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Abstract

We define a set of process algebra operators (controllers) that mimic the se-
curity automata introduced by Schneider in [18] and by Ligatti and al. in [4],
respectively. We also show how to automatically build these controllers for given
security policies.

1 Overview

Recently, several papers tackled the formal definition of mechanisms for enforcing
security policies (e.g., see [3, 4, 7, 12, 14, 18]).

The focus of this paper is the study of the enforcement mechanisms introduced by
Schneider in [18] and security automata developed by Ligatti and al. in [4, 7].

In [18], Schneider deals with the problem of enforcing security properties in a sys-
tematic way. He discusses whether a given security property is enforceable and at what
cost. To study those issues, Schneider uses the class of enforcement mechanisms (EM)
that work by monitoring execution steps of atargetsystem, herein and terminating its
execution if it is about to violate the security property being enforced.

A security automaton defined in [18] is a triple(Q, q0, δ) whereQ is a set of states,
q0 is the initial one andδ : Act × Q → Q, whereAct is a set of security-relevant
actions, is the transition function. A security automata processes a sequencea1a2 . . .
of actions. At each step only one action is considered and for each action we calculate
theglobal stateQ′ that is the set of the possible states for the current action, i.e. if the
automaton is checking the actionai thenQ′ =

⋃
q∈Q′ δ(ai, q). If the automaton can

make a transition on a given action, i.e.Q′ is not empty, then the target is allowed to
perform that step. The state of the automaton changes according to the transition rules.
Otherwise the target execution is terminated. A security property that can be enforced
in this way corresponds to a safety property (according to [18], a property is a safety

∗Work partially supported by CNR project ”Trusted e-services for dynamic coalitions” and by EU-funded
project ”Software Engineering for Service-Oriented Overlay Computers”(SENSORIA) and by EU-funded
project ”Secure Software and Services for Mobile Systems ”(S3MS).
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one, if whenever it does not hold in trace then it does not hold in any extension of this
trace).

Starting from the work of Schneider described above, Ligatti and al. in [4, 7] have
defined four different deterministic security automata which deal with finite sequences
of actions: thetruncation automaton (similar to Schneider’s ones) which can recog-
nize bad sequences of actions and halts program execution before security property is
violated, but cannot otherwise modify program behavior. The behavior of these au-
tomata is similar to the behavior of security automata of Schneider’s because both of
them read one action at a time. Thesuppression automatonhas the ability to suppress
individual program actions without terminating the program outright in addition to be-
ing able to halt program execution. The third automaton is theinsertion automaton.
It is able to insert a sequence of actions into the program actions stream as well as
terminate the program. The last one is theedit automaton. It combines the power of
suppression and insertion automaton hence it is able to truncate actions sequences and
insert or suppress security-relevant actions at will.

These works have been extended by studying how truncation automata and edit
automata work on possible infinite sequence of actions (see [8]). In this way they
analyze how certain non-safety properties may be enforced. This work comes back to
the original Schneider’s idea to deal with also possibly infinite sequences of actions.

In this paper we introduce process algebra operators (see [15]) able to mimic the
behavior of the security automata briefly described above. The process algebra opera-
torsY .KX (whereK is the name of the corresponding automata) act as programmable
controllers (Y ) of a target system (X).

We can then exploit a huge theory for security analysis based on process algebra
theory. In particular, depending on the kind of security automata one chooses, we
show how to automatically build programs that allow to enforce security properties
for whatever target system. Since many properties of systems are naturally specified
by means of fixed points, theµ-calculus is an expressive and important specification
language.

We automatically synthesize the appropriate controlling programY for an operator
.K, given the security propertyφ expressed by aµ-calculus formula. The synthesis is
based on a satisfiability procedure for theµ-calculus that allows to obtain a model for
a logical formula (in our framework a suitable property), i.e., it is possible to decide if
there exists a model of a given logical formula. In particular, for truncation automata
we show a method to build the maximal model.
This work represents a significant contribution to the previous works (see [4, 7, 8, 18]),
where the synthesis problem for the security automata was not addressed. In fact, most
of the related works deal with the verification rather than with the synthesis problem.

