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Abstract

In this paper we present our approach for the modeling and the synthesis of
enforcement mechanisthat are mechanism able to force security policies. In
particular, starting from the definition alecurity automatantroduced in the lit-
erature by Schneider, Ligatti at., we define a set of process algebra operators,
saidcontroller operators able to mimic the security automata’s behavior. Hence
we present semantics definitions of four different controller operators that act by
monitoring possible un-trusted component of a given system. They guarantee that
the whole system is secure, i.e. it works as prescribed by a given security policy.
We also present our theory for automatically building a process that is a controller
program for a chosen controller operator. By exploiting satisfiability results on
temporal logic we have developed a tool that generates such processes. The tool
implements the partial model checking technique and a satisfiability procedure for
a modalu-calculus formula.

We then present how it is possible to extend our approach in a timed setting
and to deal with parameterized systems.

Keywords: Partial model checking, process algebra operators, security property,
controller operator, synthesis of controller program.

1 Introduction

In the last few years the amount or information and sensible data that circulate on the
net has been growing up. This is one of important reasons that have contributed to
increase research on the definition of formal method for the analysis and the verifica-
tion of secure systems, i.e. systems that satisfy some security properties that specify
acceptable executions of programs.

An interesting approach is based on the idea that potential attackers should be an-
alyzed as if they were un-specified components of a system; thus reducing security

*This work is an expanded and revised version of [30, 31].



analysis to the analysis @fpen systemsAs a matter of fact the behavior of an open
system may be not completely specified and may present some uncertainty (see [29]).

Recently the interest on developing techniques to study how to make a system
secure by enforcingecurity policyis growing (e.g. see [5, 9, 10, 41]).

We have extended the verification approach of [29] with a method for automatically
enforcing the desired security property. As a matter of fact we define process algebra
operators (see [32]) sabntroller operatorsand denoted by > X, whereY is the
controller programand X is thetarget systemi.e. a possible un-trusted component.

Schneider in [41] has defined the concept of enforcement mechanism as a program
that control that a given security property is respected. He has also given a definition of
security automatoas an automaton that processes a sequence of input actions that has
finite or infinite length. It works by monitoring the target system, i.e. an application
whose behavior is unknown, and terminating any execution that is about to violate the
security policy being enforced. Starting form his definition, Ligatti et al. described
four different ways to enforce safety policies ([9, 10]). Tinencation automaton
can recognize bad sequences of actions and halts program execution before a security
property is violated, but cannot otherwise modify program behavior.stpgression
automaton can suppress individual program actions without terminating the program
outright in addition to being able to halt program execution. The third automaton is
theinsertion automaton that is able to insert a sequence of actions into the program
actions stream as well as terminate the program. The last oneaditreutomaton. It
combines the power of suppression and insertion automaton hence it is able to truncate
actions sequences and can insert or suppress security-relevant actions at will.

In this paper, we model security automata defined in [9, 10] through process algebra
by definingcontroller operatorsY bx X, whereK € {T, S, I, E} whereT, S, I and
E represent Truncation, Suppression, Insertion and Edit automaton respectively. We
give the semantics definition of each of controller operator and prove that they have the
same behavior of the respective security automaton.

In order to express security policies we use equatipradiculus formulae because
many properties of systems are naturally specified by means of fixed points and it is
very expressive.

Hence, at the beginning, we have a systeand an equational-calculus formula
¢ that express a safety policy. Our goal is to guaranteettRatS|| X = ¢. First of all
we apply thepartial model checkindunction in order to evaluate the formuteby the
behavior ofS. In this way we obtain a new formutsl = ¢,,. and we have to monitor
only the necessary/untrusted part of the system, Kerdence we forceX to enjoyq’
by using an appropriate controll®&r>x X.

Our approach permits us to automatically synthesize a controller progréon
a given controller operataY” > X by exploiting satisfiability procedure for the
calculus. Moreover we show our tool that is effectively able to generate a controller
programY starting from a syster§ and¢.

An advantage of this approach for enforcing is that we are able to control only
the possible un-trusted component of a given system. Other approaches deal with the
problem of monitoring the componeAt to enjoy a given property, by treating it as the
whole system of interest. However, often not all the system needs to be checked (or itis
simply not convenient to check it as a whole). Some components could be trusted and



one would like to have a method to constrain only un-trusted ones (e.g. downloaded
applets). Similarly, it could not be possible to build a monitor for a whole distributed
architecture, while it could be possible to have it for some of its components.

In the last part of the paper we present further results on how our controller op-
erators can be use also to force security policies in a timed setting and to treat with
parameterized systemS,= P,, wheren is the parameter anBl, = P||P||...|P.

~———

Our logical approach is also able to deal with composition problerr;ls, that have been
considered as an interesting issue in [9]. As a matter of fact we present how we are
able to enforce a policies that is a composition of several sub-policies.

This paper is organized as followSection 2 presents some related work, Section 3
recalls basic theory about process algebras, modal logic and the partial model checking
technique. Section 4 briefly explains how we use open system for security analysis.
Section 5 describes our controller operators and shows how they model security au-
tomata. Section 6 presents our theory for the synthesis of process algebra controller
operators and describes the architecture of our tool. Section 7 shows an example of
application. Section 8 presents some related results and Section 9 concludes the paper.

2 Related work

In the literature a lot of works are about the study of enforceable properties and mecha-
nism. In this paper we deal with two different aspect, the modeling of security automata
and the synthesis of controller program.

Security automata was introduced by Schneider in [41] as a {(ileo, 6) where
Q is a set of stategy, is the initial state and, beingct the set of security-relevant
actions,d : Act x Q — 22 is the transition function. A security automaton processes
a sequence of actionsas . .. one by one. For each action, the current global sgte
is calculated, by initially starting frorligo }. As eachu; is read, the security automaton
changeg’ in qug, d(a;, q). If the automaton can make a transition on a given action,
i.e. @ is not empty, then the target is allowed to perform that action. The state of
the automaton changes according to transition rules. Otherwise the target execution is
terminated. A security property that can be enforced in this way correspondafieta
property(according to [41], a property is a safety one, if whenever it does not hold in
a trace then it does not hold in any extension of this trace).

Starting from the Schneider’s work, Ligatti et al. in [9, 10] have defined four differ-
ent kinds of security automata which deal with finite sequences of actimmsation
automaton, suppression automatoninsertion automaton andedit automaton.

Our work represents a significant contribution to the previous works (see [9, 10,
25, 41]), because by modeling these automata by process algebra operators we are
able to deal also with the synthesis problem. This problem for the security automata
was not addressed in previous works. In fact, most of the related works deal with the
verification rather than with the synthesis problem.

Other works present different frameworks to model, analyze and study security
automata, but do not deal with the synthesis problem. In [7], for example, the authors
propose, by using’'S P — OZ, a specification language combini@@mmunicating Se-



guential Processe&” S P) andObject-Z(0 Z7), to specify security automata, formalize

their combination with target systems, and analyze the security of the resulting system
specifications. They provide theoretical results relatitP — O Z specifications and
security automata and show how refinement can be used to reason about specifications
of security automata and their combination with target systems.

Also Bartoletti, Degano and Ferrari in [6] refer to [41] saying that while safety
properties can be enforced by an execution monitor, liveness properties cannot. In order
to enforce safety and liveness properties, they enclose security-critical cpdédn
framings in particularsafety framingsndliveness framingshat enforce respectively
safety and liveness properties of execution histories. This is however a static analysis
that over-approximates behavioistory expressionsOn the contrary we monitor the
target at run-time.

The synthesis problem is addressed in different topic (e.g. [4, 40, 23, 48]).

In [28], a preliminary work has been provided that is based on different techniques
for automatically synthesizing systems enjoying a very strong security property, i.e.,
SBSN NI (see [18]). That work did not deal with controllers.

On the other hand much of prior works are about the study of enforceable properties
and related mechanisms but they do not deal with synthesis problem. In[16] the authors
deal with a safety interface that permits to study if a module is safe or not in a given
environment.

We use controller synthesis in order to force a system to guarantee security policy.
The synthesis of controllers is also, however, studied in other research areas. There
are approaches exploits satisfiability procedure. Usually this kind of approaches are
used when properties are expressed using linear time logic or similar [19, 39]. Many
approaches to the controller synthesize problem are based on game theory. As matter
of fact, different kinds of automata are used to model properties that must be enforced.
Games are defined on the automata in order to find the structure able to satisfy the
given properties. Example of these paper are [3, 22, 26, 35, 36, 38].

3 Process algebra, logics and partial model checking

In this section we show preliminary notions that are useful to understand the results
that we are going to present in this work.

3.1 A process algebra

In this subsection we recall th@C'S process algebra introduced by Milner in [33].

We describe the semantics 61C'S by using theGeneralized Structural Operational
SemanticsG.SOS for short (see [27]). This format of operational semantics was intro-
duced by Bloonet al. in [1, 12, 13] by following the treatment proposed by Simpson

in [42]. We choose to introduce this semantics specification because it is more suitable
thanSO.S for defining controller operators behavior.



3.1.1 Generalized Structural Operational Semantics

LetV be a set of variables, ranged overdy, . . ., and letAct be a finite set of actions,
ranged over by, b, ¢, . . .. A signatureX. is a pair(F, ar) where:

e [is a set of function symbols, disjoints froim,

e ar : ' — N is arank functionwhich gives the arity of a function symbol; if
f € Fandar(f) = 0thenf is called aconstant symbol

Given a signature, let” C V be a set of variables. It is possible to define the set of
Y -termsover W as the least set such that every elemeritins a term and iff € F,
ar(f) = n andty,...,t, are terms therf(¢y,...,t,) is a term. It is also possible to
define arassignmenas a functiony from the set of variables to the set of terms such
thaty(f(t1,...,tn)) = f(v(t1),...7(tn)). Given aterm, let Vars(t) be the set of
variables int. A termt is closedif Vars(t) = 0.

