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Abstract

In this paper we present our approach for the modeling and the synthesis of
enforcement mechanismsthat are mechanism able to force security policies. In
particular, starting from the definition ofsecurity automataintroduced in the lit-
erature by Schneider, Ligatti etal., we define a set of process algebra operators,
saidcontroller operators, able to mimic the security automata’s behavior. Hence
we present semantics definitions of four different controller operators that act by
monitoring possible un-trusted component of a given system. They guarantee that
the whole system is secure, i.e. it works as prescribed by a given security policy.
We also present our theory for automatically building a process that is a controller
program for a chosen controller operator. By exploiting satisfiability results on
temporal logic we have developed a tool that generates such processes. The tool
implements the partial model checking technique and a satisfiability procedure for
a modalµ-calculus formula.

We then present how it is possible to extend our approach in a timed setting
and to deal with parameterized systems.

Keywords: Partial model checking, process algebra operators, security property,
controller operator, synthesis of controller program.

1 Introduction

In the last few years the amount or information and sensible data that circulate on the
net has been growing up. This is one of important reasons that have contributed to
increase research on the definition of formal method for the analysis and the verifica-
tion of secure systems, i.e. systems that satisfy some security properties that specify
acceptable executions of programs.

An interesting approach is based on the idea that potential attackers should be an-
alyzed as if they were un-specified components of a system; thus reducing security

∗This work is an expanded and revised version of [30, 31].
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analysis to the analysis ofopen systems. As a matter of fact the behavior of an open
system may be not completely specified and may present some uncertainty (see [29]).

Recently the interest on developing techniques to study how to make a system
secure by enforcingsecurity policyis growing (e.g. see [5, 9, 10, 41]).

We have extended the verification approach of [29] with a method for automatically
enforcing the desired security property. As a matter of fact we define process algebra
operators (see [32]) saidcontroller operatorsand denoted byY . X, whereY is the
controller programandX is thetarget system, i.e. a possible un-trusted component.

Schneider in [41] has defined the concept of enforcement mechanism as a program
that control that a given security property is respected. He has also given a definition of
security automatonas an automaton that processes a sequence of input actions that has
finite or infinite length. It works by monitoring the target system, i.e. an application
whose behavior is unknown, and terminating any execution that is about to violate the
security policy being enforced. Starting form his definition, Ligatti et al. described
four different ways to enforce safety policies ([9, 10]). Thetruncation automaton
can recognize bad sequences of actions and halts program execution before a security
property is violated, but cannot otherwise modify program behavior. Thesuppression
automaton can suppress individual program actions without terminating the program
outright in addition to being able to halt program execution. The third automaton is
the insertion automaton that is able to insert a sequence of actions into the program
actions stream as well as terminate the program. The last one is theedit automaton. It
combines the power of suppression and insertion automaton hence it is able to truncate
actions sequences and can insert or suppress security-relevant actions at will.

In this paper, we model security automata defined in [9, 10] through process algebra
by definingcontroller operatorsY .K X, whereK ∈ {T, S, I, E} whereT , S, I and
E represent Truncation, Suppression, Insertion and Edit automaton respectively. We
give the semantics definition of each of controller operator and prove that they have the
same behavior of the respective security automaton.

In order to express security policies we use equationalµ-calculus formulae because
many properties of systems are naturally specified by means of fixed points and it is
very expressive.

Hence, at the beginning, we have a systemS and an equationalµ-calculus formula
φ that express a safety policy. Our goal is to guarantee that∀X, S‖X |= φ. First of all
we apply thepartial model checkingfunction in order to evaluate the formulaφ by the
behavior ofS. In this way we obtain a new formulaφ′ = φ//S

and we have to monitor
only the necessary/untrusted part of the system, hereX. Hence we forceX to enjoyφ′

by using an appropriate controllerY ¤K X.
Our approach permits us to automatically synthesize a controller programY for

a given controller operatorY .K X by exploiting satisfiability procedure for theµ-
calculus. Moreover we show our tool that is effectively able to generate a controller
programY starting from a systemS andφ.

An advantage of this approach for enforcing is that we are able to control only
the possible un-trusted component of a given system. Other approaches deal with the
problem of monitoring the componentX to enjoy a given property, by treating it as the
whole system of interest. However, often not all the system needs to be checked (or it is
simply not convenient to check it as a whole). Some components could be trusted and
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one would like to have a method to constrain only un-trusted ones (e.g. downloaded
applets). Similarly, it could not be possible to build a monitor for a whole distributed
architecture, while it could be possible to have it for some of its components.

In the last part of the paper we present further results on how our controller op-
erators can be use also to force security policies in a timed setting and to treat with
parameterized systems,S = Pn wheren is the parameter andPn = P‖P‖ . . . ‖P︸ ︷︷ ︸

n

.

Our logical approach is also able to deal with composition problems, that have been
considered as an interesting issue in [9]. As a matter of fact we present how we are
able to enforce a policies that is a composition of several sub-policies.

This paper is organized as follows. Section 2 presents some related work, Section 3
recalls basic theory about process algebras, modal logic and the partial model checking
technique. Section 4 briefly explains how we use open system for security analysis.
Section 5 describes our controller operators and shows how they model security au-
tomata. Section 6 presents our theory for the synthesis of process algebra controller
operators and describes the architecture of our tool. Section 7 shows an example of
application. Section 8 presents some related results and Section 9 concludes the paper.

2 Related work

In the literature a lot of works are about the study of enforceable properties and mecha-
nism. In this paper we deal with two different aspect, the modeling of security automata
and the synthesis of controller program.

Security automata was introduced by Schneider in [41] as a triple(Q, q0, δ) where
Q is a set of states,q0 is the initial state and, beingAct the set of security-relevant
actions,δ : Act×Q → 2Q is the transition function. A security automaton processes
a sequence of actionsa1a2 . . . one by one. For each action, the current global stateQ′
is calculated, by initially starting from{q0}. As eachai is read, the security automaton
changesQ′ in

⋃
q∈Q′ δ(ai, q). If the automaton can make a transition on a given action,

i.e. Q′ is not empty, then the target is allowed to perform that action. The state of
the automaton changes according to transition rules. Otherwise the target execution is
terminated. A security property that can be enforced in this way corresponds to asafety
property(according to [41], a property is a safety one, if whenever it does not hold in
a trace then it does not hold in any extension of this trace).

Starting from the Schneider’s work, Ligatti et al. in [9, 10] have defined four differ-
ent kinds of security automata which deal with finite sequences of actions:truncation
automaton, suppression automaton, insertion automatonandedit automaton.

Our work represents a significant contribution to the previous works (see [9, 10,
25, 41]), because by modeling these automata by process algebra operators we are
able to deal also with the synthesis problem. This problem for the security automata
was not addressed in previous works. In fact, most of the related works deal with the
verification rather than with the synthesis problem.

Other works present different frameworks to model, analyze and study security
automata, but do not deal with the synthesis problem. In [7], for example, the authors
propose, by usingCSP−OZ, a specification language combiningCommunicating Se-
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quential Processes(CSP ) andObject-Z(OZ), to specify security automata, formalize
their combination with target systems, and analyze the security of the resulting system
specifications. They provide theoretical results relatingCSP −OZ specifications and
security automata and show how refinement can be used to reason about specifications
of security automata and their combination with target systems.

Also Bartoletti, Degano and Ferrari in [6] refer to [41] saying that while safety
properties can be enforced by an execution monitor, liveness properties cannot. In order
to enforce safety and liveness properties, they enclose security-critical code inpolicy
framings, in particularsafety framingsandliveness framings, that enforce respectively
safety and liveness properties of execution histories. This is however a static analysis
that over-approximates behaviorhistory expressions. On the contrary we monitor the
target at run-time.

The synthesis problem is addressed in different topic (e.g. [4, 40, 23, 48] ).
In [28], a preliminary work has been provided that is based on different techniques

for automatically synthesizing systems enjoying a very strong security property, i.e.,
SBSNNI (see [18]). That work did not deal with controllers.

On the other hand much of prior works are about the study of enforceable properties
and related mechanisms but they do not deal with synthesis problem. In [16] the authors
deal with a safety interface that permits to study if a module is safe or not in a given
environment.

We use controller synthesis in order to force a system to guarantee security policy.
The synthesis of controllers is also, however, studied in other research areas. There
are approaches exploits satisfiability procedure. Usually this kind of approaches are
used when properties are expressed using linear time logic or similar [19, 39]. Many
approaches to the controller synthesize problem are based on game theory. As matter
of fact, different kinds of automata are used to model properties that must be enforced.
Games are defined on the automata in order to find the structure able to satisfy the
given properties. Example of these paper are [3, 22, 26, 35, 36, 38].

3 Process algebra, logics and partial model checking

In this section we show preliminary notions that are useful to understand the results
that we are going to present in this work.

3.1 A process algebra

In this subsection we recall theCCS process algebra introduced by Milner in [33].
We describe the semantics ofCCS by using theGeneralized Structural Operational
Semantics, GSOS for short (see [27]). This format of operational semantics was intro-
duced by Bloomet al. in [1, 12, 13] by following the treatment proposed by Simpson
in [42]. We choose to introduce this semantics specification because it is more suitable
thanSOS for defining controller operators behavior.
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3.1.1 Generalized Structural Operational Semantics

LetV be a set of variables, ranged over byx, y, . . ., and letAct be a finite set of actions,
ranged over bya, b, c, . . .. A signatureΣ is a pair(F, ar) where:

• F is a set of function symbols, disjoints fromV ,

• ar : F 7→ N is a rank functionwhich gives the arity of a function symbol; if
f ∈ F andar(f) = 0 thenf is called aconstant symbol.

Given a signature, letW ⊆ V be a set of variables. It is possible to define the set of
Σ-termsoverW as the least set such that every element inW is a term and iff ∈ F ,
ar(f) = n andt1, . . . , tn are terms thenf(t1, . . . , tn) is a term. It is also possible to
define anassignmentas a functionγ from the set of variables to the set of terms such
thatγ(f(t1, . . . , tn)) = f(γ(t1), . . . γ(tn)). Given a termt, let V ars(t) be the set of
variables int. A term t is closedif V ars(t) = ∅.