Moreover, other approaches deal with the problem of monitoring the componentX
to enjoy a given property, by treating it as the whole system of interest. However, often
not all the system needs to be checked (or it is simply not convenient to check it as a
whole). Some components could be trusted and one would like to have a method to
constrain only the un-trusted ones (e.g. downloaded applets). Similarly, it could not be
possible to build a reference monitor for a whole distributed architecture, while it could
be possible to have it for some of its components. Our approach is that it actually starts
from a property that the overall system must enjoy, sayφ and, using thepartial model
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checkingtechnique, projects this property on another one that only the componentX
must satisfy, sayφ′. This allows one to monitor only the necessary/untrusted part of
the system. Thus we can now forceX to enjoyφ′ by using an appropriate controller
Y ¤K X. (Note that as a special case we have the opportunity to treatX as a whole
system as in other approaches).

This paper is organized as follows.Section 2 presents the necessary background on
process algebras and (Generalized) Structured Operational Semantics (SOS), logic and
security automata. Section 3 describes some process algebra operators (controllers)
corresponding to the security automata under investigation. Section 4 shows how to
automatically build controller programs that enforce desired security policies. Section
5 shows how to build the maximal model for truncation automata and Section 6 shows
a simple example.

2 Background

2.1 Operational semantics and process algebra

We recall a formal method for giving operational semantics to terms of a given lan-
guages. This approach is calledGeneralized Structured Operational Semantics(GSOS)
(see [5]). It permits to reason compositionally about the behavior of program terms.
2.1.1 GSOS format

Let V be a set of variables, ranged over byx, y, . . . and letAct be a finite set of actions,
ranged over bya, b, c . . . A signatureΣ is a pair(F, ar) where:

• F is a set of function symbols, disjoints fromV ,

• ar : F 7→ N is a rank functionwhich gives the arity of a function symbol; if
f ∈ F andar(f) = 0 thenf is called aconstant symbol.

Given a signature, letW ⊆ V be a set of variables. It is possible define the set of
Σ-termsover W as the least set s.t. every element inW is a term and iff ∈ F ,
ar(f) = n and t1, . . . , tn are terms thenf(t1, . . . , tn) is a term. It is also possible
to define anassignmentas a functionγ from the set of variables to the set of terms
s.t. γ(f(t1, . . . , tn)) = f(γ(t1), . . . γ(tn)). Given a termt, let V ars(t) be the set of
variables int. A term t is closedif V ars(t) = ∅.

Now we are able to describe theGSOSformat. A GSOSrule r has the following
format:

{xi
aij−→ yij}1≤i≤k

1≤j≤mi
{xi 6 bij−→}1≤i≤k

1≤j≤ni

f(x1, . . . , xk) c−→ g(~x, ~y)
(1)

where all variables are distinct;~x and ~y are the vectors of allxi and yij variables
respectively;mi, ni ≥ 0 andk is the arity off . We say thatf is theoperatorof the
rule (op(r) = f ) andc is the action. AGSOSsystemG is given by a signature and a
finite set ofGSOSrules. Given a signatureΣ = (F, ar), an assignmentζ is effective
for a termf(s1, . . . , sk) and a ruler if:
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1. ζ(xi) = si for 1 ≤ i ≤ k;

2. for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ mi, it holds thatζ(xi)
aij−→ ζ(yij);

3. for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ ni, it holds thatζ(xi) 6 bij−→,

The transition relation among closed terms can be defined in the following way: we
havef(s1, . . . , sn) c−→ s iff there exists aneffectiveassignmentζ for a ruler with
operatorf and actionc s.t. s = ζ(g(~x, ~y)). There exists a unique transition relation
induced by aGSOSsystem (see [5]) and this transition relation isfinitely branching.

2.1.2 An example: CCS process algebra

CCS of Milner (see [16]) is a language for describing concurrent systems. Here, we
present a formulation of Milner’sCCS, in theGSOSformat.

The main operator is theparallel compositionbetween processes, namelyE‖F
because, as we explain better later, it permits to model theparallel compositionof
processes. The notion of communication considered is a synchronous one, i.e. both
the processes must agree on performing the communication at the same time. It is
modeled by a simultaneous performing of complementary actions that is represented
by a synchronization action (or internal action)τ .

Let L be a finite set of actions,̄L = {ā | a ∈ L} be the set of complementary
actions wherēis a bijection with¯̄a = a, Act beL ∪ L̄ ∪ {τ}, whereτ is a special
action that denotes an internal computation step (or communication) andΠ be a set
of constant symbols that can be used to define processes with recursion. To give a
formulation ofCCS dealing withGSOS, we define the signatureΣCCS = (FCCS , ar)
as follows.