Now we are able to describe tl&SOSformat. AGSOSrule r has the following
format:

aij 1<i<k bij \1<i<k
{vi = yishzjzm w7 h2iz,
f(xla .. 'amk) L) g('fag)
where all variables are distinct; and i are the vectors of alt; andy;; variables
respectively;m;,n; > 0 andk is the arity off. We say thatf is theoperatorof the
rule (op(r) = f) andc is the action. AGSOSsystemg is given by a signature and a

finite set of GSOSrules. Given a signature = (F, ar), an assignmery is effective
foratermf(sy,...,s,)and aruler if:

(1)

2. foralli,j with 1 <i < kandl < j < my, it holds that( (z;) —% C(yij);

3. forall,jwith 1 < i < kandl < j < n, it holds that¢(z;) /%,

The formal semantics of terms is described bialeeled transition systenl.T'S for
short. Itis a pain&, 7) wheref is the set of terms and is a ternary relatiory C

(€ x Act x &), known as dransition relation The transition relation among closed
terms can be defined in the following way{s, ..., s,) — s if and only if there
exists aneffectiveassignment for a ruler with operatorf and actionc such that

s = ((g(#,7)). There exists a unique transition relation induced ySOSsystem
(see [13]) and this transition relationfigitely branching

3.1.2 CCS process algebra

Process algebraéor process calcujiare approaches to formally modeling concurrent
systems. Process algebras provide a method for the high-level description of inter-
actions, communications, and synchronizations between a collection of independent
agents or processes. An interesting process calculi i€tdeulus of Communicat-

ing SystemsC'C'S for short, developed by Robin Milner (see [33]). Its actions model



Prefixing:

a.xr i> X
Choice:
z —a' y —y
vty o oty
Parallel:
a ’ a Vi l / [ /
a / a / T / /
zlly —2'ly  zlly — zlly zlly — 2’|y
Restriction:
a
r—
o\L - 2\ L
Relabeling:
r - 7

11 2 ()

Table 1:GSOSsystem forC'C'S.

indivisible communications between exactly two participants. The notion of communi-
cation considered is a synchronous one, i.e. both processes must agree on performing
the communication at the same time.

Let £L C Act be a finite set of actionsy = {a | a € L} be the set of comple-
mentary actions whereés a bijection witha = a, Act, be L U £ U {7}, wherer is
the special action that denotes an internal computation step (or communicatidm) and
be a set of constant symbols that can be used to define processes with recursion. We
define the signaturBccs = (Foes, ar) as follows.

Foes ={0,+, ||y U{ala € Act,} U{\L|L C LU L}U
U AlfNf: Acty — Act,} UTL

where f(1) = 7. The functionar is defined as followsur(0) = 0 and for every
7 € Il we havear(w) = 0, || and+ are binary operators and the other ones are unary
operators.

The operational semantics 61C'S closed terms is given in Table 1 by means
of the GSOSand by LTS (£,T), wheref is a set of process terms ranged over by
E,F,P,Q,... and7 is a transition relation. We denote ier(E) the set of deriva-
tives of a (closed) ternf, i.e. the set of processes that can be reached ffahrough
the transition relatiory.

Informally the semantics af'C'S terms is the following:

Prefix: a (closed) termu. E' represents a process that performs an aatiamd then
behaves a& .



Choice: the termE + F' represents the non-deterministic choice between the pro-
cessed” andF'. Choosing the action of one of the two components, the other is
dropped.

Parallel composition: the termE||F' represents the parallel composition of the two
processed’ and F'. It can perform an action if one of the two processes can
perform an action, and this does not prevent the capabilities of the other process.
The third rule of parallel composition is characteristic of this calculus, it ex-
presses that the communication between processes happens whenever both can
perform complementary actions. The resulting process is given by the parallel
composition of the successors of each component, respectively.

Restriction: the process”\ L behaves likeF but the actions ir. U L are forbidden.
To force a synchronization on an action between parallel processes, we have to
set restriction operator in conjunction with parallel one.

Relabeling: the procesd/[f] behaves like thé but the actions are renameth f.

3.1.3 Behavioral Equivalences

There are a lot of scenarios in which it is important to understand when two different
processes have the same behavior. Several behavioral relations are defined in order to
compare the behavior of different processes. Here we are interestiedrig and weak
simulationandbisimulation

Strong simulation and bisimulation equivalences Look at the following example:

Example 3.1 Consider two vendor maching and F' which behaviors can be repre-
sented by the following figure:

E F
O
PN
a
O O
These two process are not equivalent. To underline the way they differ, we introduce a
notion of simulationaccording to whichF’ can simulateF, but not viceversa. Infor-

mally, to say ‘F’ simulatesE” means thatF’s behavior pattern is at least as rich as
that of E.

Definition 3.1 Let (£, —) be anLT'S of concurrent processes over the set of actions
Act, and letR be a binary relation ove€. ThenR is called strong simulation
denoted by<, over (&, —) if and only if, whenevefE, F') € R we have:

if E % E'then3 F'st. F - F'and(E',F') € R.



A strong bisimulatioris a relationR s.t. bothR andR ! are strong simulations. We
represent with~ the union of all the strong bisimulations.

Weak simulation and bisimulation equivalences Look at the following figure:

E F

N N

The processe& and F' cannot be consider equivalent, since the second perform an
internal action by reaching a state where an adtigno longer possible. To compare
two processes like the processes in the previous figure Milner in [33] proposed the
notion ofweak bisimulation

Let7 = e and ifa # 7 thena = a. Moreover, we have

ESFE (E=FE orE=FE)ifEL F
E=F if £ -2 %1 g

whereE =" E is the transitive and reflexive closure-t-. Note thatly == ="
E'is a short notation fof! = E, % E/ = E’' whereFE, andE’. denote intermediate
states that is not important for this framework.

Theweak bisimulationmelation permits to abstract to some extent from the internal
behavior of the system, represented by the interreadtion.

Definition 3.2 Let (€, —) be anLT'S of concurrent processes over the set of actions
Act., and letR be a binary relation ove€. ThenR is calledweak simulationdenoted
by <, over(&, —) if and only if, whenevefE, F) € R we have:

if - E'then3 F'st.F == F'and(E',F') € R,

A weak bisimulatioris a relationR s.t. bothR andR~! are weak simulations. We
represent withr the union of all the weak bisimulations.

An important result proved by Milner is the following.

Proposition 3.1 ([33]) Every strong simulation is also a weak one.

Example 3.2 Let we consider three different procesgest” and P as in the following
figure. It is easy to not thak’ and P are weakly bisimilar. On the contrarg and F
(P) are not weakly bisimilar.
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3.2 Two variants of u-calculus

In this subsection we describe two different variantg.afalculus: modal u-calculus
andequationalu-calculus

Modal p-calculus Modal p-calculus is a process logic which extends\/ L logic
(see [20]) by adding fix-point operators in order to reason directly about recursive def-
initions of properties. It permits us to analyze non terminating behavior of systems. It
is a powerful temporal logic which subsumes several other logics suCi'asCT L*
and ECTL* (see [11, 17, 46]). As usual fqi-calculi, for the interpretation of the
formulas we might considetT'S.

Let a be in Act, and Z be a variable ranging over a finite set of variablés
formulae are generated by the following grammar:

¢:u=Z|T|F|d1 N2 |1V 2| {a)g]lale|pZo|vZ.e

The possibility modality(a) ¢ expresses the ability to have atransition to a state that
satisfiesp. The necessity modality]¢ expresses that after eagtiransition there is

a state that satisfies We consider the usual definitions of bound and free variables.
The interpretation of a closed formutaw.r.t. anLT'S M is the set of states wheteis

true. The interpretation of a formud& Z) with a free variabléeZ is a function from set

of states to set of states. Hence, the interpretatign®(Z) (vZ.¢(Z)) is the least
(greatest) fix-point of this function. The interpretation of a formula with free variable
is a monotonic function, so a least (greatest) fix-point exists.

Formally, given anLT'S M = (S, —), the semantics of a formulais a subset
[¢], of the states ofi/, defined in Table 2, whergis a function (callecenvironmenit
from free variables o to subsets of the states df. The environmenp[S’'/Z](Y) is
equal top(Y) if Y # Z, otherwisep[S'/Z|(Z) = 5.

Equational u-calculus Equationalu-calculus is based on fix-point equations instead
of fixpoint operators that permit to define recursively the properties of systems. A



[[T]]p = 8
[[F]]p = 0
[[Z]]p = p(2)
[w’l A ¢2]]/) = [[ 1]]/1 N Hd)Qﬂp
[p1V 2], = 1], Ulg2],
[(a)¢], = {s]3s':s - s ands’ € [¢],}
l[lal¢], = {s|Vs':s - s impliess’ € [¢],}
[wz.8]l, = (WSMelps/z €5}

vZ.¢l, = U{S'IS" C [dloisr/21}

Table 2: Denotational semantics of mogatalculus.

minimal (maximal) fix-point equatiois Z =, ¢ (Z =, ¢), where¢ is an assertion,
i.e. a simple modal formula without recursion operators.

Example 3.3 A lot of properties can be defined by using equatiomadalculus. In
particular it is useful to express several security properties. For instance it is possible
to find a formula to express safety property as, for instance, a formula that expresses
the possibility to open a new file only if the previous one is closed:

X =, [7]X A [open]Y
Y =, [7]Y A [close] X A [open]F

. Aliveness property“something good happens”) like “a state satisfyirgcan be
reached” is expressed by =, (_1)Z v ¢*.