Now we are able to describe theGSOSformat. A GSOSrule r has the following
format:

{xi
aij−→ yij}1≤i≤k

1≤j≤mi
{xi 6 bij−→}1≤i≤k

1≤j≤ni

f(x1, . . . , xk) c−→ g(~x, ~y)
(1)

where all variables are distinct;~x and ~y are the vectors of allxi and yij variables
respectively;mi, ni ≥ 0 andk is the arity off . We say thatf is theoperatorof the
rule (op(r) = f ) andc is the action. AGSOSsystemG is given by a signature and a
finite set ofGSOSrules. Given a signatureΣ = (F, ar), an assignmentζ is effective
for a termf(s1, . . . , sk) and a ruler if:

1. ζ(xi) = si for 1 ≤ i ≤ k;

2. for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ mi, it holds thatζ(xi)
aij−→ ζ(yij);

3. for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ ni, it holds thatζ(xi) 6 bij−→,

The formal semantics of terms is described by alabeled transition system, LTS for
short. It is a pair(E , T ) whereE is the set of terms andT is a ternary relationT ⊆
(E × Act × E), known as atransition relation. The transition relation among closed
terms can be defined in the following way:f(s1, . . . , sn) c−→ s if and only if there
exists aneffectiveassignmentζ for a rule r with operatorf and actionc such that
s = ζ(g(~x, ~y)). There exists a unique transition relation induced by aGSOSsystem
(see [13]) and this transition relation isfinitely branching.

3.1.2 CCS process algebra

Process algebras(or process calculi) are approaches to formally modeling concurrent
systems. Process algebras provide a method for the high-level description of inter-
actions, communications, and synchronizations between a collection of independent
agents or processes. An interesting process calculi is theCalculus of Communicat-
ing Systems, CCS for short, developed by Robin Milner (see [33]). Its actions model
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Prefixing:

a.x
a−→ x

Choice:
x

a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

Parallel:

x
a−→ x′

x‖y a−→ x′‖y
y

a−→ y′

x‖y a−→ x‖y′
x

l−→ x′ y
l̄−→ y′

x‖y τ−→ x′‖y′

Restriction:
x

a−→ x′

x\L a−→ x′\L
Relabeling:

x
a−→ x′

x[f ]
f(a)−→ x′[f ]

Table 1:GSOSsystem forCCS.

indivisible communications between exactly two participants. The notion of communi-
cation considered is a synchronous one, i.e. both processes must agree on performing
the communication at the same time.

Let L ⊆ Act be a finite set of actions,̄L = {ā | a ∈ L} be the set of comple-
mentary actions wherēis a bijection with¯̄a = a, Actτ beL ∪ L̄ ∪ {τ}, whereτ is
the special action that denotes an internal computation step (or communication) andΠ
be a set of constant symbols that can be used to define processes with recursion. We
define the signatureΣCCS = (FCCS , ar) as follows.

FCCS = {0,+, ‖} ∪ {a.|a ∈ Actτ} ∪ {\L|L ⊆ L ∪ L̄}∪
∪ {[f ]|f : Actτ 7→ Actτ} ∪Π

wheref(τ) = τ . The functionar is defined as follows:ar(0) = 0 and for every
π ∈ Π we havear(π) = 0, ‖ and+ are binary operators and the other ones are unary
operators.

The operational semantics ofCCS closed terms is given in Table 1 by means
of the GSOSand byLTS (E , T ), whereE is a set of process terms ranged over by
E, F, P, Q, . . ., andT is a transition relation. We denote byDer(E) the set of deriva-
tives of a (closed) termE, i.e. the set of processes that can be reached fromE through
the transition relationT .

Informally the semantics ofCCS terms is the following:

Prefix: a (closed) terma.E represents a process that performs an actiona and then
behaves asE.
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Choice: the termE + F represents the non-deterministic choice between the pro-
cessesE andF . Choosing the action of one of the two components, the other is
dropped.

Parallel composition: the termE‖F represents the parallel composition of the two
processesE andF . It can perform an action if one of the two processes can
perform an action, and this does not prevent the capabilities of the other process.
The third rule of parallel composition is characteristic of this calculus, it ex-
presses that the communication between processes happens whenever both can
perform complementary actions. The resulting process is given by the parallel
composition of the successors of each component, respectively.

Restriction: the processE\L behaves likeE but the actions inL ∪ L̄ are forbidden.
To force a synchronization on an action between parallel processes, we have to
set restriction operator in conjunction with parallel one.

Relabeling: the processE[f ] behaves like theE but the actions are renamedviaf .

3.1.3 Behavioral Equivalences

There are a lot of scenarios in which it is important to understand when two different
processes have the same behavior. Several behavioral relations are defined in order to
compare the behavior of different processes. Here we are interested instrong and weak
simulationandbisimulation

Strong simulation and bisimulation equivalences Look at the following example:

Example 3.1 Consider two vendor machineE andF which behaviors can be repre-
sented by the following figure:

c

E F

a

b c

a a

b

These two process are not equivalent. To underline the way they differ, we introduce a
notion of simulationaccording to whichF can simulateE, but not viceversa. Infor-
mally, to say “F simulatesE” means thatF ’s behavior pattern is at least as rich as
that ofE.

Definition 3.1 Let (E ,→) be anLTS of concurrent processes over the set of actions
Actτ , and letR be a binary relation overE . ThenR is called strong simulation,
denoted by≺, over(E ,→) if and only if, whenever(E, F ) ∈ R we have:

if E
a−→ E′ then∃ F ′ s.t.F

a−→ F ′ and(E′, F ′) ∈ R.
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A strong bisimulationis a relationR s.t. bothR andR−1 are strong simulations. We
represent with∼ the union of all the strong bisimulations.

Weak simulation and bisimulation equivalences Look at the following figure:

E F

a b a

b

τ

The processesE andF cannot be consider equivalent, since the second perform an
internal action by reaching a state where an actiona is no longer possible. To compare
two processes like the processes in the previous figure Milner in [33] proposed the
notion ofweak bisimulation.

Let τ̂ = ε and ifa 6= τ thenâ = a. Moreover, we have

E
τ=⇒ E′ (E ⇒ E′ or E

ε=⇒ E′) if E
τ→∗

E′

E
â=⇒ E′ if E

τ=⇒ â−→ τ=⇒ E′

whereE
τ−→∗

E′ is the transitive and reflexive closure of
τ−→. Note thatE

τ=⇒ â−→ τ=⇒
E′ is a short notation forE

τ⇒ Eτ
â→ E′

τ
τ⇒ E′ whereEτ andE′

τ denote intermediate
states that is not important for this framework.

Theweak bisimulationrelation permits to abstract to some extent from the internal
behavior of the system, represented by the internalτ action.

Definition 3.2 Let (E ,→) be anLTS of concurrent processes over the set of actions
Actτ , and letR be a binary relation overE . ThenR is calledweak simulation, denoted
by¹, over(E ,→) if and only if, whenever(E,F ) ∈ R we have:

if E
a−→ E′ then∃ F ′ s.t.F

a=⇒ F ′ and(E′, F ′) ∈ R,

A weak bisimulationis a relationR s.t. bothR andR−1 are weak simulations. We
represent with≈ the union of all the weak bisimulations.

An important result proved by Milner is the following.

Proposition 3.1 ([33]) Every strong simulation is also a weak one.

Example 3.2 Let we consider three different processesE, F andP as in the following
figure. It is easy to not thatF andP are weakly bisimilar. On the contraryE andF
(P ) are not weakly bisimilar.
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F

a

b c

P

a

b c

a c

b

E

τ

τ

τ

τ

E 6≈ F ≈ P

3.2 Two variants ofµ-calculus

In this subsection we describe two different variants ofµ-calculus:modalµ-calculus
andequationalµ-calculus.

Modal µ-calculus Modal µ-calculus is a process logic which extendsHML logic
(see [20]) by adding fix-point operators in order to reason directly about recursive def-
initions of properties. It permits us to analyze non terminating behavior of systems. It
is a powerful temporal logic which subsumes several other logics such asCTL,CTL∗

andECTL∗ (see [11, 17, 46]). As usual forµ-calculi, for the interpretation of the
formulas we might considerLTS.

Let a be in Actτ and Z be a variable ranging over a finite set of variablesV ,
formulae are generated by the following grammar:

φ ::= Z | T | F | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ | µZ.φ | νZ.φ

The possibility modality〈a〉φ expresses the ability to have ana transition to a state that
satisfiesφ. The necessity modality[a]φ expresses that after eacha transition there is
a state that satisfiesφ. We consider the usual definitions of bound and free variables.
The interpretation of a closed formulaφ w.r.t. anLTS M is the set of states whereφ is
true. The interpretation of a formulaφ(Z) with a free variableZ is a function from set
of states to set of states. Hence, the interpretation ofµZ.φ(Z) (νZ.φ(Z)) is the least
(greatest) fix-point of this function. The interpretation of a formula with free variable
is a monotonic function, so a least (greatest) fix-point exists.

Formally, given anLTS M = 〈S,→〉, the semantics of a formulaφ is a subset
JφKρ of the states ofM , defined in Table 2, whereρ is a function (calledenvironment)
from free variables ofφ to subsets of the states ofM . The environmentρ[S′/Z](Y ) is
equal toρ(Y ) if Y 6= Z, otherwiseρ[S′/Z](Z) = S′.

Equational µ-calculus Equationalµ-calculus is based on fix-point equations instead
of fixpoint operators that permit to define recursively the properties of systems. A
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[[T ]]ρ = S
[[F ]]ρ = ∅
[[Z]]ρ = ρ(Z)

[[φ1 ∧ φ2]]ρ = [[φ1]]ρ ∩ [[φ2]]ρ
[[φ1 ∨ φ2]]ρ = [[φ1]]ρ ∪ [[φ2]]ρ

[[〈a〉φ]]ρ = {s|∃s′ : s
a−→ s′ ands′ ∈ [[φ]]ρ}

[[[a]φ]]ρ = {s|∀s′ : s
a−→ s′ impliess′ ∈ [[φ]]ρ}

[[µZ.φ]]ρ =
⋂{S′|[[φ]]ρ[S′/Z] ⊆ S′}

[[νZ.φ]]ρ =
⋃{S′|S′ ⊆ [[φ]]ρ[S′/Z]}

Table 2: Denotational semantics of modalµ-calculus.

minimal (maximal) fix-point equationis Z =µ φ (Z =ν φ), whereφ is an assertion,
i.e. a simple modal formula without recursion operators.

Example 3.3 A lot of properties can be defined by using equationalµ-calculus. In
particular it is useful to express several security properties. For instance it is possible
to find a formula to express safety property as, for instance, a formula that expresses
the possibility to open a new file only if the previous one is closed:

X =ν [τ ]X ∧ [open]Y
Y =ν [τ ]Y ∧ [close]X ∧ [open]F

. A liveness property(“something good happens”) like “a state satisfyingφ can be
reached” is expressed byZ =µ 〈 〉Z ∨ φ1.

