r(P ′1). Hence, since Sort(r(a)) ∩ r̃(A) = ∅ according
to the fact r is distinct on Act, then r(P )

γ−→ R; r(P ′1)‖r̃(A)r(P2).
To conclude this part of proof, we have to note that each action R and
r(P2) cannot synchronize on each other because R is residual of a a that
is not in A neither in Sort(P2). This leads to conclude that the process
R; r(P ′1)‖r̃(A)r(P2) behaves as a process R; Y where Y = r(P ′1)‖r̃(A)r(P2).
Let ∼ be a bisimulation equivalence defined as follows:

∼= {(R; r(P ′1)‖r̃(A)r(P2), R; (r(P ′1)‖r̃(A)r(P2)))| R is residual of an action

a 6∈ A and r is deterministic }
if R; r(P ′1)‖r̃(A)r(P2)

δ−→ X , then ∃Z s.t. R; Y δ−→ Z and X ∼ Z Let

us consider that R; r(P ′1)‖r̃(A)r(P2)
δ−→ X . According to the se-

mantics definition of ‖r̃(A) jointly to the fact that R and r(P ) cannot

synchronize on each other, we have that R; r(P ′1)
δ−→ R′; r(P ′1), that,

according to the semantics definition of sequence operator, means that
R

δ−→ R′. In this case X is R′; r(P ′1)‖r̃(A)r(P2).

Since R
δ−→ R′, then R;Y δ−→ R′; Y . Hence Z exists and it is R′;Y

and X ∼ Z
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if R; (r(P ′1)‖r̃(A)r(P2))
δ−→ X , then ∃Z s.t. R; r(P ′1)‖r̃(A)r(P2)

δ−→ Z
and X ∼ Z
According to the semantics definition of sequence operator

R; (r(P ′1)‖r̃(A)r(P2))
δ−→ X

means that R
δ−→ R′. Hence X is R′; (r(P ′1)‖r̃(A)r(P2)). Since R

and r(P ) cannot synchronize on each other, δ 6∈ r̃(A),

R; r(P ′1)‖r̃(A)r(P2)
δ−→ R′; r(P ′1)‖r̃(A)r(P2)

Hence Z is R′; r(P ′1)‖r̃(A)r(P2) and X ∼ Z.

• P1
a−→ P ′1 and P2

a−→ P ′2. In this case P
a−→ P ′1‖AP ′2. For inductive

hypothesis, r(P1)
γ−→ R; r(P ′1) and r(P2)

γ−→ R; r(P ′2) where R is the
same because r is deterministic. Hence r(P )

γ−→ R; r(P ′1)‖r̃(A)R; r(P ′2).
To conclude we have to prove that R; r(P ′1)‖r̃(A)R; r(P ′2) ∼ R;Y where
Y = r(P ′1)‖r̃(A)r(P ′2).
Let ∼ be a bisimulation equivalence defined as follows:

∼= {(R; r(P ′1)‖r̃(A)R; r(P ′2), R; (r(P ′1)‖r̃(A)r(P ′2))| R is residual of an action

a ∈ A and r is deterministic }
if R; r(P ′1)‖r̃(A)R; r(P ′2)

δ−→ X , then ∃Z s.t. R;Y δ−→ Z and X ∼ Z

Let us consider that R; r(P ′1)‖r̃(A)R; r(P ′2)
δ−→ X . According to the

semantics definition of ‖r̃(A) jointly to the fact that each action per-

formed by R is in r̃(A) and r is deterministic, we have that R; r(P ′1)
δ−→

R′; r(P ′1) and R; r(P ′2)
δ−→ R′; r(P ′2), that, according to the seman-

tics definition of sequence operator, means that R
δ−→ R′. In this case

X is R′; r(P ′1)‖r̃(A)R
′; r(P ′2).

Since R
δ−→ R′, then R;Y δ−→ R′; Y . Hence Z exists and it is R′;Y

and X ∼ Z

if R; (r(P ′1)‖r̃(A)r(P ′2))
δ−→ X , then ∃Z s.t. R; r(P ′1)‖r̃(A)R; r(P ′2)

δ−→ Z
and X ∼ Z
According to the semantics definition of sequence operator,

R; (r(P ′1)‖r̃(A)r(P2))
δ−→ X

means that R
δ−→ R′. Hence X is R′; (r(P ′1)‖r̃(A)r(P ′2)).

Since δ ∈ r̃(A),

R; r(P ′1)‖r̃(A)R; r(P ′2)
δ−→ R′; r(P ′1)‖r̃(A)R

′; r(P2)

Hence Z is R′; r(P ′1)‖r̃(A)R
′; r(P2) and X ∼ Z.
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This concludes the proof.
We also need the following lemmata

Lemma A.2 Let E be a process. If E
τ̂=⇒ E′ then E′ ¹ E.

Proof : Let us consider the following relation definition:

S = {(E′, E)|E τ̂=⇒ E′}

We prove that this is a weak simulation:

E′ a−→ E′′ ∃E1 s.t. E
a=⇒ E1 ∧ (E′′, E1) ∈ S

a = τ In this case E
τ̂=⇒ E′ τ−→ E′′, hence E1 = E′′ and (E′′, E′′) is obviously in

S.

a 6= τ In this case E
τ̂=⇒ E′ a−→ E′′. Hence, by considering that τ̂=⇒ means a

sequence of zero or more τ actions, we can also write,E a=⇒ E′′. Hence E′′ =
E1 and (E′′, E′′) ∈ S.