The syntax of the assertiong)(and of the lists of equationd)) is given by the fol-
lowing grammar:

¢pu=Z|T|F| o1 N2 | b1V ha|(a)o|lalo

D:=7=,¢D|Z=,¢D |e

It is worthwhile noticing that the syntax of assertions is more restrictive w.r.t. the
one for modalu-calculus. This is mainly due to our necessity to perform syntactic
transformations on these assertions. This syntax permits us to keep small the size of the
transformed assertions. It is assumed that variables appear only once on the left-hand
sides of the equations of the list, the set of these variables will be denof2efdD).

A list of equations is closed if every variable that appears in the assertions of the list
isin Def(D). LetM = (S,—) be anLTsS, p be an environment that assigns subsets

of S to variables that appear in the assertiongpfbut which are not inDef (D).

Then, the semanticp], of an assertion is the same as fog-calculus assertions

and the semanticgD], of a definition list is an environment which assigns subsets

of S to variables inDef(D). As notation, we use! to represent union of disjoint

LIn writing properties, here and in the rest of the paper, we use the shortcut nofafioreans|Act -]
and, equivalently{_) means{Act.).

10



environments. Let be in{u, v}, oU.f(U) represents the fix-point of the function
f in one variabld/. The semanticgD], is defined by the following equations:

[, =0 [(Z =5 ¢)Dl, = [Plouivr/z1) U U/ Z]

whereU’ = oU.[9] ,ujv/z)up vy @ndp’ (U) = [D]puiv)z))-

It informally says that the solution to7 =, ¢)D is theo fix-point solutionU’ of
[¢] where the solution to the rest of the list of equatidhis used as environment. We
write M = D | Z as notation fof D](Z) when the environment is evident from
the context orD is a closed list (i.e. without free variables) and without propositional
constants; furthermorg must be the first variable in the lif.

For both of these logics the following theorem holds.

Theorem 3.1 ([44]) Given a formulag it is possible to decide in exponential time in
the length ofp if there exists a model af and it is also possible to give an example of
such model.

Later in the paper we use the finitary axioms system proposed by Walukievicz in [47]
in order to synthesize controller program for given controller operator (Section 6).

3.2.1 Characteristic formula

A characteristic formula(see [34]) is a formula in equationatcalculus that com-
pletely characterizes the behavior of a (state in a) state-transition graph modulo a cho-
sen notion of behavioral relation. It is possible to define the notion of characteristic
formula for a given finite state procegswith respect different behavioral relation. In

this subsection we present the notion of characteristic formul& fatr.t. simulation

and bisimulation relations.

Definition 3.3 Given a finite state process, its characteristic formula (w.r.t. weak
bisimulation)Dg | Zg is defined by the following equations for evétyc Der(E),
a € Act:

Ze=, N (@Ze)AC N @\ Zen)

a € Act, acActs E=%
E/ a E//

where((a)) of the modality(a) which can be introduce as abbreviation (see [34]):

(eNo Y Z wherez =, ¢V ()2

de

(o < () a)((e)e

The following lemma characterizes the power of these formulae.

Lemma 3.1 Let £; and E» be two different finite-state processesy H, is character-
istic for E)5 then:

1. If By = Ey thenE; = ¢,

11



2. If Ey = ¢g, and E; is finite-state ther; ~ Es.

Now we consider weak simulation as behavioral relation and we define the character-
istic formula of a finite-state procegsw.r.t. this relation as follows.

Definition 3.4 Given a finite state process, its characteristic formula (w.r.t. weak
simulation)Dg, | Zg is defined by the following equations: for evdty € Der(E),

Zoo= N\ (d( \  Ze)

a€Act, E//:E/:@EN
Following the reasoning used in [34], the following proposition holds.

Lemma 3.2 Let E be a finite-state process and g < be its characteristic formula
w.r.t. simulation, thett’ < E < F = ¢ <.

It is easy to note that the characteristic formula of a process w.r.t. simulation is weaker
than the formula defined in the Definition 3.3.

3.3 Partial model checking

The partial model checking mechanisms was introduced by Andersen in [2]. This tech-
nigue relies upon compositional methods for proving properties of concurrent systems.
The intuitive idea underlying the partial model checking is the following: proving
that E | B satisfiesp is equivalent to prove thdf, satisfies a modified specification
b/p, s where// g, is the partial evaluation function for the parallel composition op-
erator (see [2] or Table 3). Hence, the behavior of a component has been partially
evaluated and the requirements are changed in order to respect this evaluation. The
partial model checking function (also called partial evaluation) for the parallel operator
is given in Table 3.

In order to explain better how partial model checking function acts on a given
equationaju-calculus formula, we show the following example.

Example 3.4 Let [7]¢ be the given formula and I€t|| F’ a process. We want to eval-
uate the formuldr]s w.rt. the|| operator and the procesB. The formulal7]¢,,,, is
satisfied by if the following three condition hold:

e I performs an actiorr going in a stateF” and E|| F’ satisfiesp; this is taken
into account by the formulgr|(¢,,,,);

e E performs an action- going in a stateE’ and £’ || F’ satisfiesgp, and this is
considered by the conjunction
(\ELE,¢//E,, where every formula,, , takes into account the behavior bf
in composition with a successor of;

e the 7 action is due to the performing of two complementary actions by the two
processes. So for evemysuccessol2’ of E there is a formuldal(¢,, ., ).

In [2], the following lemma is given.

12



Parallel:

<?ZWt = (D)) Z
e//t = €
(Z =g oD)//t = ((Zs =5 ¢//5)seper(r))(D)//t
Z/[t = 7
[alg//s = [a(VIS)NN, =, /[ ifa#T
PLA P2/ = (¢1//5) N(d2//s) _
(a)o//s = (a)(¢//s)VV o, 0ffs FaFtT
P1V 2//s = (&1//5)V (d2//5)
[]6//s = [TISYNA, -, o)/ NN\, =, [al(& //)
(r)8//s = (ND@)/s)VV, =, ¢/ VNV, . (a)(d/]s)
T//s = T
F//s = F
Relabeling:
Z[/[f] = 7
(Z =5 oD)//If] = (Z=¢¢//[f1(D)//[f])
(a)o//[f] = Visny=a0)(@//1])
la]//[f] = Noesny=albl(@//11])
¢1 A 2//[f] = (¢1//Lf]) N (o2//11])
$1V 2//[f] = (¢1//lfD) v (e2//1f])
T//1f] =T
F//f] = F

Table 3: Partial evaluation function for parallel operator and relabeling operator.

Lemma 3.3 Given a proces# || F' (whereF is finite-state) and an equational specifi-
cationD | Z we have:

E|F £ (D] 2)iftF (D] X)),

Remarkably, this function is exploited in [2] to perform model checking efficiently, i.e.
both E and F' are specified. In our setting, the procéssvill be not specified.

It is important to note that a lemma similar to Lemma 3.3 holds for €actd
operators. As a matter of fact in Table 3 we also recall the definition of the partial
model checking function for relabeling operators. For the othélS operators see

[2].

4 Open system analysis for security analysis

In this section we recall the conceptagfen systerthat we use to study our systems in
order to guarantee that they are secure.

A system isopenif it has some unspecified components. We want to make sure
that the system with an unspecified component works properly, e.g. fulfills a certain
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property. Thus, the intuitive idea underlying the verification of an open system is the
following:

An open system satisfies a property if and only if, whatever component is substituted
to the unspecified one, the whole system satisfies this property

In the context of formal languages for the description of system behavior, an open
system may be simply regarded as a term of this language which may contain “holes”
(or placeholders). These are unspecified components. For ingidiiceand || F'||(-)

may be considered as open systems.

Example 4.1 We suppose to have a systéhin which three processes, F' and P
work in parallel. In order to be sure thaf works as we expected we have to consider
that a possible malicious agent works in parallel wiih F' and P as we can see the
following figure:

Xis a malicious agent

P
Specification :E|| F'| P|| X

The main idea is that, when analyzing security-sensitive systems, neither the enemy’s
behavior nor the malicious users’ behavior should be fixed beforehand. A system
should be secure regardless of the behavior the malicious users or intruders may have,
which is exactly averificationproblem of open systems. According to [27, 29], the
problem that we want to study can be formalized as follows:

For every componerX S| X | ¢ (2)

where X stands for a possible enemy,is the system under examination ands
a (temporal) logic formula expressing the security property. It roughly states that the
propertyg holds for the syster§, regardless of the component (i.e. intruder, malicious
user, hostile environmergtc) which may possibly interact with it.

By using partial model checking we reduce such a verification problem as in For-
mula (2) to a validity checking problem as follows:

VX S|XEo iff XEo¢, (3)

In this way we find the sufficient and necessary conditionXonexpressed by the
logical formula¢, /., so the whole systerfi|| X satisfiesy if and only if X satisfies

¢//s'
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5 Process algebra controller operators

Using the open system approach we develop a theory to enforce security properties.
In order to protect the system we should check each prakdssfore executing it. If

it is not possible, we have to find a way to guarantee that the whole system behaves
correctly. For that reason we develpmcess algebra controller operatotbat force

the intruder to behave correctly, i.e., referring to Formula (3), as prescribed by the
formula¢,,.. We denote controller operators by> X, where X is an unspecified
componenttargef) andY is acontroller program The controller program is a process

that controlsX in order to guarantee that a given security property is satisfied.

Y

Y>> X
Specification :S||Y > X

Hence we use controller operator in such way the specification of the system be-
comes:
¥ VX st S|YeX)E® 4)

By partially evaluatings w.r.t. S the Formula (4) is reduced as follows:

3y VX Yo XE¢ ()

where¢’ = ¢, /.