The syntax of the assertions (φ) and of the lists of equations (D) is given by the fol-
lowing grammar:

φ ::= Z | T | F | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈a〉φ | [a]φ

D ::= Z =ν φD | Z =µ φD | ε
It is worthwhile noticing that the syntax of assertions is more restrictive w.r.t. the
one for modalµ-calculus. This is mainly due to our necessity to perform syntactic
transformations on these assertions. This syntax permits us to keep small the size of the
transformed assertions. It is assumed that variables appear only once on the left-hand
sides of the equations of the list, the set of these variables will be denoted asDef(D).
A list of equations is closed if every variable that appears in the assertions of the list
is in Def(D). Let M = 〈S,→〉 be anLTS, ρ be an environment that assigns subsets
of S to variables that appear in the assertions ofD, but which are not inDef(D).
Then, the semanticsJφKρ of an assertionφ is the same as forµ-calculus assertions
and the semanticsJDKρ of a definition list is an environment which assigns subsets
of S to variables inDef(D). As notation, we uset to represent union of disjoint

1In writing properties, here and in the rest of the paper, we use the shortcut notations[ ] means[Actτ ]
and, equivalently,〈 〉 means〈Actτ 〉.
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environments. Letσ be in{µ, ν}, σU.f(U) represents theσ fix-point of the function
f in one variableU . The semantics,JDKρ is defined by the following equations:

JεKρ = [] J(Z =σ φ)DKρ = JDK(ρt[U ′/Z]) t [U ′/Z]

whereU ′ = σU.JφK(ρt[U/Z]tρ′(U)) andρ′(U) = JDK(ρt[U/Z]).
It informally says that the solution to(Z =σ φ)D is theσ fix-point solutionU ′ of

JφK where the solution to the rest of the list of equationsD is used as environment. We
write M |= D ↓ Z as notation forJDK(Z) when the environmentρ is evident from
the context orD is a closed list (i.e. without free variables) and without propositional
constants; furthermoreZ must be the first variable in the listD.

For both of these logics the following theorem holds.

Theorem 3.1 ([44]) Given a formulaφ it is possible to decide in exponential time in
the length ofφ if there exists a model ofφ and it is also possible to give an example of
such model.

Later in the paper we use the finitary axioms system proposed by Walukievicz in [47]
in order to synthesize controller program for given controller operator (Section 6).

3.2.1 Characteristic formula

A characteristic formula(see [34]) is a formula in equationalµ-calculus that com-
pletely characterizes the behavior of a (state in a) state-transition graph modulo a cho-
sen notion of behavioral relation. It is possible to define the notion of characteristic
formula for a given finite state processE with respect different behavioral relation. In
this subsection we present the notion of characteristic formula forE w.r.t. simulation
and bisimulation relations.

Definition 3.3 Given a finite state processE, its characteristic formula (w.r.t. weak
bisimulation)DE ↓ ZE is defined by the following equations for everyE′ ∈ Der(E),
a ∈ Act:

ZE′ =ν (
∧

a ∈ Actτ
E′ a−→ E′′

〈〈â〉〉ZE′′) ∧ (
∧

a∈Actτ

([a](
∨

E′ â
=⇒E′′

ZE′′)))

where〈〈a〉〉 of the modality〈a〉 which can be introduce as abbreviation (see [34]):

〈〈ε〉〉φ def
= Z whereZ =µ φ ∨ 〈τ〉Z

〈〈a〉〉φ def
= 〈〈ε〉〉〈a〉〈〈ε〉〉φ

The following lemma characterizes the power of these formulae.

Lemma 3.1 LetE1 andE2 be two different finite-state processes. IfφE2 is character-
istic for E2 then:

1. If E1 ≈ E2 thenE1 |= φE2
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2. If E1 |= φE2 andE1 is finite-state thenE1 ≈ E2.

Now we consider weak simulation as behavioral relation and we define the character-
istic formula of a finite-state processE w.r.t. this relation as follows.

Definition 3.4 Given a finite state processE, its characteristic formula (w.r.t. weak
simulation)DE ↓ ZE is defined by the following equations: for everyE′ ∈ Der(E),

ZE′ =ν

∧

a∈Actτ

([a](
∨

E′′:E′ â⇒E′′

ZE′′))

Following the reasoning used in [34], the following proposition holds.

Lemma 3.2 Let E be a finite-state process and letφE,¹ be its characteristic formula
w.r.t. simulation, thenF ¹ E ⇔ F |= φE,¹.

It is easy to note that the characteristic formula of a process w.r.t. simulation is weaker
than the formula defined in the Definition 3.3.

3.3 Partial model checking

The partial model checking mechanisms was introduced by Andersen in [2]. This tech-
nique relies upon compositional methods for proving properties of concurrent systems.

The intuitive idea underlying the partial model checking is the following: proving
thatE1‖E2 satisfiesφ is equivalent to prove thatE2 satisfies a modified specification
φ//E1

, where//E1 is the partial evaluation function for the parallel composition op-
erator (see [2] or Table 3). Hence, the behavior of a component has been partially
evaluated and the requirements are changed in order to respect this evaluation. The
partial model checking function (also called partial evaluation) for the parallel operator
is given in Table 3.

In order to explain better how partial model checking function acts on a given
equationalµ-calculus formula, we show the following example.

Example 3.4 Let [τ ]φ be the given formula and letE‖F a process. We want to eval-
uate the formula[τ ]φ w.r.t. the‖ operator and the processE. The formula[τ ]φ//E

is
satisfied byF if the following three condition hold:

• F performs an actionτ going in a stateF ′ andE‖F ′ satisfiesφ; this is taken
into account by the formula[τ ](φ//E

);

• E performs an actionτ going in a stateE′ and E′‖F satisfiesφ, and this is
considered by the conjunction
∧

E
τ−→E′φ//E′ , where every formulaφ//E′ takes into account the behavior ofF

in composition with aτ successor ofE;

• the τ action is due to the performing of two complementary actions by the two
processes. So for everya successorE′ of E there is a formula[ā](φ//E′ ).

In [2], the following lemma is given.
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Parallel:

(D↓ Z)//t = (D//t)↓ Zt

ε//t = ε
(Z =σ φD)//t = ((Zs =σ φ//s)s∈Der(E))(D)//t
Z//t = Zt

[a]φ//s = [a](φ//s)∧∧
s

a−→s′ φ//s′, if a 6= τ
φ1 ∧ φ2//s = (φ1//s) ∧ (φ2//s)
〈a〉φ//s = 〈a〉(φ//s) ∨∨

s
a−→s′ φ//s′, if a 6= τ

φ1 ∨ φ2//s = (φ1//s) ∨ (φ2//s)
[τ ]φ//s = [τ ](φ//s)∧∧

s
τ−→s′ φ//s′ ∧∧

s
a−→s′ [a](φ //s′)

〈τ〉φ//s = 〈τ〉(φ//s) ∨∨
s

τ−→s′ φ//s′ ∨∨
s

a−→s′〈ā〉(φ//s′)
T//s = T
F//s = F

Relabeling:

Z//[f ] = Z
(Z =σ φD)//[f ] = (Z =σ φ//[f ](D)//[f ])
〈a〉φ//[f ] =

∨
b:f(b)=a〈b〉(φ//[f ])

[a]φ//[f ] =
∧

b:f(b)=a[b](φ//[f ])
φ1 ∧ φ2//[f ] = (φ1//[f ]) ∧ (φ2//[f ])
φ1 ∨ φ2//[f ] = (φ1//[f ]) ∨ (φ2//[f ])
T//[f ] = T
F//[f ] = F

Table 3: Partial evaluation function for parallel operator and relabeling operator.

Lemma 3.3 Given a processE‖F (whereE is finite-state) and an equational specifi-
cationD ↓ Z we have:

E‖F |= (D ↓ Z) iff F |= (D ↓ X)//E

Remarkably, this function is exploited in [2] to perform model checking efficiently, i.e.
bothE andF are specified. In our setting, the processF will be not specified.

It is important to note that a lemma similar to Lemma 3.3 holds for eachCCS
operators. As a matter of fact in Table 3 we also recall the definition of the partial
model checking function for relabeling operators. For the otherCCS operators see
[2].

4 Open system analysis for security analysis

In this section we recall the concept ofopen systemthat we use to study our systems in
order to guarantee that they are secure.

A system isopenif it has some unspecified components. We want to make sure
that the system with an unspecified component works properly, e.g. fulfills a certain
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property. Thus, the intuitive idea underlying the verification of an open system is the
following:

An open system satisfies a property if and only if, whatever component is substituted
to the unspecified one, the whole system satisfies this property.

In the context of formal languages for the description of system behavior, an open
system may be simply regarded as a term of this language which may contain “holes”
(or placeholders). These are unspecified components. For instanceE‖( ) andE‖F‖( )
may be considered as open systems.

Example 4.1 We suppose to have a systemS in which three processesE, F and P
work in parallel. In order to be sure thatS works as we expected we have to consider
that a possible malicious agent works in parallel withE, F andP as we can see the
following figure:
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���
���

X

Specification :E‖F‖P‖X

X is a malicious agent

E

P

F

The main idea is that, when analyzing security-sensitive systems, neither the enemy’s
behavior nor the malicious users’ behavior should be fixed beforehand. A system
should be secure regardless of the behavior the malicious users or intruders may have,
which is exactly averificationproblem of open systems. According to [27, 29], the
problem that we want to study can be formalized as follows:

For every componentX S‖X |= φ (2)

whereX stands for a possible enemy,S is the system under examination andφ is
a (temporal) logic formula expressing the security property. It roughly states that the
propertyφ holds for the systemS, regardless of the component (i.e. intruder, malicious
user, hostile environment,etc.) which may possibly interact with it.

By using partial model checking we reduce such a verification problem as in For-
mula (2) to a validity checking problem as follows:

∀X S‖X |= φ iff X |= φ//S
(3)

In this way we find the sufficient and necessary condition onX, expressed by the
logical formulaφ//S

, so the whole systemS‖X satisfiesφ if and only if X satisfies
φ//S

.
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5 Process algebra controller operators

Using the open system approach we develop a theory to enforce security properties.
In order to protect the system we should check each processX before executing it. If
it is not possible, we have to find a way to guarantee that the whole system behaves
correctly. For that reason we developprocess algebra controller operatorsthat force
the intruder to behave correctly, i.e., referring to Formula (3), as prescribed by the
formulaφ//S

. We denote controller operators byY . X, whereX is an unspecified
component (target) andY is acontroller program. The controller program is a process
that controlsX in order to guarantee that a given security property is satisfied.

Specification :S‖Y . X

X

Y

S

Y . X

Hence we use controller operator in such way the specification of the system be-
comes:

∃Y ∀X s.t. S‖(Y . X) |= φ (4)

By partially evaluatingφ w.r.t. S the Formula (4) is reduced as follows:

∃Y ∀X Y . X |= φ′ (5)

whereφ′ = φ//S
.