Under this assumption we are able to prove the following result.
Lemma Let P, Q and E be processes in E⊂ then

P‖AQ ¹ E ⇒ r(P )‖r̃(A)r(Q) ¹ r(E)

Proof : Let us consider the following relation definition:

S = {(r(P )‖r̃(A)r(Q), r(E))|P‖AQ ¹ E ∧ Sort(Q) ⊆ A}∪
{(R; r(P )‖r̃(A)r(Q), R; r(E))|a 6∈ A s.t. r(a)

γ−→ R 6 X−→ ∧P‖AQ ¹ E
∧Sort(Q) ⊆ A}∪

{(R; r(P )‖r̃(A)R; r(Q), R; r(E))|a ∈ A s.t. r(a)
γ−→ R 6 X−→ ∧P‖AQ ¹ E

∧Sort(Q) ⊆ A}

• Let us consider that r(P )‖r̃(A)r(Q)
γ−→ X . We have to prove that there exists

Y s.t. r(E)
γ

=⇒ Y and (X, Y ) ∈ S.

γ = τ There are two possibilities:

– The transition is due to r(P ) τ−→ X1. Then, it is possible to prove that
X1 is equivalent to r(P ′) for some P’ such that P

τ−→ P ′. This fol-
lows from the kind of processes we consider and the fact that r(τ) = τ .
In this case X = r(P ′)‖r̃(A)r(Q). Furthermore, we have also that
P‖AQ

τ−→ P ′‖AQ. According to the hypothesis of the theorem, if
P‖AQ ¹ E, then there exists E′ s.t. E

τ̂=⇒ E′ ∧ P ′‖AQ ¹ E′.
Since r is the identity on τ , r(E) τ̂=⇒ r(E′). Then Y exists and it is
r(E′) and (X, Y ) = (r(P ′)‖r̃(A)r(Q), r(E′)) ∈ S.
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– The transition is due to r(Q) τ−→ X1. The reasoning proceed as in the
previous case.

γ 6= τ Since r is distinct on Act, we can conclude that, if γ 6= τ then ∀a ∈ Act

s.t. r(a)
γ−→ R, τ 6∈ Sort(R). There are two cases to consider:

r(a)
γ−→ R where a 6∈ A. In this case P

a−→ P ′. Since r is distinct on
Act and deterministic, this implies that r(P )

γ−→ R; r(P ′). Hence
X = R; r(P ′)‖r̃(A)r(Q). Furthermore, P‖AQ

a−→ P ′‖AQ. Since
P‖AQ ¹ E, there exists E′ s.t. E

a=⇒ E′ and P ′‖AQ ¹ E′. Now, let
us consider that r(E): E

a=⇒ E′ means E
τ̂=⇒ Eτ

a−→ E′
τ

τ̂=⇒ E′.
Hence r(E) τ̂=⇒ Eτ

γ−→ R; E′
τ . Let us consider Y = R; E′

τ . Since,
P ′‖AQ ¹ E′ and, according to Lemma A.2, E′ ¹ E′

τ , then P ′‖AQ ¹
E′

τ . This guarantees that (X,Y ) = (R; r(P ′)‖r̃(A)r(Q), R;E′
τ ) ∈ S.

r(a)
γ−→ R where a ∈ A. In this case P

a−→ P ′ and Q
a−→ Q′. Since r is

distinct on Act and deterministic, this implies that r(P )
γ−→ R; r(P ′)

and r(Q)
γ−→ R; r(Q′). Hence X = R; r(P ′)‖r̃(A)R; r(Q′). Fur-

thermore, P‖AQ
a−→ P ′‖AQ′. Since P‖AQ ¹ E, there exists E′ s.t.

E
a=⇒ E′ and P ′‖AQ′ ¹ E′. Following the same reasoning made

before, we have that Y = R;E′
τ and

(X, Y ) = (R; r(P ′)‖r̃(A)R; r(Q′), R; E′
τ ) ∈ S

• Let us consider that R; r(P )‖r̃(A)r(Q)
γ−→ X . We have to prove that there

exists Y s.t. R; r(E)
γ

=⇒ Y and (X,Y ) ∈ S. According to the assumption
that r is distinct on Act, it is possible to conclude that Sort(R) ∩ r̃(A) = ∅
because R is the residual of the refinement of an action a ∈ Sort(P )\A. Hence,
the process R; r(P )‖r̃(A)r(Q) performs γ iff R

γ−→ R′. This implies that
X = R′; r(P )‖r̃(A)r(Q). Furthermore, according to the assumption that r is
deterministic, this implies also that R; r(E)

γ−→ R′; r(E). Hence, let Y be
R′; r(E) then the couple (X, Y ) = (R′; r(P )‖r̃(A)r(Q), R′; r(E)) ∈ S because
we are already in the hypothesis that P‖AQ ¹ E.

• Let us consider that R; r(P )‖r̃(A)R; r(Q)
γ−→ X . We have to prove that there

exists Y s.t. R; r(E)
γ

=⇒ Y and (X, Y ) ∈ S. According to the assumption that r
is distinct on Act, it is possible to conclude directly from the definition that ∀A ⊆
Act r preserves A. This implies that Sort(R) ⊆ r̃(A) because R is the residual
of the refinement of an action a ∈ A. Hence, the process R; r(P )‖r̃(A)R; r(Q)
performs γ iff R

γ−→ R′. Furthermore X = R′; r(P )‖r̃(A)R
′; r(Q). The con-

clusion is similar to the previous one. Indeed, according to the assumption that r

is deterministic, R; r(E)
γ−→ R′; r(E). Hence, let Y be R′; r(E) then the cou-

ple (X, Y ) = (R′; r(P )‖r̃(A)R
′; r(Q), R′; r(E)) ∈ S because we are already in

the hypothesis that P‖AQ ¹ E.
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