It is important to note that, by using partial model checking we need to control only
the possible un-trusted component of the system. Our method allows one to monitor
only the necessary/untrusted part of the system, Wer&Ve can define several kinds
of controller operators. Each of them has different capabilities. We deal with security
automatatfuncation, suppression, insertion, editefined in [9, 10] by modeling them
by process algebra controller operatbisg X, whereK € {T', S, I, E} whereT stays
for Truncation S for Suppression! for Insertionand £ for Edit. In the next section
we just recall the semantics definition of security automata and we present how we
model them by process algebra operators giving the semantics of our process algebra
operators.

5.1 Modeling security automata with process algebra

Here we choose to follow the approach given by Ligatti and al. in [9] to describe the
behavior of security automata.

A security automatoat least consists of a (countable) set of states Gay set of
actionsAct and a transition (partial) functioh Each kind of automata has a slightly
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different sort of transition function, and these differences account for the variations
in their expressive power. The exact specification &f part of the definition of each
kind of automaton. We useto denote a sequence of actionfr the empty sequence
andr? to represent an internal action.

The execution of each different kind of security autonitas specified by a la-
beled operational semantics. The basic single-step judgment has thésfarm-"x
(o', ¢") wheres’ andq’ denote, respectively, the action sequence and the state after that
the automaton takes a single step, arttnotes the action produced by the automaton.
The single-step judgment can be generalized to a multi-step judg@mgpit L3
(o', 4q"), wherev is a sequence of actions, as follows.

(0.0 =x (0.0 (Reflex)

(O’, (]) L’K (U”, q//) (U//7 q//) :’Y>K (0/7 q/)
(07 Q> 2gK (U/’ q/)
We define four controller operators by showing their behavior thought semantics rules.
We also prove for each of our operators that its behavior mimics the behavior of one of
the security automata. Hence in the following we recall the semantic definition of each
security automaton, we show the controller operator by which we model it and, finally,
we prove that they have the same behavior (for technical proofs see Appendix A).

(Trans)

Truncation automaton The operational semantics definition of truncation automata
given in [9, 10] is the following:
if 0 =a;0’ andd(a,q) = ¢

(Ua Q) L)T (JI7 q/) (T'Step)
otherwise

(0.9) 1 (- q) (T-Stop)

We denote withE the controller program and with the target. We work, without loss
of generality, under the additional assumption thand F' never perform the internal
actionT. We define the controller operatars as follows:

ELFEFFSF
Evyr FS FE s FY

This operator models the truncation automaton that is similar to Schneider’'s automaton
(when considering only deterministic automata, e.g., see [9, 10]). Its semantics rule
states that iff’ performs the actiom and the same action is performed By(so it

is allowed in the current state of the automaton), thew, F' performs the actio,
otherwise it halts.

2In [9] internal actions are denoted hyAccording to the standard notation of process algebras, we use
7 to denote an internal action.

3Consider a finite sequence of visible actiops= a1 ...a,. Here we use= to denote automata
computations. Before we use the same notation for process algebra computations. The meaning of the
symbol will be clear from the context.
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a.EY iff 0(a,q) =4

0 othw

be the control process and lét be the target. Each sequence of actions that is an
output of atruncation automatofQ, qq, ¢) is also derivable fronE? > F' and vice-
versa.

Proposition 5.1 LetEY =3 .., {

Suppression automaton Referring to [9], it is defined as

(Q,q0,6,w) Wherew : Act, x Q@ — {—,+} indicates whether or not the action in
question should be suppressed (-) or emitted (+).

if o = a;0’ andd(a, q) = ¢’ andw(a,q) = +

(0,9) s (o', q) (S-StepA)
if o = a;0’ andd(a,q) = ¢ andw(a,q) = —
(0,q) g (o', q) (S-StepS)

otherwise
(07 Q) L)S ('a Q) (S-Stop)

We denote withE the controller program and with the target. We work, without loss
of generality, under the additional assumption thand F' never perform the internal
actionT. We define the controller operatorg as follows:

ESLSFEFSFE EXFE FLF
El>5F&E'[>SF/ El>5Fl>E’l>sF'

where—a is a control action not inlct,- (so it does not admit a complementary action).
As for the truncation automaton, i performs the same action performed Byalso
E>g F performs it. On the contrary, if performs an action that £ does not perform
and E can perform the control actiona thenE g F' performs the action thatsup-
presseghe actiorna, i.e.,a becomes not visible from external observation. Otherwise,
E>g F halts.

Proposition 5.2 Let E9% =

a.E7* iff w(a,q) = + andd(a,q) = ¢

Z _a.quw iff w(a, q) — and§(a,q) — q/
a€Act 0 othw

be the control process and lét be the target. Each sequence of actions that is an
output of asuppression automatd®, g, d, w) is also derivable fronE?* g F' and
vice-versa.

Insertion automata Referring to [9], it is defined as

(9,4q0,0,7) wherey : Act, x Q@ — Act, x Q that specifies the insertion of an
action into the sequence of actions of the program. It is necessary to note that in
[9, 10] the automaton inserts a finite sequence of actions instead of only one action,

17



i.e., using the function, it controls if a wrong action is performed. If it happens, the
automaton inserts a finite sequence of actions, hence a finite number of intermediate
states. Without loss of generality, we consider that it performs only one action. In this
way we openly consider all intermediate states. Note that the domajnsodisjoint

from the domain of in order to have a deterministic automata.

if 0 =a;0’ andd(a,q) = ¢

(07 q) L)I (Ulvq/) (I'Step)

if 0 = a;0’ andy(a,q) = (b,¢)

(0,q) =1 (0,4") (I-Ins)
otherwise
(0,9) =1 (-q) (I-Stop)

We denote with®' the controller program and with the target. We work, without loss
of generality, under the additional assumption thand F' never perform the internal
action. We define the controller operatorg as follows:

E%E F%F ELE E™p rposp
Evi F 5 E' vy F/ Es; FY B, F

where+a is an action not imMct... If F' performs an action that alsoE can perform,
the whole system makes this action. Hfperforms an actiom that £ does not per-
form andE detects it by performing a control actieru followed by an actid, then
the whole system perfor It is possible to note that in the description of insertion

automata in [9] the domains ef andé are disjoint. In our case, this is guarantee by

the premise of the second rule in which we have gt~ E’, E b ' In fact for

the insertion automata, if a pdi#, ¢) is not in the domain of and it is in the domain
of ~ it means that if we are in the stagewe cannot perforna actions so in order to
change state an action different franmust be performed. It is important to note that
it is able to insert new actions but it is not able to suppress any action performiéd by

Proposition 5.3 Let E?7 =

a.B97iff §(a, q)

S8 tab B iff y(a.q) = (b))
acAct\{r} | 0 othw

be the control process and lét be the target. Each sequence of actions that is an
output of aninsertion automatoniQ, go, 9,) is also derivable fromE%” »; F' and
vice-versa.

Edit automata According to [9], it is defined agQ, qo, d,v,w) where~y : Act, x
Q — Act, x Q that specifies the insertion of a finite sequence of actions into the
program’s actions sequence and Act, x Q — {—, +} indicates whether or not the
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action in question should be suppressed (-) or emitted (+). Alsodharald have the
same domain while the domain fis disjoint from the domain of in order to have a
deterministic automata.

if 0 = a;0’ andd(a,q) = ¢’ andw(a, q) = +

(0,9) 55 (0',q) (E-StepA)
if 0 = a;0"andd(a, q) = ¢’ andw(a, q) = —
(0,9) =5 (¢',q) (E-StepS)

if o = a;0" andvy(a,q) = (b,q")

(Ua q) L’E (07 q/) (E'lnS)

otherwise
(07 Q) ;>E' ('a Q) (E-Stop)

We denote withE the controller program and with the target. We work, without loss

of generality, under the additional assumption thand F' never perform the internal
action. In order to do insertion and suppression together we define the following
controller operatoe . Its rules are the union of the rules of the and>;.

ELE FSF  EZSE FSF
EvpFSEbgF! EbpFLEDRFE!
ELE EYE pop

EbpF-EbpF

This operator combines the power of the previous two ones.

Proposition 5.4 Let E¢7% =

a.B97 iff §(a, q) = ¢ andw(a, q) = +
Z —a.E7 ¢ iff §(a,q) = ¢ andw(a,q) =
+a.b.EY 1 iff y(a, q) = (b, q')

Act
aeae 0 othw

be the control process and Iét be the target. Each sequence of actions that is an
output of anedit automaton(Q, qo, d,7,w) is also derivable fromE?"* > F and
vice-versa.

It is important to note that we introduced the control actianin the semantics afg
and+a in the semantics af; in order to find operators that were as similar as possible
to suppression and insertion automata, respectively.

6 Synthesis of controller program

One of the goals of our work is to find a controller progr&nthat can secure a given
system whatever iX . In particular we wonder if there exists an implementatiory of
that can be plugged into the system that guarantees the system is secure.
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According to the previous section we can enforce safety properties in several ways.
As a matter of fact we have described four different controller operatorsy X,
Yrsg X, Yy X andY g X. For each of them we want to solve the following
problem:
Y VX Yok X E¢

whereK is in {T, S, I, E} and¢’ is an equationak-calculus formula as in Formula

().

For that reason we prove the following proposition.

Proposition 6.1 For everyK € {T,S,I, E} Y vk X < Y[fk] holds, wherefxk is a
relabeling function depending ds. In particular, f7 is the identity function omct,*

and
7 ifa=—a

fs(a)_{ a othw fl(a)_{; ifo?hv:era

fola) = { 7 ifa € {+a,—a}

a othw
These operators are applied in order to enforce safety properties. Hence we restrict
ourselves to a subclass of equatiopadalculus formulae that is denoted By-,,. This
class consists of equationaicalculus formulae without ). Itis easy to prove that this
set of formulae is closed under the partial model checking function and the following
result holds.