It is important to note that, by using partial model checking we need to control only
the possible un-trusted component of the system. Our method allows one to monitor
only the necessary/untrusted part of the system, hereX. We can define several kinds
of controller operators. Each of them has different capabilities. We deal with security
automata (truncation, suppression, insertion, edit) defined in [9, 10] by modeling them
by process algebra controller operatorsY .KX, whereK ∈ {T, S, I, E}whereT stays
for Truncation, S for Suppression, I for InsertionandE for Edit. In the next section
we just recall the semantics definition of security automata and we present how we
model them by process algebra operators giving the semantics of our process algebra
operators.

5.1 Modeling security automata with process algebra

Here we choose to follow the approach given by Ligatti and al. in [9] to describe the
behavior of security automata.

A security automatonat least consists of a (countable) set of states, sayQ, a set of
actionsAct and a transition (partial) functionδ. Each kind of automata has a slightly
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different sort of transition functionδ, and these differences account for the variations
in their expressive power. The exact specification ofδ is part of the definition of each
kind of automaton. We useσ to denote a sequence of actions,· for the empty sequence
andτ2 to represent an internal action.

The execution of each different kind of security automataK is specified by a la-
beled operational semantics. The basic single-step judgment has the form(σ, q) a−→K

(σ′, q′) whereσ′ andq′ denote, respectively, the action sequence and the state after that
the automaton takes a single step, anda denotes the action produced by the automaton.
The single-step judgment can be generalized to a multi-step judgment(σ, q)

γ
=⇒K

3

(σ′, q′), whereγ is a sequence of actions, as follows.

(σ, q) .=⇒K (σ, q)
(Reflex)

(σ, q) a−→K (σ′′, q′′) (σ′′, q′′)
γ

=⇒K (σ′, q′)

(σ, q)
a;γ
=⇒K (σ′, q′)

(Trans)

We define four controller operators by showing their behavior thought semantics rules.
We also prove for each of our operators that its behavior mimics the behavior of one of
the security automata. Hence in the following we recall the semantic definition of each
security automaton, we show the controller operator by which we model it and, finally,
we prove that they have the same behavior (for technical proofs see Appendix A).

Truncation automaton The operational semantics definition of truncation automata
given in [9, 10] is the following:
if σ = a; σ′ andδ(a, q) = q′

(σ, q) a−→T (σ′, q′) (T-Step)

otherwise
(σ, q) τ−→T (·, q) (T-Stop)

We denote withE the controller program and withF the target. We work, without loss
of generality, under the additional assumption thatE andF never perform the internal
actionτ . We define the controller operators.T as follows:

E
a→ E′ F a→ F ′

E .T F
a→ E′ .T F ′

This operator models the truncation automaton that is similar to Schneider’s automaton
(when considering only deterministic automata, e.g., see [9, 10]). Its semantics rule
states that ifF performs the actiona and the same action is performed byE (so it
is allowed in the current state of the automaton), thenE .T F performs the actiona,
otherwise it halts.

2In [9] internal actions are denoted by·. According to the standard notation of process algebras, we use
τ to denote an internal action.

3Consider a finite sequence of visible actionsγ = a1 . . . an. Here we use⇒ to denote automata
computations. Before we use the same notation for process algebra computations. The meaning of the
symbol will be clear from the context.

16



Proposition 5.1 LetEq =
∑

a∈Act

{
a.Eq′ iff δ(a, q) = q′

0 othw
be the control process and letF be the target. Each sequence of actions that is an
output of atruncation automaton(Q, q0, δ) is also derivable fromEq .T F and vice-
versa.

Suppression automaton Referring to [9], it is defined as
(Q, q0, δ, ω) whereω : Actτ × Q → {−, +} indicates whether or not the action in
question should be suppressed (-) or emitted (+).
if σ = a; σ′ andδ(a, q) = q′ andω(a, q) = +

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a; σ′ andδ(a, q) = q′ andω(a, q) = −

(σ, q) τ−→S (σ′, q′) (S-StepS)

otherwise
(σ, q) τ−→S (·, q) (S-Stop)

We denote withE the controller program and withF the target. We work, without loss
of generality, under the additional assumption thatE andF never perform the internal
actionτ . We define the controller operators.S as follows:

E
a→ E′ F a→ F ′

E .S F
a→ E′ .S F ′

E
−a−→ E′ F

a→ F ′

E .S F
τ→ E′ .S F ′

where−a is a control action not inActτ (so it does not admit a complementary action).
As for the truncation automaton, ifF performs the same action performed byE also
E .S F performs it. On the contrary, ifF performs an actiona thatE does not perform
andE can perform the control action−a thenE .S F performs the actionτ thatsup-
pressesthe actiona, i.e.,a becomes not visible from external observation. Otherwise,
E .S F halts.

Proposition 5.2 LetEq,ω =

∑

a∈Act





a.Eq′,ω iff ω(a, q) = + andδ(a, q) = q′

−a.Eq′,ω iff ω(a, q) = − andδ(a, q) = q′

0 othw

be the control process and letF be the target. Each sequence of actions that is an
output of asuppression automaton(Q, q0, δ, ω) is also derivable fromEq,ω .S F and
vice-versa.

Insertion automata Referring to [9], it is defined as
(Q, q0, δ, γ) whereγ : Actτ × Q → Actτ × Q that specifies the insertion of an
action into the sequence of actions of the program. It is necessary to note that in
[9, 10] the automaton inserts a finite sequence of actions instead of only one action,
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i.e., using the functionγ, it controls if a wrong action is performed. If it happens, the
automaton inserts a finite sequence of actions, hence a finite number of intermediate
states. Without loss of generality, we consider that it performs only one action. In this
way we openly consider all intermediate states. Note that the domain ofγ is disjoint
from the domain ofδ in order to have a deterministic automata.
if σ = a; σ′ andδ(a, q) = q′

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a; σ′ andγ(a, q) = (b, q′)

(σ, q) b−→I (σ, q′) (I-Ins)

otherwise
(σ, q) τ−→I (·, q) (I-Stop)

We denote withE the controller program and withF the target. We work, without loss
of generality, under the additional assumption thatE andF never perform the internal
actionτ . We define the controller operators.I as follows:

E
a→ E′ F

a→ F ′

E .I F
a→ E′ .I F ′

E 6 a→ E′ E
+a.b−→ E′ F

a→ F ′

E .I F
b→ E′ .I F

where+a is an action not inActτ . If F performs an actiona that alsoE can perform,
the whole system makes this action. IfF performs an actiona that E does not per-
form andE detects it by performing a control action+a followed by an actiob, then
the whole system performb. It is possible to note that in the description of insertion
automata in [9] the domains ofγ andδ are disjoint. In our case, this is guarantee by

the premise of the second rule in which we have thatE 6 a−→ E′, E
+a.b−→ E′. In fact for

the insertion automata, if a pair(a, q) is not in the domain ofδ and it is in the domain
of γ it means that if we are in the stateq we cannot performa actions so in order to
change state an action different froma must be performed. It is important to note that
it is able to insert new actions but it is not able to suppress any action performed byF .

Proposition 5.3 LetEq,γ =

∑

a∈Act\{τ}





a.Eq′,γ iff δ(a, q)
+a.b.Eq′,γ iff γ(a, q) = (b, q′)
0 othw

be the control process and letF be the target. Each sequence of actions that is an
output of aninsertion automaton(Q, q0, δ, γ) is also derivable fromEq,γ .I F and
vice-versa.

Edit automata According to [9], it is defined as(Q, q0, δ, γ, ω) whereγ : Actτ ×
Q → Actτ × Q that specifies the insertion of a finite sequence of actions into the
program’s actions sequence andω : Actτ ×Q → {−, +} indicates whether or not the
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action in question should be suppressed (-) or emitted (+). Also hereω andδ have the
same domain while the domain ofγ is disjoint from the domain ofδ in order to have a
deterministic automata.
if σ = a; σ′ andδ(a, q) = q′ andω(a, q) = +

(σ, q) a−→E (σ′, q′) (E-StepA)

if σ = a; σ′ andδ(a, q) = q′ andω(a, q) = −

(σ, q) τ−→E (σ′, q′) (E-StepS)

if σ = a; σ′ andγ(a, q) = (b, q′)

(σ, q) b−→E (σ, q′) (E-Ins)

otherwise
(σ, q) τ−→E (·, q) (E-Stop)

We denote withE the controller program and withF the target. We work, without loss
of generality, under the additional assumption thatE andF never perform the internal
action τ . In order to do insertion and suppression together we define the following
controller operator.E . Its rules are the union of the rules of the.S and.I .

E
a→E′ F

a→F ′

E.EF
a→E′.EF ′

E
−a−→E′ F

a→F ′

E.EF
τ→E′.EF ′

E 6 a→E′ E
+a.b−→E′ F

a−→F ′

E.EF
b−→E′.EF

This operator combines the power of the previous two ones.

Proposition 5.4 LetEq,γ,ω =

∑

a∈Act





a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = +
−a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = −
+a.b.Eq′,γ,ω iff γ(a, q) = (b, q′)
0 othw

be the control process and letF be the target. Each sequence of actions that is an
output of anedit automaton(Q, q0, δ, γ, ω) is also derivable fromEq,γ,ω .E F and
vice-versa.

It is important to note that we introduced the control action−a in the semantics of.S

and+a in the semantics of.I in order to find operators that were as similar as possible
to suppression and insertion automata, respectively.

6 Synthesis of controller program

One of the goals of our work is to find a controller programY that can secure a given
system whatever isX. In particular we wonder if there exists an implementation ofY
that can be plugged into the system that guarantees the system is secure.
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According to the previous section we can enforce safety properties in several ways.
As a matter of fact we have described four different controller operators:Y .T X,
Y .S X, Y .I X andY .E X. For each of them we want to solve the following
problem:

∃Y ∀X Y .K X |= φ′

whereK is in {T, S, I, E} andφ′ is an equationalµ-calculus formula as in Formula
(5).

For that reason we prove the following proposition.

Proposition 6.1 For everyK ∈ {T, S, I, E} Y .K X ¹ Y [fK] holds, wherefK is a
relabeling function depending onK. In particular,fT is the identity function onActτ

4

and

fS(a) =
{

τ if a = −a
a othw

fI(a) =
{

τ if a = +a
a othw

fE(a) =
{

τ if a ∈ {+a,−a}
a othw

These operators are applied in order to enforce safety properties. Hence we restrict
ourselves to a subclass of equationalµ-calculus formulae that is denoted byFrµ. This
class consists of equationalµ-calculus formulae without〈 〉. It is easy to prove that this
set of formulae is closed under the partial model checking function and the following
result holds.

Proposition 6.2 Let E andF be two finite state processes andφ ∈ Frµ. If F ¹ E
thenE |= φ ⇒ F |= φ.