Proposition 6.2 Let £/ and I’ be two finite state processes and= £r,. If F < E
thenE = ¢ = F = ¢.

At this point in order to satisfy the Formula (5) it is sufficient to find a controller
program s.t.:

Yifk] = ¢'

To further reduce the previous formula, we can use the partial model checking function
for relabeling operator. Hence, for evéye {T, S, I, E} we calculatepy, = (b///[fx].
Thus we obtain: '
Y Y (6)
This is a satisfiability problem im-calculus that can be solved by Theorem 3.1. It
is important to note that even if the procé&sgerforms some actionsit is possible

to obtain fromY another proces¥”’ with only visible actions that is a deterministic
model of¢.

6.1 A tool for the Synthesis of Controller Programs

In order to solve the satisfiability problem described by the Formula (6) we have de-
veloped a tool that, given a systefhand a formulap, generates a proce3s This
process is a model fa¥, the formula obtained by the partial evaluationdby S and,
moreover, it guarantees théf (Y > X) satisfiesp whateverX is.

“Here the sefdct, must be consider enriched by control actions.
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¢, S o' =d//q Y

—| MuDiv = Synthesis ———

a) The architecture of the whole tool

Translator
"=,/ ~fparser.ml
" | o |-flexer.ml _

—calc.ml

—types_for.ml _
—convert.ml Synthesis

—goodgraph.ml
@ —model.ml
mod —simplify.ml Y

Y

—controllers.ml
—printGraph.ml

—main.ml

\j

b) A zoom of the Synthesis module

Figure 1: Architecture of the tool.

The tool is made up of two main parts (see Figure 1.a)): the first part implements
the partial model checking function; the second one, by implementing the satisfiability
procedure developed by Walukiewicz in [47], generates a prdceds particular, it
permit to obtain a controller prograin for each controller operatorse.

In Figure 1 there is a graphical representation of the architecture of the whole tool
that we explain in more detail in the following section.

6.1.1 Architecture of the tool

The first module of our tool consists in théuDiv module. It implements the partial
model checking function. It has been developed in C++ by J.B. Nielsen and H.R. An-
dersen. ThéMuDiv takes in input a process described by ail7'S and an equational
p-calculus formulap and returns an equationadcalculus formulay’ = ¢,

The second module of our tool is tiynthesisnodule. It is able to build a model
for a given modaju-calculus formula by exploiting the satisfiability procedure devel-
oped by Walukiewicz in [47]. It is developed in O’'caml 3.09 (see [24]) and it is de-
scribed better in Figure 1.b) in which we can see that it consists of two submodules:
the Translatorand theSynthesis

The Translator manages the formula’, output of theMuDiv module in order to
obtain a formula that can be manage from the Synthesis module. It “transléfest
an equational to a modgakcalculus formula. This translation is necessary because the
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Walukiewicz’s satisfiability procedure was developed for mqaaklculus formulae
instead the partial model checking was developed for equatjgealculus ones. As
a matter of fact, the equationatcalculus is close for partial model checking. This
means that applying the partial model checking function to an equatienalculus
formula we obtain an equationatcalculus formula.

The Translator consists in four functionsfparser.mi andflexer.ml that
permit to read théuDiv output file and analyze it as input sequence in order to deter-
mine its grammatical structure with respect to our grammar. The funatadn.ml
calls flexer.ml and fparser.ml on a specified file. In this way we obtain
an equational:-calculus formulag’ according to the type that we have defined in
type _forml . Thelastfunctiongconvert.ml ,translates the equationaicalculus
formula¢’ in the modal one)/

mod*

The Synthesis is an implementation of Walukiewicz satisfiability procedure. Given a
modaly-calculus formulay/, , we build a graph by following the set of axioms of the
satisfiability procedure of Walukiewicz. For that reason we defingytbe graph

as a list of triple(n,a,n) € GNode x Act, x GNode whereGNode is the set of
graph nodes. Each node of the graph represents alstajeof the graph. Each node
is characterized by the set of formulae that it satisfies.

The kind of formulae that we consider are formulae that express safety properties,
i.e. they are modal-calculus formulae without minimum fixpoint and diamond oper-
ators.

In model.ml  we build the entire graph for the given formulg, ,. It takes as
input a pair inG N ode x Graph and, in a recursive way, builds the graph. Referring to
[47] we have to check if the graph that we build is effectively a model or a refutation
of ¢! .- We do this by the functiogoodgraph.ml . This function takes in input a
graph and gives back the boolean valtruk if the graph is a modeFALSE otherwise
and it halts. These two functionsiodel.ml andgoodgraph.ml , work in pair in
order to find a graph in which’ , is satisfied. At the beginning we give in input a
node labeled by) and Empty _Graph, that represents the empty graph. Then, in a
recursive way, we build the graph by checking it at each stegdmgigraph.ml . It
is important to note that the graph that we generate has some transition that are labeled
by an action and some transition that come from the semantics of logical operations.
If we are able to build the entire graph we use the funcsiomplify.ml to extract
exactly the process that is a model fgfr, _,. Such process consists in the graph in
which all nodes that are linked by logical operation are considered as a single node.
In this way at the end we obtain a labeled transition system that represents a process.
Such process is a model fof,, ;.

In order to synthesize a proce3sthat is a model ofp!, ., as well as a con-
troller program for a chosen controller operators, we have implemented the function
controllers.ml . By using this function we relabél" according with the con-
troller operator we want to use as it is prescribed by Proposition 6.1. In this way we
obtain four different process&$ = Y[fr], becausefr is the identity function on
Actr, Y[fs], Yfr] andY[f&].

Other function in this submodule are the function
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printGraph.mi that permits to print the graph as a sequence of nodes labeled by a
list of formulae, connected by arrows labeled by an action, and the funogamml
that calls all the other functions and permits to create the executablesfike §.

7 A Cases Study

In order to explain better how the tool works, we present an example in which a system
must satisfy a safety property. We generate a controller program for each of the four
controllers defined in Section 5.1.

Let S be a system. We suppose that all users that worl§ drave to satisfy the
following rule:

You cannot open a new file while another file is apen

It can be formalized by an equation systénas follows:

X =, [7]X A open]Y
Y =, [r]Y A[close ]X A [open]F

7.1 Truncation

We halt the system if the user try to open a file while another is already open. In this
case we generate a controller progrénfor Y > X and we obtain:

Y = open.close .Y

Y is a model forD.

In order to show how it works as controller program ¥os X we suppose to have
a possible usek that tries to open two different files. Henéé = open.open. 0.
Applying Y > X we obtain:

Y > X =
open.close .Y >p open.open .0 P8 close .Yor
open. 0

SinceY and X are going to perform a different action, i.& is going to perform
close while X is going to perfornopen, the whole system halts.

7.2 Suppression

We suppose to decide to suppress any possipéa action that can violate the prop-
erty D. In this case we generate a controller progférfor the controllerY ¢ X. We

obtain:
Y = ~open.Y + open.Y’

Y’ ="open.Y’' +close .Y
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Let we suppose to be in the same scenario described for the previous operathr. Let
be a user that tries to open two different files. HeAte= open.open .0. Applying
Y »g X we obtain:

Y >s X = ~open.Y +open.Y’ >5 open.open .0

0 —open.Y’ + close .Y bgopen.0 - Y’ 550
The whole system halts again because, even if a wrong action is suppressed, this con-
trollers cannot introduce right actions.

7.3 Insertion

LetY be a controller program for the controllgr>; X. We obtain:

Y = Topen.close.open .Y +open.Y’
Y’ = *topen.close.open .Y’ +close .Y

We considerX that tries to open two different files. Hende = open.open .0. We
obtain:

Y >r X =

*open.close.open .Y + open.Y'r; open.open .0

open

P +open.close.open .Y’ +close .Y >; open.0
close
—

open.Y’;open. 0 222 v/, 0

We can note th&” permits X to perform the first actiompen. Then it checks that
X is going to perform anothespen by the action™open. HenceY insert an action
close . After this action it permitsX to perform the actiompen. SinceX does not
perform any another actions the whole system halts.

7.4 Edit

We consider to apply the controller operalorr X. The controller program that we
generate is the following:

Y = ~open.Y + topen.close.open .Y + open.Y’
Y’ = ~open.Y’ + Topen.close.open .Y’ +close .Y

We suppose again that = open.open .0. We have:

Y >E X =
~open.Y + topen.close.open .Y + open.Y'>gp
>popen.open .0 225

~open.Y’ + Topen.close.open .Y’ +close .Yog

|
>popen.0 =5 open.Y’spgopen. 0 22 Y/ sp 0

Also in this case, after the first actiopen, Y checks ifX is going to perform another
open by the actioropen and then it inserts the actiamhose in order to satisfy the
propertyD. Then it permit to perform anothepen action.
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8 Further results

8.1 Timed setting

In this section we extend to a timed setting the theory that we have previously devel-
oped. First of all we show some notions useful to describe a very simple timed setting.

8.1.1 GSOSand CC'S process algebra with time

We follow a simple approach, where time is discrete, actions are durationless and there

is one speciatick action to represent the elapsing of time (see [37]). These are fea-

tures of the so callefictitious clockapproach of, e.g. [14, 21, 45]. A global clock

is supposed to be updated whenever all the processes of the system agree on this, by

globally synchronizing on actiotick. Hence, between the two global synchronization

on actiontick all the processes proceed asynchronously by performing durationless

actions. So, theick action is important in parallel operator whose semantics, in this

case, is enriched of this one more rule in addition of rules given in Table 1.
i S R 5

ick
B[ B, 5 BB

8.1.2 Behavioral equivalence

As done in [37] we consider the class of processes that do allow time proceed, the so-
calledweakly time alivgorocesses. These represeoirectattackers w.r.t. time. (As a
matter of fact, it is not realistic that an intruder or a malicious agent can block the flow
of time.)

Definition 8.1 A procesd is directly weakly time aliveiff £ tick 5, while itisweakly
time aliveiff for all E' € Der(E), we haveE’ is directly weakly time alive.

SinceE - E’ implies Der(E') C Der(E), it directly follows that if E is weakly

time alive, then any derived’ of F is weakly time alive as well. Moreover, it is

worthwhile noticing that the above property is preserved by the parallel composition.
The behavioral relation considered here is the timed versions of weak bisimulation

[33]. This equivalence permits to abstract to some extent from the internal behavior of

the systems, represented by the invisiblctions.

Definition 8.2 Let (£,7) be an LTS of concurrent processes, andRebe a binary
relation over€. ThenR is calledtimed weak simulationdenoted by<;, over(&,T)
if and only if, whenevefE, F') € R we have:

o if E - E'then there exist§” s.t. F == F' and(E', F') € R,

tick tick

e if E — E'thenthere exist§” s.t. F = F’ and(E',F') € R.

5This means that we are no interested to the final state of the transition.
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Moreover, a binary relatiorR over £ is said atimed weak bisimulatiorfdenoted by
~2;) over the LTS of concurrent processés 7)) if both R and its converse are timed
weak simulation.

8.1.3 Partial model checking with time

Introducing the newick action we have one more case to consider in the definition
of partial model checking function. Thigck action cannot be consider as the other

actions inAct,. Hence we extend the partial model checking function to deal with
time by adding the following rules

; ick
(tick)AJ)s = { (tick)A[[s" s Lick
F otw

; ick
ltick|AJ)s = 4 [ticklA//s" s bk g
T otw

Itis easy to note that the insertioniék action affects only the partial model checking
for parallel operator.

8.1.4 Our controller operators in a timed setting

In this section we study how the controller operators that we have defined in Section
5.1 work in a timed setting. We want that>g X, for eachK, are processes that

do allow time to proceed, so we prove that itweakly time alive Here we use the
following notation: £ and F" are finite state processei.is the controller program and

F the target. The following proposition holds.

Proposition 8.1 If both E and F' are weakly time alive, als& >i F' is weakly time
alive.

Dealing with time does not change or modify the semantic of our controllers. Hence a
proposition similar to Proposition 6.1 holds. In particular, looking at the definition of
weak timed simulation and at the proof of the Proposition 6.1, given in appendix, the
following proposition holds.

Proposition 8.2 For everyK € {truncation, suppression, insertion, egdihe follow-
ing relation holdsE >k F' <; E[fk] where fk is a relabeling function definition of
which depend oiK.

We can then recast results of the previous section in a timed setting.

8.2 Parameterized Systems

A parameterized system describes an infinite family of (typically finite-state) systems;

instances of the family can be obtained by fixing parameters. Consider a parameterized

systemS = P, defined by parallel composition of procesgg=.g. P||P|| ... || P. The
—————

n
parameten represents the number of procesgegresent in the systeisi.
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Example 8.1 Consider the system with one consumer processidn producer pro-

cesses”. Each process’ is definedP “l 4.P wherea € Act, and the proces§’
is a.C. The entire system (&, ||C)\{a} and the processes communicate by synchro-
nization ona anda actions.

Referring to the Formula (2) we have
Vn VX P,||X E ¢ @)

It is possible to note that in the previous equation there are two universal quantifica-
tions; the first one on the number of instances of the professd the second one on
the possible unknown agents.

In order to eliminate the universal quantification on the number of processes, first
of all, we define the concept afivariant formula w.r.t. partial model checking for
parallel operatoras follows.

Definition 8.3 A formula¢ is said aninvariant w.r.t. partial model checkinfgr the
systenP|| X iff ¢ < ¢,/ ,.

It is possible to prove the following result.

Proposition 8.3 Given the systeivii P;|| X . If ¢ is an invariant formula for this system
then
VX (Vn P X Fo¢ iff X ¢)

In order to apply the theory developed in Section 4, we show a method to find the
invariant formula. According to [8], let; be defined as follows

N ifi=1
U= wiang i1

By definition of¢; and by Lemma 3.37j s.t. 1 < j < i (X | ¢)) & X = .
HenceX = ¢; meansthatj s.t. 1 < j < i P;||X = ¢'. We say that); is said to
be contractingif v; = ;1. If Vi ¢; = ;1 holds, we have a chain that is a said
acontracting sequencdf it is possible to find the invariant formulg,, for a chain of
p-calculus formulae, that is also sdithit of the sequenceahen the following identity
holds.

VX (X |5t & V0 > 1 P)|X = ¢) (8)

Now we can apply the reasoning made in Section 4. Hence we are able to de-
fine a controller operator that forces each process to behave correctly and synthesize a
controller program.

In some cases it could not be possible to find the limit of the chain. However there
are some technique that can be useful in order to find an approximation of this limit
(see [8, 15]).
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8.3 Composition of safety properties

Our logical approach is able to struggle successfully with composition problems by
using the operatosr. We suppose to have to force a systems to satisfy a security
policy that can be write as the conjunction of several safety properties as follows:

vX S||X':¢:¢1/\---/\¢n (9)

where ¢, ... ¢, are safety properties simpler than In order to guarantee that the
whole system satisfy we have to find a controller prograini for a given controller
operator that force to be satisfied. So we want to finds.t.:

VX S|Yor X EdiA... Ad, (10)

According to Theorem 3.1, the cost of the satisfiability procedure is exponential in
the size of the formula. What we prove here is a method to find a controller program
Y for ¢ starting from controller operators for safety formula simpler thaio do this
we split¢ in a finite numbem of sub-formulae, whenever it is possiblgy, . . . , ¢,,
sit. ¢ = A, ¢i. Then, by exploiting he Theorem 3.1, we synthesize a controller
programY; for each of¢; formula. Finally, by composing; one to each other we
obtainY. This method is less expensive than synthesize diré¢tlyAs a matter of
fact, synthesiz&” is exponential in the size af. Let we consider that all the; have
the same sizen and let the cost of the composition be constant. Then the cost of our
method isnO(2™) instead ofO(2*™).

In order to describe our method, first of all, we rewrite Formula (9), by exploiting
the semantics definition of the logical conjunction, as follows:

vX S||X E ¢, and
VX S|X E ¢2and

VX S|X E 6,
By partial model checking we obtain:

VX X [ ¢} and
VX X [ ¢, and

VX Xk,

where for eachi from 1ton, ¢; = (¢),/s-
LetYy,...,Y, ben processes such that:

VX Yior X IZ (]5/1 and
VX Yapr X | ¢, and

VX Y,or X ¢,

It is possible to prove the following result.
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Lemma 8.1 Let ¢ be a safety property, conjunction afsafety properties, i.e¢p =
d1ANPaN. .. Nd, Wherepy, . . . ¢, are safety properties. Léf;, ..., Y, ben controller
programs s.tVis.t.1 <i <nY; E ¢;. We have

vX }/n > (}/"_1 > ( >l (}/2 > (Yl > X)))) ': ¢

This means that, if we have several controller programs for several safety properties,
applying them one after the other we can enforce a safety property that is the conjunc-
tion of the previous ones. However, in this way, we apply the procedure for enforcing
n times. Instead we want apply it only one time to force that conjunction of formulae.
For that reason we prove the following proposition.

Proposition 8.4 Let we consider the controller operato#-. It is possible to find
Yi1,...,Y, controller programs s.t. ity or X = ¢,..., Y, pr X = ¢, then
(Yle...DTYn)DTX ‘:qbl/\/\gbn

Hence, referring to the Formula 10, in order to findve findY7y, ..., Y, that enforce
@, ..., ¢, respectively and we compose them as in Proposition 8.4. In this way we
find Y that force¢’ = ¢} A ... A ¢),. According to Lemma 3.3 we have:

VX Yor X o

)
VX S|V br X ¢

Hence we obtain a controller prograrnfor ¢.

It is important to note that the Proposition 8.4 holds only for the operstdoe-
cause, as it is possible to see from the proof in Appendix A, it is necessary that both
processes, the controller and the target, agree on the action are going to perform. Look-
ing to the operational semantics of controller operators, it is easy to see that the operator
> is the only one that satisfies this requirement.

9 Conclusion

We illustrated some results towards a uniform theory for enforcing security properties.
With this work, we extended a framework based on process calculi and logical tech-
nigues, that have been shown to be very suitable to model and verify several security
properties, to tackle also synthesis problems of secure systems. In particular we have
shown how security properties can be conveniesplgcifiedandverifiedin a uniform

way by using a few concepts of concurrency and temporal logic theory, as, for instance,
partial model checking. Using the same framework we also deal withythiesiof

secure systems.

Moreover we have described a tool for the synthesis of a controller program based
on Walukiewicz’s satisfiability procedure as well as on the partial model checking tech-
nique. In particular, starting from a systéfrand a formulap that describes a security
property, the tool generates a process that, by monitoring a possible un-trusted compo-
nent, guarantees that a syst&thX satisfiesp whateverX is.

We also deal with the synthesis of secure systems in a timed setting and for param-
eterized systems. We present also a method to enforce composition of policies.
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A Technical proofs

Lemma 3.2Let E be a finite-state process and lgf; < be its characteristic formula
w.r.t. weak simulation.
FLE&sSF ): ¢E,j

Proof. In order to prove the following proposition we give the following chain:

F<EaeVa FSF 3B E2EANF <F <
Vo FSF F =\ Xp ©Va FE(Xe) <
F = AV XE))

[

In order to guarantee homogeneity of notation, we assume to work will¥ &)
since that both automata and sequential processAre(see [33]). We should give a
proof that a bisimulation exists between automata and controller operator so they have
the same behavior.