At this point in order to satisfy the Formula (5) it is sufficient to find a controller
program s.t.:

Y [fK] |= φ′

To further reduce the previous formula, we can use the partial model checking function
for relabeling operator. Hence, for everyK ∈ {T, S, I, E} we calculateφ′′K = φ′//[fK]

.

Thus we obtain:
∃Y Y |= φ′′K (6)

This is a satisfiability problem inµ-calculus that can be solved by Theorem 3.1. It
is important to note that even if the processY performs some actionsτ it is possible
to obtain fromY another processY ′ with only visible actions that is a deterministic
model ofφ.

6.1 A tool for the Synthesis of Controller Programs

In order to solve the satisfiability problem described by the Formula (6) we have de-
veloped a tool that, given a systemS and a formulaφ, generates a processY . This
process is a model forφ′, the formula obtained by the partial evaluation ofφ by S and,
moreover, it guarantees thatS‖(Y . X) satisfiesφ whateverX is.

4Here the setActτ must be consider enriched by control actions.
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MuDiv

b) A zoom of the Synthesis module

a) The architecture of the whole tool

Translator

−calc.ml

−fparser.ml
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−types_for.ml

−goodgraph.ml
−model.ml
−simplify.ml

−main.ml
−printGraph.ml

Synthesis
φ′ = φ//S Y

Y

φ, S

φ′ = φ//S

φ′mod

Figure 1: Architecture of the tool.

The tool is made up of two main parts (see Figure 1.a)): the first part implements
the partial model checking function; the second one, by implementing the satisfiability
procedure developed by Walukiewicz in [47], generates a processY . In particular, it
permit to obtain a controller programY for each controller operators.K.

In Figure 1 there is a graphical representation of the architecture of the whole tool
that we explain in more detail in the following section.

6.1.1 Architecture of the tool

The first module of our tool consists in theMuDiv module. It implements the partial
model checking function. It has been developed in C++ by J.B. Nielsen and H.R. An-
dersen. TheMuDiv takes in input a processS described by anLTS and an equational
µ-calculus formulaφ and returns an equationalµ-calculus formulaφ′ = φ//S

.
The second module of our tool is theSynthesismodule. It is able to build a model

for a given modalµ-calculus formula by exploiting the satisfiability procedure devel-
oped by Walukiewicz in [47]. It is developed in O’caml 3.09 (see [24]) and it is de-
scribed better in Figure 1.b) in which we can see that it consists of two submodules:
theTranslatorand theSynthesis.

The Translator manages the formulaφ′, output of theMuDiv module in order to
obtain a formula that can be manage from the Synthesis module. It “translates”φ′ from
an equational to a modalµ-calculus formula. This translation is necessary because the
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Walukiewicz’s satisfiability procedure was developed for modalµ-calculus formulae
instead the partial model checking was developed for equationalµ-calculus ones. As
a matter of fact, the equationalµ-calculus is close for partial model checking. This
means that applying the partial model checking function to an equationalµ-calculus
formula we obtain an equationalµ-calculus formula.

The Translator consists in four functions:fparser.ml and flexer.ml that
permit to read theMuDiv output file and analyze it as input sequence in order to deter-
mine its grammatical structure with respect to our grammar. The functioncalc.ml
calls flexer.ml and fparser.ml on a specified file. In this way we obtain
an equationalµ-calculus formulaφ′ according to the type that we have defined in
type for.ml . The last function,convert.ml , translates the equationalµ-calculus
formulaφ′ in the modal oneφ′mod.

The Synthesis is an implementation of Walukiewicz satisfiability procedure. Given a
modalµ-calculus formulaφ′mod we build a graph by following the set of axioms of the
satisfiability procedure of Walukiewicz. For that reason we define thetype graph
as a list of triple(n, a, n) ∈ GNode × Actτ × GNode whereGNode is the set of
graph nodes. Each node of the graph represents a stateL(n) of the graph. Each node
is characterized by the set of formulae that it satisfies.

The kind of formulae that we consider are formulae that express safety properties,
i.e. they are modalµ-calculus formulae without minimum fixpoint and diamond oper-
ators.

In model.ml we build the entire graph for the given formulaφ′mod. It takes as
input a pair inGNode×Graph and, in a recursive way, builds the graph. Referring to
[47] we have to check if the graph that we build is effectively a model or a refutation
of φ′mod. We do this by the functiongoodgraph.ml . This function takes in input a
graph and gives back the boolean valueTRUE if the graph is a model,FALSE otherwise
and it halts. These two functions,model.ml andgoodgraph.ml , work in pair in
order to find a graph in whichφ′mod is satisfied. At the beginning we give in input a
node labeled byφ andEmpty Graph , that represents the empty graph. Then, in a
recursive way, we build the graph by checking it at each step bygoodgraph.ml . It
is important to note that the graph that we generate has some transition that are labeled
by an action and some transition that come from the semantics of logical operations.
If we are able to build the entire graph we use the functionsimplify.ml to extract
exactly the process that is a model forφ′mod. Such process consists in the graph in
which all nodes that are linked by logical operation are considered as a single node.
In this way at the end we obtain a labeled transition system that represents a process.
Such process is a model forφ′mod.

In order to synthesize a processY that is a model ofφ′mod as well as a con-
troller program for a chosen controller operators, we have implemented the function
controllers.ml . By using this function we relabelY according with the con-
troller operator we want to use as it is prescribed by Proposition 6.1. In this way we
obtain four different processesY = Y [fT ], becausefT is the identity function on
Actτ , Y [fS ], Y [fI ] andY [fE ].

Other function in this submodule are the function
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printGraph.ml that permits to print the graph as a sequence of nodes labeled by a
list of formulae, connected by arrows labeled by an action, and the functionmain.ml
that calls all the other functions and permits to create the executable file (.exe ).

7 A Cases Study

In order to explain better how the tool works, we present an example in which a system
must satisfy a safety property. We generate a controller program for each of the four
controllers defined in Section 5.1.

Let S be a system. We suppose that all users that work onS have to satisfy the
following rule:

You cannot open a new file while another file is open.

It can be formalized by an equation systemD as follows:

X =ν [τ ]X ∧ [open ]Y
Y =ν [τ ]Y ∧ [close ]X ∧ [open ]F

7.1 Truncation

We halt the system if the user try to open a file while another is already open. In this
case we generate a controller programY for Y .T X and we obtain:

Y = open.close .Y

Y is a model forD.
In order to show how it works as controller program forY .T X we suppose to have

a possible userX that tries to open two different files. HenceX = open.open. 0.
Applying Y .T X we obtain:

Y .T X =
open.close .Y .T open.open .0 open−→ close .Y .T

open. 0

SinceY andX are going to perform a different action, i.e.Y is going to perform
close while X is going to performopen , the whole system halts.

7.2 Suppression

We suppose to decide to suppress any possibleopen action that can violate the prop-
ertyD. In this case we generate a controller programY for the controllerY .S X. We
obtain:

Y = −open .Y + open .Y ′

Y ′ = −open .Y ′ + close .Y
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Let we suppose to be in the same scenario described for the previous operator. LetX
be a user that tries to open two different files. HenceX = open.open .0. Applying
Y .S X we obtain:

Y .S X = −open .Y + open .Y ′ .S open.open .0
open−→ −open .Y ′ + close .Y .S open .0 τ−→ Y ′ .S 0

The whole system halts again because, even if a wrong action is suppressed, this con-
trollers cannot introduce right actions.

7.3 Insertion

Let Y be a controller program for the controllerY .I X. We obtain:

Y = +open.close.open .Y + open .Y ′

Y ′ = +open.close.open .Y ′ + close .Y

We considerX that tries to open two different files. HenceX = open.open .0. We
obtain:

Y .I X =
+open.close.open .Y + open .Y ′ .I open.open .0
open−→ +open.close.open .Y ′ + close .Y .I open .0
close−→ open .Y ′ .I open. 0 open−→ Y ′ .I 0

We can note theY permitsX to perform the first actionopen . Then it checks that
X is going to perform anotheropen by the action+open . HenceY insert an action
close . After this action it permitsX to perform the actionopen . SinceX does not
perform any another actions the whole system halts.

7.4 Edit

We consider to apply the controller operatorY .E X. The controller program that we
generate is the following:

Y = −open .Y + +open.close.open .Y + open .Y ′

Y ′ = −open .Y ′ + +open.close.open .Y ′ + close .Y

We suppose again thatX = open.open .0. We have:

Y .E X =
−open .Y + +open.close.open .Y + open .Y ′.E

.Eopen.open .0 open−→
−open .Y ′ + +open.close.open .Y ′ + close .Y .E

.Eopen .0 close−→ open .Y ′ .E .Eopen. 0 open−→ Y ′ .E 0

Also in this case, after the first actionopen , Y checks ifX is going to perform another
open by the action+open and then it inserts the actionclose in order to satisfy the
propertyD. Then it permit to perform anotheropen action.
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8 Further results

8.1 Timed setting

In this section we extend to a timed setting the theory that we have previously devel-
oped. First of all we show some notions useful to describe a very simple timed setting.

8.1.1 GSOSand CCS process algebra with time

We follow a simple approach, where time is discrete, actions are durationless and there
is one specialtick action to represent the elapsing of time (see [37]). These are fea-
tures of the so calledfictitious clockapproach of, e.g. [14, 21, 45]. A global clock
is supposed to be updated whenever all the processes of the system agree on this, by
globally synchronizing on actiontick. Hence, between the two global synchronization
on actiontick all the processes proceed asynchronously by performing durationless
actions. So, thetick action is important in parallel operator whose semantics, in this
case, is enriched of this one more rule in addition of rules given in Table 1.

E1
tick−→ E′

1 E2
tick−→ E′

2

E1‖E2
tick−→ E′

1‖E′
2

8.1.2 Behavioral equivalence

As done in [37] we consider the class of processes that do allow time proceed, the so-
calledweakly time aliveprocesses. These representcorrectattackers w.r.t. time. (As a
matter of fact, it is not realistic that an intruder or a malicious agent can block the flow
of time.)

Definition 8.1 A processE is directly weakly time aliveiff E
tick=⇒ 5, while it isweakly

time aliveiff for all E′ ∈ Der(E), we haveE′ is directly weakly time alive.

SinceE
α−→ E′ impliesDer(E′) ⊆ Der(E), it directly follows that ifE is weakly

time alive, then any derivedE′ of E is weakly time alive as well. Moreover, it is
worthwhile noticing that the above property is preserved by the parallel composition.

The behavioral relation considered here is the timed versions of weak bisimulation
[33]. This equivalence permits to abstract to some extent from the internal behavior of
the systems, represented by the invisibleτ actions.

Definition 8.2 Let (E , T ) be an LTS of concurrent processes, and letR be a binary
relation overE . ThenR is calledtimed weak simulation, denoted by¹t, over(E , T )
if and only if, whenever(E,F ) ∈ R we have:

• if E
a−→ E′ then there existsF ′ s.t.F

a=⇒ F ′ and(E′, F ′) ∈ R,

• if E
tick−→ E′ then there existsF ′ s.t.F

tick=⇒ F ′ and(E′, F ′) ∈ R.

5This means that we are no interested to the final state of the transition.
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Moreover, a binary relationR overE is said atimed weak bisimulation(denoted by
≈t) over the LTS of concurrent processes(E , T ) if bothR and its converse are timed
weak simulation.

8.1.3 Partial model checking with time

Introducing the newtick action we have one more case to consider in the definition
of partial model checking function. Thetick action cannot be consider as the other
actions inActτ . Hence we extend the partial model checking function to deal with
time by adding the following rules

〈tick〉A//s =

{
〈tick〉A//s′ s

tick−→ s′

F otw

[tick]A//s =

{
[tick]A//s′ s

tick−→ s′

T otw

It is easy to note that the insertion oftick action affects only the partial model checking
for parallel operator.

8.1.4 Our controller operators in a timed setting

In this section we study how the controller operators that we have defined in Section
5.1 work in a timed setting. We want thatY .K X, for eachK, are processes that
do allow time to proceed, so we prove that it isweakly time alive. Here we use the
following notation:E andF are finite state processes.E is the controller program and
F the target. The following proposition holds.

Proposition 8.1 If both E andF are weakly time alive, alsoE .K F is weakly time
alive.

Dealing with time does not change or modify the semantic of our controllers. Hence a
proposition similar to Proposition 6.1 holds. In particular, looking at the definition of
weak timed simulation and at the proof of the Proposition 6.1, given in appendix, the
following proposition holds.

Proposition 8.2 For everyK ∈ {truncation, suppression, insertion, edit} the follow-
ing relation holdsE .K F ¹t E[fK] wherefK is a relabeling function definition of
which depend onK.

We can then recast results of the previous section in a timed setting.

8.2 Parameterized Systems

A parameterized system describes an infinite family of (typically finite-state) systems;
instances of the family can be obtained by fixing parameters. Consider a parameterized
systemS = Pn defined by parallel composition of processesP , e.g.P‖P‖ . . . ‖P︸ ︷︷ ︸

n

. The

parametern represents the number of processesP present in the systemS.
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Example 8.1 Consider the system with one consumer processC andn producer pro-

cessesP . Each processP is definedP
def
= a.P wherea ∈ Act, and the processC

is ā.C. The entire system is(Pn‖C)\{a} and the processes communicate by synchro-
nization onā anda actions.

Referring to the Formula (2) we have

∀n ∀X Pn‖X |= φ (7)

It is possible to note that in the previous equation there are two universal quantifica-
tions; the first one on the number of instances of the processP and the second one on
the possible unknown agents.

In order to eliminate the universal quantification on the number of processes, first
of all, we define the concept ofinvariant formula w.r.t. partial model checking for
parallel operatoras follows.

Definition 8.3 A formulaφ is said aninvariant w.r.t. partial model checkingfor the
systemP‖X iff φ ⇔ φ//P

.

It is possible to prove the following result.

Proposition 8.3 Given the system∀i Pi‖X. If φ is an invariant formula for this system
then

∀X (∀n Pn‖X |= φ iff X |= φ)

In order to apply the theory developed in Section 4, we show a method to find the
invariant formula. According to [8], letψi be defined as follows

ψi =
{

φ′1 if i = 1
ψi−1 ∧ φ′i if i > 1

By definition of ψi and by Lemma 3.3,∀j s.t. 1 ≤ j ≤ i (X |= φ′j) ⇔ X |= ψi.
HenceX |= ψi means that∀j s.t. 1 ≤ j ≤ i Pj‖X |= φ′. We say thatψi is said to
becontractingif ψi ⇒ ψi−1. If ∀i ψi ⇒ ψi−1 holds, we have a chain that is a said
a contracting sequence. If it is possible to find the invariant formulaψω for a chain of
µ-calculus formulae, that is also saidlimit of the sequence, then the following identity
holds.

∀X (X |= ψω ⇔ ∀n ≥ 1 Pn‖X |= φ′) (8)

Now we can apply the reasoning made in Section 4. Hence we are able to de-
fine a controller operator that forces each process to behave correctly and synthesize a
controller program.

In some cases it could not be possible to find the limit of the chain. However there
are some technique that can be useful in order to find an approximation of this limit
(see [8, 15]).
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8.3 Composition of safety properties

Our logical approach is able to struggle successfully with composition problems by
using the operator.T . We suppose to have to force a systems to satisfy a security
policy that can be write as the conjunction of several safety properties as follows:

∀X S‖X |= φ = φ1 ∧ . . . ∧ φn (9)

whereφ1 . . . φn are safety properties simpler thanφ. In order to guarantee that the
whole system satisfyφ we have to find a controller programY for a given controller
operator that forceφ to be satisfied. So we want to findY s.t.:

∀X S‖Y .T X |= φ1 ∧ . . . ∧ φn (10)

According to Theorem 3.1, the cost of the satisfiability procedure is exponential in
the size of the formula. What we prove here is a method to find a controller program
Y for φ starting from controller operators for safety formula simpler thanφ. To do this
we splitφ in a finite numbern of sub-formulae, whenever it is possible,φ1, . . . , φn,
s.t. φ =

∧n
i=1 φi. Then, by exploiting he Theorem 3.1, we synthesize a controller

programYi for each ofφi formula. Finally, by composingYi one to each other we
obtainY . This method is less expensive than synthesize directlyY . As a matter of
fact, synthesizeY is exponential in the size ofφ. Let we consider that all theφi have
the same sizem and let the cost of the composition be constant. Then the cost of our
method isnO(2m) instead ofO(2m×n).

In order to describe our method, first of all, we rewrite Formula (9), by exploiting
the semantics definition of the logical conjunction, as follows:

∀X S‖X |= φ1 and
∀X S‖X |= φ2 and
. . .
∀X S‖X |= φn

By partial model checking we obtain:

∀X X |= φ′1 and
∀X X |= φ′2 and
. . .
∀X X |= φ′n

where for eachi from 1 ton, φ′i = (φi)//S
.

Let Y1, . . . , Yn ben processes such that:

∀X Y1 .T X |= φ′1 and
∀X Y2 .T X |= φ′2 and
. . .
∀X Yn .T X |= φ′n

It is possible to prove the following result.
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Lemma 8.1 Let φ be a safety property, conjunction ofn safety properties, i.e.φ =
φ1∧φ2∧. . .∧φn whereφ1, . . . φn are safety properties. LetY1, . . . , Yn ben controller
programs s.t.∀i s.t.1 ≤ i ≤ n Yi |= φi. We have

∀X Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ

This means that, if we have several controller programs for several safety properties,
applying them one after the other we can enforce a safety property that is the conjunc-
tion of the previous ones. However, in this way, we apply the procedure for enforcing
n times. Instead we want apply it only one time to force that conjunction of formulae.
For that reason we prove the following proposition.

Proposition 8.4 Let we consider the controller operator.T . It is possible to find
Y1, . . . , Yn controller programs s.t. ifY1 .T X |= φ′1, . . . , Yn .T X |= φn then
(Y1 .T . . . .T Yn) .T X |= φ1 ∧ . . . ∧ φn.

Hence, referring to the Formula 10, in order to findY we findY1, . . . , Yn that enforce
φ′1, . . . , φ

′
n respectively and we compose them as in Proposition 8.4. In this way we

find Y that forceφ′ = φ′1 ∧ . . . ∧ φ′n. According to Lemma 3.3 we have:

∀X Y .T X |= φ′

m
∀X S‖Y .T X |= φ

Hence we obtain a controller programY for φ.
It is important to note that the Proposition 8.4 holds only for the operator.T be-

cause, as it is possible to see from the proof in Appendix A, it is necessary that both
processes, the controller and the target, agree on the action are going to perform. Look-
ing to the operational semantics of controller operators, it is easy to see that the operator
.T is the only one that satisfies this requirement.

9 Conclusion

We illustrated some results towards a uniform theory for enforcing security properties.
With this work, we extended a framework based on process calculi and logical tech-
niques, that have been shown to be very suitable to model and verify several security
properties, to tackle also synthesis problems of secure systems. In particular we have
shown how security properties can be convenientlyspecifiedandverifiedin a uniform
way by using a few concepts of concurrency and temporal logic theory, as, for instance,
partial model checking. Using the same framework we also deal with thesynthesisof
secure systems.

Moreover we have described a tool for the synthesis of a controller program based
on Walukiewicz’s satisfiability procedure as well as on the partial model checking tech-
nique. In particular, starting from a systemS and a formulaφ that describes a security
property, the tool generates a process that, by monitoring a possible un-trusted compo-
nent, guarantees that a systemS‖X satisfiesφ whateverX is.

We also deal with the synthesis of secure systems in a timed setting and for param-
eterized systems. We present also a method to enforce composition of policies.
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A Technical proofs

Lemma 3.2Let E be a finite-state process and letφE,¹ be its characteristic formula
w.r.t. weak simulation.

F ¹ E ⇔ F |= φE,¹

Proof: In order to prove the following proposition we give the following chain:

F ¹ E ⇔ ∀α F
α→ F ′ ∃E′ E

α⇒ E′ ∧ F ′ ¹ E′ ⇔
∀α F

α→ F ′ F ′ |= ∨
XE′ ⇔ ∀α F |= [α](

∨
XE′) ⇔

F |= ∧
([α](

∨
XE′))

In order to guarantee homogeneity of notation, we assume to work with anLTS,
since that both automata and sequential process areLTS (see [33]). We should give a
proof that a bisimulation exists between automata and controller operator so they have
the same behavior.

Before starting to prove Propositions 5.1, 5.2, 5.3, 5.4, we note that in our controller
operators the halt condition is not roundly given because this occurs when there are not
rule that could be applied, i.e., when premises of all rules are not verify. As we have
already note, also in security automata described in Section 5.1, the actionτ in stop rule
of each automata is an internal action that is not really performed. So in our proofs,
without loss of validity, we can omit the stop case because, looking at the semantics of
each operator, it is easy to understand that the stop rule of each automata is equivalent
to the halt condition of respectively operator.

Proposition 5.1Let Eq =
∑

a∈Act

{
a.Eq′ iff δ(a, q) = q′

0 othw
be the control process and letF be the target. Each sequence of actions that is an output
of a truncation automaton(Q, q0, δ) is also derivable fromEq .T F and vice-versa.