Before starting to prove Propositions 5.1, 5.2, 5.3, 5.4, we note that in our controller
operators the halt condition is not roundly given because this occurs when there are not
rule that could be applied, i.e., when premises of all rules are not verify. As we have
already note, also in security automata described in Section 5.1, the aatistop rule
of each automata is an internal action that is not really performed. So in our proofs,
without loss of validity, we can omit the stop case because, looking at the semantics of
each operator, it is easy to understand that the stop rule of each automata is equivalent
to the halt condition of respectively operator.

Proposition 5.1Let E7 = 3 a.B iff 6(a,q) = ¢’

a€Act 0 othw
be the control process and [Etbe the target. Each sequence of actions that is an output
of a truncation automatof®, qo, d) is also derivable fronk? > F' and vice-versa.

Proof: We can define the relation of strong bisimulatigs in the following way:

Rr = {((0,9), E9>r F) : (0,q) € Act x Q, F +%}

Assume thal(o,q) ——1 (0’,¢). For the semantic rule ofy, if £¢ % E? and

F -% F' perform the actiom alsoE? > F —% E4 b F/ andF’ . Now assume

that B >0 F - E? > F' and F' . We should prove that exists(a, q)’ s.t.

(0,9) =71 (0,9) and(E? by F',(0,q)') € Ryp. For the rule T-Step(c, ¢) ——1

(¢/,4¢"). So the couple that we are looking for(i', ¢'). [
Proposition 5.2Let F?¥ =

a.B9 iff w(a,q) =+ andd(a,q) = ¢
Z —a.E1 v iff w(a,q) = —andd(a,q) = ¢’
a€Act 0 othw

be the control process and &t be the target. Each sequence of actions that is an
output of a suppression automat(, qo, J, w) is also derivable fronE?* ¢ F and
vice-versa.
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Proof: The scheme of the proof and the notation are the same of the previous one.
Let . ,
Rs ={((0,q), E** b5 F): (0,q) € Act x Q, F =}

be the strong bisimulation relation. We have two cases: the first one is similar of
proposition 5.1 in fact, let(c,q), E%* bg F) be inRs and (0,q) ——s (0',q).
We should prove that exists @9 >g F)’ sit. B9 >g F - (E% g F)' and
((¢',¢), (ET"¥>g F)') € Rg. By the first rule of>s and by definition of£%*, using a
similar reason of the proof of proposition 5.1, we trivially have the thesis. On the other
hand, let(E?* >g F, (0,q)) be inRg and E?* g F' 2, pa'w ¢ F'. We should
prove that exists &, q)’ s.t. (,q) ——s (o,q)’ and(Eq'»W >s F', (0,q)) € Rg. For
the rule S-StepA we have that’, ¢’) is the solution we are looking for. The reasoning
is similar to the previous one.
Now, let ((o,q), E** >5 F) be inRs and (o, q) —s (o',¢'). We should prove
that exists d 9% bg F)’' s.t. B9 bg F —— (E9% bg F) and((0’,q'), (B9 >g
F)) € Rs. We have, by the second rule e and by the definition of£¢, that
if Eow =% pdw andF -2 F' thenE9% >g F - E7% pg F'. We have also
F' % s0((0",q), BV »g F') € Ry trivially.
Now assume thatE % >g F, (o, q)) be inRg and B4 bg F —— E9“ g F'. We
should prove that exists(a, ¢)’ s.t. (0, ¢) ——5 (0, )’ and(E? “>gF”, (0,q)') € Rs
For the rule S-StepS we have that', ¢’) is the solution we are looking for. The
reasoning is similar to the previous one. [ |
Proposition 5.3 et £?7 =

a.B9iff 6(a, q)

S0 % +ab B A(a,q) = (b))
a€Act | 0 othw

be the control process and [Etbe the target. Each sequence of actions that is an output
of an insertion automatof®, qo, 9, v) is also derivable fron£?7 >; F and vice-versa.

Proof: The scheme of the proof and the notation are the same of the previous
one.LetR; be the strong bisimulation relation defined as follows:

Ri ={((0.q), E% b F) : (0,q) € Act x Q, F+%}

We have two cases: the first one is similar of proposition 5.1 in fact(dety), E97 >;
F)beinR; and(o,q) —; (0/,q'). We should prove that exists(&¢" >; F)’ s.t.
E® > F % (B9 »; F) and((0,¢'), (E%Y >; F)') € R;. By the first rule of
>y and by definition of£'%”,using a similar reasoning of the proof of proposition 5.1,
we trivially have the thesis. On the other hand, (B¢ >; F, (0,q)) be inR; and
B9 F EY7>; F'. We should prove that existga, ¢)’ s.t. (0, q) ——1 (0, q)’
and(E?7>p F', (0,q)") € R;. For the rule I-Step we have th@at’, ¢') is the solution
we are looking for. The reasoning is similar to the previous one.

Now let((c, q), E?Y >; F) be inR; and(o, q) LN (0,4"). We should prove that

exists A E%7 > F) s.t. B4V, F -2 (B4 s FY and((o, ¢'), (E%7>; F)') € Ry.
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We have, by second rule of and by to the definition 024, that if E4Y £~ E77,
Eey 1Y By andF % ' thenE% 5, F -2 B9 5, F. So(E% o; F)' is
EY7 > Fand((o,q), BV b; F) € Ry trivially.

Now, let(E4" &, F, (o, q)) be inR; andE4Y »; F -2+ E¢7 »; F. We should
prove that exists &, q)’ s.t. (0,q) LN (0,q)" and(EY >; F,(0,q)") € R;. For
the rule I-Ins we have thdw, ¢’) is the solution we are looking for. The reasoning is

similar to the previous one. n
Proposition 5.4.et £97% =

a.B9 i §(a,q) = ¢’ andw(a, q) = +
Z —a.EY 7 iff §(a,q) = ¢ andw(a, q) =
+a.b.EY iff y(a,q) = (b,¢)
0 othw

a€Act

be the control process and [Etbe the target. Each sequence of actions that is an output
of an edit automatoQ, qo, 4, v, w) is also derivable fronk?%"“ > F and vice-versa.

Proof: In order to prove this lemma, we give the relation of bisimulafibg which
exists between edit automata and the controller opesai@s follows:

R = {((0,q), E¥" b F) : (0,q) € Act x Q, E¥"* by F € P,
F o)

We have three cases ad their proof following the reasoning made in the proof of lemma
5.2 and lemma 5.3. In fact:

e —Let((0,9),E®*>p F)beinRg and(o,q) ——x (¢/,¢'). We should
prove that exists 4£97 b F) s.t. B9 b F -5 p (B9 g F)
and((¢’,¢), (B by F)') € Rg. We have, by the first rule ofg

a

and by definition ofE%7« | that if E47 -2, E47w and F -2 F’
then B4 by F —% B4 pp B Now F' +% . So (B4 b F)' is
E97 sp F and((o),¢), EY7 g F') € Ry trivially.

— Let (E%7* bg F,(0,q)) be inRp and E47 by F -2 E97% by FY
We should prove that exists(a, ¢)’ s.t.
(0,q) = (0,q) and(EY "> F' (0,q)') € Rg. For the rule E-StepA
we have thato’, ¢’) is the solution we are looking for. The reasoning is
similar to the previous one.

e —Let((0,9),E®*>p F)beinRg and(o,q) —& (¢/,¢'). We should
prove that exists 4E%7% by F) sit. B9 by F s (B9 pp F)
and((¢’,q¢"),(E*"“ >g F)') € Rp. We have, by second rule of; and
by the definition ofE¢7:, that if 7~ =% E47« andF - F’ then

(e

B pp T BIT9 sp B Now F! 5. S0 (B9 by F) is
ET7¢>p F and((o',q'), B9 by F') € R trivially.
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— Let (E®"“ sy F,(0,q)) beinRg and B9 b F —— B9« 5 F/ . We
should prove that exists(a, ¢)’ s.t.
(0,q9) ——¢ (0,q) and(E®Y* g F' (0,q)") € R For the rule E-StepS
we have thafo’, ¢’) is the solution we are looking for. The reasoning is
similar to the previous one.

o —Let((0,q), B9 by F) be inRg and(0,q) —=r (0,q'). We should
prove that exists §E47“ by F)' s.t. E¢7% bp F LN (BT pg FY
and((o,q'), (E*"* b F)') € Rg. We have, by third rule of z and by
the definition of B4V« that if E97w /s Edw pove 120 payw
andF -% F' thenE4" pp F 25 B4 bp F. So(E9Y by F)' is
ET7Ypp Fand((o,q'), BT 7 bg F) € R trivially.

— Let (B9 by F, (0,q)) be inRg and B4 s F -2 BY 795, F. We
should prove that exists(@, ¢)’ s.t.
(0,q) LN (0,9) and(Eq’v7 g F,(0,q)") € Rg. For the rule E-Ins we
have thato, ¢’) is the solution we are looking for. The reasoning is similar
to the previous one.