Proof: We can define the relation of strong bisimulationRT in the following way:

RT = {((σ, q), Eq .T F ) : (σ, q) ∈ −→Act×Q,F
σ7→}

Assume that(σ, q) a−→T (σ′, q′). For the semantic rule of.T , if Eq a−→ Eq′ and

F
a−→ F ′ perform the actiona alsoEq .T F

a−→ Eq′ .T F ′ andF ′ σ′7→. Now assume

that Eq .T F
a−→ Eq′ .T F ′ andF ′ σ′7→. We should prove that exists a(σ, q)′ s.t.

(σ, q) a−→T (σ, q)′ and(Eq′ .T F ′, (σ, q)′) ∈ RT . For the rule T-Step,(σ, q) a−→T

(σ′, q′). So the couple that we are looking for is(σ′, q′).
Proposition 5.2Let Eq,ω =

∑

a∈Act





a.Eq′,ω iff ω(a, q) = + andδ(a, q) = q′

−a.Eq′,ω iff ω(a, q) = − andδ(a, q) = q′

0 othw

be the control process and letF be the target. Each sequence of actions that is an
output of a suppression automaton(Q, q0, δ, ω) is also derivable fromEq,ω .S F and
vice-versa.
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Proof: The scheme of the proof and the notation are the same of the previous one.
Let

RS = {((σ, q), Eq,ω .S F ) : (σ, q) ∈ −→Act×Q,F
σ7→}

be the strong bisimulation relation. We have two cases: the first one is similar of
proposition 5.1 in fact, let((σ, q), Eq,ω .S F ) be inRS and (σ, q) a−→S (σ′, q′).
We should prove that exists a(Eq,ω .S F )′ s.t. Eq,ω .S F

a−→ (Eq,ω .S F )′ and
((σ′, q′), (Eq,ω .S F )′) ∈ RS . By the first rule of.S and by definition ofEq,ω, using a
similar reason of the proof of proposition 5.1, we trivially have the thesis. On the other
hand, let(Eq,ω .S F, (σ, q)) be inRS andEq,ω .S F

a−→ Eq′,ω .S F ′. We should
prove that exists a(σ, q)′ s.t. (σ, q) a−→S (σ, q)′ and(Eq′,ω .S F ′, (σ, q)′) ∈ RS . For
the rule S-StepA we have that(σ′, q′) is the solution we are looking for. The reasoning
is similar to the previous one.

Now, let ((σ, q), Eq,ω .S F ) be inRS and(σ, q) τ−→S (σ′, q′). We should prove
that exists a(Eq,ω .S F )′ s.t. Eq,ω .S F

τ−→ (Eq,ω .S F )′ and((σ′, q′), (Eq,ω .S

F )′) ∈ RS . We have, by the second rule of.S and by the definition ofEq,ω, that

if Eq,ω −a−→ Eq′,ω andF
a−→ F ′ thenEq,ω .S F

τ−→ Eq′,ω .S F ′. We have also
F ′ σ7→′

.So((σ′, q′), Eq′,ω .S F ′) ∈ RS trivially.
Now assume that(Eq,ω .S F, (σ, q)) be inRS andEq,ω .S F

τ−→ Eq′,ω .S F ′. We
should prove that exists a(σ, q)′ s.t. (σ, q) τ−→S (σ, q)′ and(Eq′,ω.SF ′, (σ, q)′) ∈ RS

For the rule S-StepS we have that(σ′, q′) is the solution we are looking for. The
reasoning is similar to the previous one.

Proposition 5.3Let Eq,γ =

∑

a∈Act





a.Eq′,γ iff δ(a, q)
+a.b.Eq′,γ iff γ(a, q) = (b, q′)
0 othw

be the control process and letF be the target. Each sequence of actions that is an output
of an insertion automaton(Q, q0, δ, γ) is also derivable fromEq,γ .I F and vice-versa.

Proof: The scheme of the proof and the notation are the same of the previous
one.LetRI be the strong bisimulation relation defined as follows:

RI = {((σ, q), Eq,γ .I F ) : (σ, q) ∈ −→Act×Q,F
σ7→}

We have two cases: the first one is similar of proposition 5.1 in fact, let((σ, q), Eq,γ .I

F ) be inRI and(σ, q) a−→I (σ′, q′). We should prove that exists a(Eq,γ .I F )′ s.t.
Eq,γ .I F

a−→ (Eq,γ .I F )′ and((σ′, q′), (Eq,γ .I F )′) ∈ RI . By the first rule of
.I and by definition ofEq,γ ,using a similar reasoning of the proof of proposition 5.1,
we trivially have the thesis. On the other hand, let(Eq,γ .I F, (σ, q)) be inRI and
Eq,γ .I F

a−→ Eq′,γ .I F ′. We should prove that exists a(σ, q)′ s.t. (σ, q) a−→I (σ, q)′

and(Eq′,γ .I F ′, (σ, q)′) ∈ RI . For the rule I-Step we have that(σ′, q′) is the solution
we are looking for. The reasoning is similar to the previous one.

Now let ((σ, q), Eq,γ .I F ) be inRI and(σ, q) b−→I (σ, q′). We should prove that

exists a(Eq,γ .I F )′ s.t.Eq,γ .I F
b−→ (Eq,γ .I F )′ and((σ, q′), (Eq,γ .I F )′) ∈ RI .
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We have, by second rule of.I and by to the definition ofEq,γ , that if Eq,γ 6 a−→ Eq′,γ ,

Eq,γ +a.b−→ Eq′,γ andF
a−→ F ′ thenEq,γ .I F

b−→ Eq′,γ .I F . So(Eq,γ .I F )′ is
Eq′,γ .I F and((σ, q′), Eq′,γ .I F ) ∈ RI trivially.

Now, let (Eq,γ .I F, (σ, q)) be inRI andEq,γ .I F
b−→ Eq′,γ .I F . We should

prove that exists a(σ, q)′ s.t. (σ, q) b−→ (σ, q)′ and(Eq′,γ .I F, (σ, q)′) ∈ RI . For
the rule I-Ins we have that(σ, q′) is the solution we are looking for. The reasoning is
similar to the previous one.

Proposition 5.4Let Eq,γ,ω =

∑

a∈Act





a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = +
−a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = −
+a.b.Eq′,γ,ω iff γ(a, q) = (b, q′)
0 othw

be the control process and letF be the target. Each sequence of actions that is an output
of an edit automaton(Q, q0, δ, γ, ω) is also derivable fromEq,γ,ω .E F and vice-versa.

Proof: In order to prove this lemma, we give the relation of bisimulationRE which
exists between edit automata and the controller operator.E as follows:

RE = {((σ, q), Eq,γ,ω .E F ) : (σ, q) ∈ −→Act×Q,Eq,γ,ω .E F ∈ P,

F
σ7→}

We have three cases ad their proof following the reasoning made in the proof of lemma
5.2 and lemma 5.3. In fact:

• – Let ((σ, q), Eq,γ,ω .E F ) be inRE and(σ, q) a−→E (σ′, q′). We should
prove that exists a(Eq,γ,ω .E F )′ s.t. Eq,γ,ω .E F

a−→E (Eq,γ,ω .E F )′

and ((σ′, q′), (Eq,γ,ω .E F )′) ∈ RE . We have, by the first rule of.E

and by definition ofEq,γ,ω, that if Eq,γ,ω a−→E Eq′,γ,ω andF
a−→ F ′

thenEq,γ,ω .E F
a−→ Eq′,γ,ω .E F ′. Now F ′ σ7→′

. So(Eq,γ,ω .E F )′ is
Eq′,γ,ω .E F ′ and((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE trivially.

– Let (Eq,γ,ω .E F, (σ, q)) be inRE andEq,γ,ω .E F
a−→ Eq′,γ,ω .E F ′.

We should prove that exists a(σ, q)′ s.t.
(σ, q) a−→ (σ, q)′ and(Eq′,γ,ω .E F ′, (σ, q)′) ∈ RE . For the rule E-StepA
we have that(σ′, q′) is the solution we are looking for. The reasoning is
similar to the previous one.

• – Let ((σ, q), Eq,γ,ω .E F ) be inRE and(σ, q) τ−→E (σ′, q′). We should
prove that exists a(Eq,γ,ω .E F )′ s.t. Eq,γ,ω .E F

τ−→ (Eq,γ,ω .E F )′

and((σ′, q′), (Eq,γ,ω .E F )′) ∈ RE . We have, by second rule of.E and

by the definition ofEq,γ,ω, that if Eq,γ,ω −a−→ Eq′,γ,ω andF
a−→ F ′ then

Eq,γ,ω .E F
τ−→ Eq′,γ,ω .E F ′. Now F ′ σ7→′

. So (Eq,γ,ω .E F )′ is
Eq′,γ,ω .E F ′ and((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE trivially.
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– Let (Eq,γ,ω .E F, (σ, q)) be inRE andEq,ω .E F
τ−→ Eq′,γ,ω .E F ′. We

should prove that exists a(σ, q)′ s.t.
(σ, q) τ−→e (σ, q)′ and(Eq,γ,ω .E F ′, (σ, q)′) ∈ RE For the rule E-StepS
we have that(σ′, q′) is the solution we are looking for. The reasoning is
similar to the previous one.

• – Let ((σ, q), Eq,γ,ω .E F ) be inRE and(σ, q) b−→E (σ, q′). We should

prove that exists a(Eq,γ,ω .E F )′ s.t. Eq,γ,ω .E F
b−→ (Eq,γ,ω .E F )′

and((σ, q′), (Eq,γ,ω .E F )′) ∈ RE . We have, by third rule of.E and by

the definition ofEq,γ,ω that if Eq,γ,ω 6 a−→ Eq′,γ,ω, Eq,γ,ω +a.b−→ Eq′,γ,ω

andF
a−→ F ′ thenEq,γ,ω .E F

b−→ Eq′,γ,ω .E F . So(Eq,γ,ω .E F )′ is
Eq′,γ,ω .E F and((σ, q′), Eq′,γ,ω .E F ) ∈ RE trivially.

– Let (Eq,γ,ω .E F, (σ, q)) be inRE andEq,γ,ω .E F
b−→ Eq′,γ,ω .E F . We

should prove that exists a(σ, q)′ s.t.

(σ, q) b−→ (σ, q)′ and(Eq′,γ .E F, (σ, q)′) ∈ RE . For the rule E-Ins we
have that(σ, q′) is the solution we are looking for. The reasoning is similar
to the previous one.

Proposition 6.1For everyK ∈ {truncation, suppression, insertion, edit} the fol-
lowing relation holds

Y .K X ¹ Y [fK]

wherefK is a relabeling function definition of which depend onK.
In order to prove this proposition we prove the following four lemmas. The proof

of the proposition comes trivially from the union of the proof of the lemmas.

Lemma A.1 The following relation holds

Y .T X ¹ Y [fT ] (11)

wherefT is the identity function.

Proof: We prove that the following relation is a weak simulation.

ST = {(E .T F,E[fT ])|E, F ∈ E}
Note that beingfT the identity function we could omit it without loss of generality.

Assume thatE .T F
a→ E′ .T F ′ with the additional hypothesis thatF

a→ F ′ then,
by the rule of.T we have thatE

α⇒ E′ and, obviously,(E′ .T F ′, E′) ∈ ST .

Lemma A.2 The following relation holds

Y .S X ¹ Y [fS ] (12)

where

fS(a) =
{

a if a ∈ Act
τ if a = −a
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Proof: We prove that the following relation is a weak simulation.

SS = {(E .S F, E[fS ])|E,F ∈ E}

There are two possible cases: the first one is whenE .S F performs the actiona. The
proof of this case is the same of the proof of lemma A.1. IfE .S F

τ−→ E′ .S F ′

means thatE
−a−→ E′ andF perform an actiona thatE should not perform. Applying

the relabeling functionfS to E we obtainE1 = E[fS ] s.t. E1
τ=⇒ E′

1. whereE′
1 is

E′[fS ]. Hence(E′ .S F ′, E′
1) ∈ SS .

Lemma A.3 The following relation holds

Y .I X ¹ Y [fI ] (13)

where

fI(a) =
{

a if a ∈ Act
τ if a = +a

Proof: We prove that the following relation is a weak simulation.

SI = {(E .I F, E[fI ])|E,F ∈ E}

There are two possible cases: the first one is whenE .I F performs the actiona. The

proof of this case is the same of the proof of lemma A.1. IfE .I F
b−→ E′ .I F means

that E
+a.b−→ E′ andF perform an actiona that E should not perform in order to go

in the stateE′. Applying the relabeling functionfI to E we obtainE1 = E[fI ] s.t.

E1
b=⇒ E′

1. whereE′
1 is E′[fI ]. Hence(E′ .I F ′, E′1) ∈ SI .

Lemma A.4 The following relation holds

Y .E X ¹ Y [fE ] (14)

where

fE(a) =
{

a if a ∈ Act
τ if a ∈ {−a,+a}

Proof: We prove that the following relation is a weak simulation.

SE = {(E .E F, E[fE ])|E, F ∈ E}

There are three possible cases: the first one is whenE .E F performs the actiona.
The proof of this case is the same of the proof of lemma A.1. the other two case is the
following:

• E.E F
τ−→ E′.E F ′ we want to find aE′[fE ] s.t.E[fE ] τ−→ E[fE ]′. Referring

to the second rule of the edit automata we see thatE .E F
τ−→ E′ .E F ′ when

E
−a−→ E′. Through the relabeling functionfE we haveE[fE ] τ−→ E′[fE ] and

(E′ .E F ′, E′[fE ]) ∈ SE .
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• E .E F
b−→ E′ .E F we want to find aE′[fE ] s.t.E[fE ] b=⇒ E[fE ]′. Referring

to the last rule of edit automata we see thatE.E F
b−→ E′.E F whenE

+a.b−→ E′.
Through the relabeling functionfE we haveE[fE ] b=⇒ E′[fE ] and (E′ .E

F, E′[fE ]) ∈ SE

Proposition 6.2LetE andF be two finite state processes andφ ∈ Frµ. If F ¹ E
thenE |= φ ⇒ F |= φ.

Proof: A translation from equationalµ-calculus to modalµ-calculus is possible.
So first of all we consider the modal formula associated with the given formulaφ then
the proof may be divided in two part. Former we prove the proposition holds for the
formulae of modalµ-calculus without recursion operator, latter we extended the results
also toµX.φ andνX.φ.

The first part is very similar to the proof proposed by Stirling in [43] that is made
by induction on the structure of the formulaφ. The base case is clear. For the inductive
step first supposeφ = φ1 ∧ φ2 and that the result holds for the componentsφ1 andφ2.
By the definition of satisfaction relationE |= φ iff E |= φ1 andE |= φ2. By inductive
hypothesisF |= φ1 andF |= φ2 thenF |= φ. A similar argument justifies the case
φ = φ1 ∨ φ2. Next supposeφ = [a]φ1 andE |= φ. Therefore for anyE′ s.t. E

a⇒ E′

it follows thatE′ |= φ1. Let F
a→ F ′ we know that for someE′ there is the transition

E
a⇒ E′ andF ′ ¹ E′, so by inductive hypothesisF ′ |= φ1 and soF |= φ. Now we

have to prove that ifφ = µX.φ1 or φ = νX.φ1 the proposition holds. Referring to the
definition of minimum and maximum fixed point we can consider these as inductive
limit (the union) of formulae likeµXα.φ1, whereµX0.φ1 = F andµXα+1.φ1 =
φ1[µXα.φ1/X], andνXα.φ1 whereνX0.φ1 = T andνXα+1.φ1 = φ1[νXα.φ1/X].
In this wayE |= µX.φ1 iff E |= µXα.φ1 for someα iff E |= ∨

α(µXα.φ1) and
E |= νX.φ1 iff E |= νXα.φ1 for all α iff E |= ∧

α(νXα.φ1). In the former case we
have a sequence of disjunction and in the latter we have a sequence of conjunction. We
can apply again the argument of the first part of the proof.

Proposition 8.1: Let E andF be two finite-state processes. If bothE andF are
weakly time alive, alsoE .K F is weakly time alive.

In order to prove this proposition we prove four lemmas, one for each of the four
operators.

Lemma A.5 If bothE andF are weakly time alive, alsoE .T F is weakly time alive.

Proof: We want to prove that for all(E .T F )′ ∈ Der(E .T F ) (E .T F )′ tick=⇒. E
andF are time alive so

• for all E′ ∈ Der(E) E′ tick=⇒

• for all F ′ ∈ Der(F ) F ′ tick=⇒
So∃E′, F ′ such that(E .T F )′ = E′ .T F ′ and, referring to the semantic rule of.T

E′ .T F ′ tick=⇒
Lemma A.6 If bothE andF are weakly time alive, alsoE .S F is weakly time alive.
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Proof: In this case the prove is very similar to the previous one, so we omit it.

Lemma A.7 If bothE andF are weakly time alive, alsoE .I F is weakly time alive.

Proof: The proof in this case is just a bit different. We want to prove that for all

(E .I F )′ ∈ Der(E .I F ) (E .I F )′ tick=⇒. E andF are time alive so

• for all E′ ∈ Der(E) E′ tick=⇒

• for all F ′ ∈ Der(F ) F ′ tick=⇒
We have two cases: if the first semantic rule is applied(E .I F )′ = E′ .I F ′ and
the prove is the same of the previous lemma. If the second rule is applied we have
(E .I F )′ = E′ .I F . Noting thatF ∈ Der(F ) we can follow the same reasoning do
before. .

Lemma A.8 If bothE andF are weakly time alive, alsoE .E F is weakly time alive.

Proof: The cases the could be happened here are the same of the lemma A.6 and lemma
A.7. So we omit it. .

Proposition 8.4: Let we consider the controller operator.T .It is possible to find
Y1, . . . Yn controller programs s.t. ifY1 .T X |= φ1, . . . , Yn .T X |= φn then(Y1 .T

. . . .T Yn) .T X |= φ1 ∧ . . . ∧ φn.
In order to prove the previous proposition we prove some lemmas.

Lemma A.9 The following relation holds

Y .T X ¹ X (15)

Proof: We prove that the following relation is a weak simulation.

S = {(E .T F, F )|E,F ∈ E}

Assume thatE .T F
a→ E′ .T F ′ with the additional hypothesis thatF

a→ F ′ then, by
the rule of.T we have thatE

α⇒ E′ and, obviously,(E′ .T F ′, F ′) ∈ S.
Lemma 8.1: Let φ be a safety property, conjunction ofn safety properties, i.e.

φ = φ1 ∧ φ2 ∧ . . . ∧ φn whereφ1, . . . φn are safety properties. LetY1, . . . , Yn ben
controller programs s.t.∀i s.t.1 ≤ i ≤ n Yi |= φi. We have

∀X Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ

Proof: For induction on the number of the formulae in the conjunctionn:

n = 1: In this caseφ = φ1. Hence, by exploiting the satisfiability procedure we obtain
Y = Y1 that is the controller program s.t.Y .T X |= φ.

n ⇒ n + 1: Let φ be a formula s.t.φ = φ1 ∧ . . . ∧ φn+1 andYn+1 be a controller
program s.t.∀X Yn+1 .T X |= φn+1. For inductive hypothesis we know that
∀X Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ1 ∧ . . .∧φn. We have to
prove that∀X Yn+1 .T (Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X))))) |= φ.
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For sake of simplicity, we denote byY n the processYn.T (Yn−1.T (. . ..T (Y2.T

(Y1.T X)))). We know that∀X Yn+1.T X |= φn+1, soYn+1.T Y n |= φn+1.
For Lemma 6.2 and Lemma A.9,Yn+1 .T Y n |= φ1 ∧ . . . ∧ φn. Hence, for the
definition of conjunctionYn+1 .T Y n |= φ.

Lemma A.10 Letφ, Y1, . . . , Yn be as in Lemma 8.1. We have that∀X

Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ
⇓

(Yn .T . . . .T Y1) .T X |= φ

holds.

Proof: For induction on the number of controller programsn:

n = 1: Trivial.

n ⇒ n + 1: For hypothesis we have that

1. ∀1 ≤ i ≤ n + 1, ∀X Yi .T X |= φi;

2.
∀X Yn .T (Yn−1 .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ

⇓
∀X (Yn .t . . . .T Y1) .T X |= φ

We want to prove that

∀X Yn+1 .T (Yn .T (. . . .T (Y2 .T (Y1 .T X)))) |= φ
⇓

∀X (Yn+1 .t . . . .T Y1) .T X |= φ

For sake of simplicity we denote byY n
.T

the process(Yn .T . . . .T Y1). For
hypothesis 1 we can considerY n asX so,Yn+1.T Y n

.T
|= φn+1. For Lemma 8.1

and hypothesis 2Y n
.T

.T Yn+1 |= φ1∧ . . .∧φn. SinceY n
.T

.T Yn+1 andYn+1 .T

Y n
.T

are bisimilar so they satisfy the same formulae (see [43]). In particular
Yn+1 .T Y n

.T
|= φ1 ∧ . . . ∧ φn. HenceYn+1 .T Y n

.T
|= φ. For Lemma A.9, we

conclude that∀X (Yn+1 .t . . . .T Y1) .T X |= φ.

Proof Proposition 8.4: It follows directly from proofs of Lemma 8.1 and Lemma
A.10.
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