[
Proposition 6.1 For everyK € {truncation, suppression, insertion, edine fol-
lowing relation holds
Yo X = Y[f;(]

where fi is a relabeling function definition of which depend kn

In order to prove this proposition we prove the following four lemmas. The proof

of the proposition comes trivially from the union of the proof of the lemmas.
Lemma A.1 The following relation holds
Yor X 2Y[fr] (12)
where fr is the identity function.
Proof: We prove that the following relation is a weak simulation.
Sr={(Evr F,E|fr])|E,F € £}

Note that beingfr the identity function we could omit it without loss of generality.
Assume thaF>p F = E'p F' with the additional hypothesis that = F’ then,
by the rule of> we have tha®? = E’ and, obviously(E' > F', E') € Sr. [ ]

Lemma A.2 The following relation holds
Yes X 2Y|fs] (12)
where

7 ifa=—a

fs(a)Z{ a ifae Act
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Proof: We prove that the following relation is a weak simulation.
Ss ={(Evs F,E[fs])|E, F € &}

There are two possible cases: the first one is whieny F' performs the action. The
proof of this case is the same of the proof of lemma A.1Elfg F — E' bg F’
means thatl —% E’ andF perform an actiom that E should not perform. Applying
the relabeling functiorfs to E we obtainE, = E[fs] s.t. E; == Ej. whereFE} is
E'[fs]. Hence(E' bg F', E{) € Ss. [ ]

Lemma A.3 The following relation holds

where
a ifac Act
fl(a){ T ifa=+a

Proof: We prove that the following relation is a weak simulation.
SI = {(EDI FaE[fI])|EaF € 5}

There are two possible cases: the first one is whien F' performs the action. The
proof of this case is the same of the proof of lemma A.JE if; F’ LNy 5/ > F' means

that E =% £’ and F perform an actior: that £ should not perform in order to go

in the stateE’. Applying the relabeling functiorf; to E we obtainE; = E[f;] s.t.
B =% Ej. whereE] is E'[fr]. Hence(E' >; F', E'1) € Sy. [ ]

Lemma A.4 The following relation holds

Yop X 2Y[fE] (14)
where . )
a ITae€ Act
fE(a)_{T ifa € {—a,+a}

Proof: We prove that the following relation is a weak simulation.
Sp={(Evp F.E[fe])|E, F € £}

There are three possible cases: the first one is whem F' performs the actiom.
The proof of this case is the same of the proof of lemma A.1. the other two case is the
following:

e EvpF - E'vp F'wewantto find &' [fz] s.t. E[fg] — E|[fz]'. Referring
to the second rule of the edit automata we seefhat, ' — E’ > F’ when
E =% E'. Through the relabeling functiofi; we haveE[fr] — E'[fz] and
(E'vp F', E'[fE]) € Sk.

34



o EvpF - E'vp F we wantto find &' [fe| st E[fE] N E[fg]. Referring

to the last rule of edit automata we see tRhat; I LN E'>p FwhenE tab pr.

Through the relabeling functioriz we haveE|fx)] = E'[fg] and (E' >g
F,E'|fp]) € Sp

[

Proposition 6.2Let £ and F' be two finite state processes ape: Fr,. If F < E
thenE = ¢ = F = ¢.

Proof: A translation from equationat-calculus to modali-calculus is possible.

So first of all we consider the modal formula associated with the given formthen

the proof may be divided in two part. Former we prove the proposition holds for the
formulae of modal:-calculus without recursion operator, latter we extended the results
also touX.¢ andv X.¢.

The first part is very similar to the proof proposed by Stirling in [43] that is made
by induction on the structure of the formua The base case is clear. For the inductive
step first suppose = ¢1 A ¢o and that the result holds for the componefitsandg,.

By the definition of satisfaction relatioR = ¢ iff £ = ¢, andE = ¢,. By inductive
hypothesist' = ¢, andF = ¢, thenF' = ¢. A similar argument justifies the case

é = ¢1 V ¢o. Next suppose = [a]p; andE = ¢. Therefore for anye’ s.t. B = E’

it follows that E” = ¢;. Let F' % F’ we know that for somé2’ there is the transition

E 2 E'andF’ < E’, so by inductive hypothesiB’ = ¢; and soF |= ¢. Now we
have to prove that i) = uX.¢, or ¢ = vX.¢; the proposition holds. Referring to the
definition of minimum and maximum fixed point we can consider these as inductive
limit (the union) of formulae likeuX*.¢,, whereuX%.¢; = F anduX°tl.¢; =

&1 [uX*.¢1/X], andv X*.¢; wherer X°.¢; = T andvX*T.¢; = ¢ [v X .01/ X].

In this way £ = uX.¢, iff £ = uX*.¢, forsomea iff £ = \/ (uX“.¢1) and
EEvX.¢ iff EEvX*.¢ foralaiff £ = A, (vX“.¢1). Inthe former case we
have a sequence of disjunction and in the latter we have a sequence of conjunction. We
can apply again the argument of the first part of the proof. [ |

Proposition 8.1 Let £ and F' be two finite-state processes. If bathand F' are
weakly time alive, alsd’ > F'is weakly time alive.

In order to prove this proposition we prove four lemmas, one for each of the four
operators.

Lemma A.5 If both E and F' are weakly time alive, als& > F' is weakly time alive.
Proof: We want to prove that for alE > F) € Der(E >y F) (Ebp F) ik g
andF are time alive so

, tick

e forall E' € Der(E) E' =

e forall F' € Der(F) F’ L

So3FE’, F' such thatl E o F) = E' > F' and, referring to the semantic rulewsf
E oy B HE n

Lemma A.6 If both E and F' are weakly time alive, als&' ¢ F' is weakly time alive.
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Proof: In this case the prove is very similar to the previous one, so we omit it. m
Lemma A.7 If both E and F are weakly time alive, als&' >; F' is weakly time alive.

Proof: The proof in this case is just a bit different. We want to prove that for all
(Ev; FY € Der(Ev; F) (Ev; F) 2%, E andF are time alive so

o forall E' € Der(E) E/ 2%
o forall F’ € Der(F) F' £&

We have two cases: if the first semantic rule is appligd>; F')’ = E' >y F/ and

the prove is the same of the previous lemma. If the second rule is applied we have
(Ev>r F)' = E'>p F. Noting thatF' € Der(F) we can follow the same reasoning do
before. .

Lemma A.8 If both £ and F' are weakly time alive, als& > F' is weakly time alive.

Proof: The cases the could be happened here are the same of the lemma A.6 and lemma
A.7. So we omit it. [}
Proposition 8.4 Let we consider the controller operater.It is possible to find
Yi,...Y, controller programs s.t. ¥1 o7 X = ¢1, ..., Y, >0 X | ¢, then(Yy >p
...I>TYn)l>TX lz(bl/\.../\(bn.
In order to prove the previous proposition we prove some lemmas.

Lemma A.9 The following relation holds
Yor X <X (15)
Proof: We prove that the following relation is a weak simulation.
S={(Evr F,F)|E,F €&}

Assume thaf > F % E'>p F' with the additional hypothesis that % F’ then, by
the rule of-r we have tha®? = E’ and, obviously(E' > F', F') € S. [ |

Lemma 8.1 Let ¢ be a safety property, conjunction ofsafety properties, i.e.
b =1 N\Nda A... Ao, Whereoy, ... ¢, are safety properties. Léf,...,Y, ben
controller programs s.¥/i s.t. 1 <i <nY; E ¢,. We have

VX Yn > (Yn,]_ > (...I>T (YYQ > (Yl > X)))) |: (b
Proof: For induction on the number of the formulae in the conjunction

n = 1. Inthis case) = ¢;. Hence, by exploiting the satisfiability procedure we obtain
Y =Y, that is the controller program sY. o X | ¢.

n=n-+ 1. Let ¢ be a formula s.t.¢ = ¢1 A ... A ¢,1 andY,, 1 be a controller
program s.tvX Y, 1 br X E ¢,+1. Forinductive hypothesis we know that
vX Y, >r ()/”_1 > ( Nl (}/2 > (Yl >r X)))) ': (bl VAN d)n We have to
prove thatv X Yn+1 > (Yn > (Yn—l > ( D7 (Y2 > (Y1 > X))))) ): ¢
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For sake of simplicity, we denote By the proces¥,,>r (Y,— 107 (. . .o (Yobr
(Y1 DTX)))) We know that’ X Yn-i—l > X ): ¢n+1, SOYn+1 > Y™ ': ¢n+1-
For Lemma 6.2 and Lemma A.9,, 1 b7 Y™ = ¢1 A ... A ¢,. Hence, for the
definition of conjunctiorY,, .1 by Y™ = ¢.

Lemma A.10 Let¢, Y7,...,Y, be asin Lemma 8.1. We have that

Yn > (Yn,]_ > (...I>T (}/2 > (Yl > X)))) ': ¢
\
(YnDT...DT}/l)DTX':gﬁ

holds.

Proof: For induction on the number of controller programs
n = 1: Trivial.

n = n + 1: For hypothesis we have that

1.VI<i<n+1,VXYier X = ¢

vX Yn > (Yn—l > ( sl (}/2 > (Y1 > X)))) ': ¢
2. U
VX (Yobi...orY))or X E o

We want to prove that

vX Yn+1 > (Yn > ( LD (YQ > (Y1 > X)))) ': gf)
4
vX (Yn+1l>t...l>TY1)DTX):¢

For sake of simplicity we denote by the processY, or ...>r Y1), For
hypothesis 1 we can considgr’ asX so,Y, 107, E ¢n+1. ForLemma8.1
and hypothesis 2 o7 Y, 11 = ¢1A...A¢y. SinceY ! brY, 1 andY,, 1 o7

Y: are bisimilar so they satisfy the same formulae (see [43]). In particular
Yopior YL é1 A A ¢y, HenceY,, 1 br Y |= ¢. For Lemma A9, we
conclude tha¥X (Y, 11> ...0r Y1)or X E 6.

|
Proof Proposition 8.4 It follows directly from proofs of Lemma 8.1 and Lemma
A.10. [
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