FCCS = {0,+, ‖} ∪ {a.|a ∈ Act} ∪ {\L|L ⊆ L ∪ L̄} ∪ {[f ]|f : Act 7→ Act} ∪Π.

The functionar is defined as follows:ar(0) = 0 and for everyπ ∈ Π we have
ar(π) = 0, ‖ and+ are binary operators and the other ones are unary operators.

The operational semantics ofCCS closed terms is given by means of theGSOS
system in table 2. Informally, a (closed) terma.E represents a process that performs
an actiona and then behaves asE. The termE + F represents the non-deterministic
choice between the processesE andF . Choosing the action of one of the two com-
ponents, the other is dropped. The termE‖F represents the parallel composition of
the two processesE andF . It can perform an action if one of the two processes can
perform an action, and this does not prevent the capabilities of the other process. The
third rule of parallel composition is characteristic of this calculus, it expresses that the
communication between processes happens whenever both can perform complemen-
tary actions. The resulting process is given by the parallel composition of the succes-
sors of each component, respectively. The processE\L behaves likeE but the actions
in L ∪ L̄ are forbidden. To force a synchronization on an action between parallel pro-
cesses, we have to set restriction operator in conjunction with parallel one. The process
E[f ] behaves like theE but the actions are renamedviaf .
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2.2 Behavioral equivalence

It is often necessary to compare processes that are expressed using different terms but
have the same behavior.

2.2.1 Strong and weak bisimulations

We recall some useful relations between processes (see [16]). Now we give some
preliminary definition. In the following, we let̂τ = ε and for actiona 6= τ â = a.

Definition 1 Let (E , T ) be an LTS of concurrent processes, and letR be a binary re-
lation overE . ThenR is calledstrong simulation(denoted by≺) over(E , T ) iff, when-
ever(E, F ) ∈ R we have: ifE

a→ E′ then∃F ′ ∈ E s. t.F
a→ F ′ and(E′, F ′) ∈ R.

Moreover, a binary relationR overE is said astrong bisimulation(denoted by∼) over
the LTS of concurrent processes(E , T ) if bothR and its converse are strong simula-
tion.

Referring to [5], letG be aGSOS system, the strong bisimulation is a congru-
ence w.r.t. the operations inG, i.e., the strong bisimulation is preserved by allGSOS
definable operators.

Another kind of equivalence is used when there is the necessity of understanding if
systems with different internal structure - and hence different internal behavior - have
the same external behavior and may thus be considered observationally equivalent.

First of all we present the notion ofobservational relationis the following:E
τ⇒ E′

(or E ⇒ E′) if E
τ→∗

E′ (where
τ→∗

is the reflexive and transitive closure of the
τ→

relation);E
α̂⇒ E′ if E

τ⇒ α̂→ τ⇒ E′.
LetDer(E) be the set of derivatives ofE, i.e., the set of process that can be reached

through the transition relations. Now we are able to give the following definition.

Definition 2 Let (E , T ) be an LTS of concurrent processes, and letR be a binary
relation over a set of processE . ThenR is said to be asimulation(denoted by¹)
if, whenever(E,F ) ∈ R, if E

a→ E′ then∃F ′ ∈ E s. t.F
a⇒ F ′ and(E′, F ′) ∈ R.

Moreover, a binary relationR overE is said aweak bisimulation(denoted by≈) over
the LTS of concurrent processes(E , T ) if bothR and its converse are weak simulation.

It is important to note that every strong simulation is also a weak one (see [16]).

2.3 Equationalµ-calculus and partial model checking

Equationalµ-calculus is a process logic well suited for specification and verification of
systems whose behavior is naturally described using state changes by means of actions.
It permits to express a lot of interesting properties likesafetyand livenessproperties,
as well as allowing to express equivalence conditions over LTS. In order to define
recursively the properties of a given systems, this calculus uses fixpoint equations. Let
a be in Act andX be a variable ranging over a finite set of variablesV . Given the
grammar:
A ::= X | T | F | A1 ∧A2 | A1 ∨A2 | 〈a〉A | [a]A
D ::= X =ν AD | X =µ AD | ε
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where the symbolT meanstrueandF meansfalse; ∧ is the symbol for the conjunction
of formulae, i.e. the conjunctionA1∧A2 holds iff both of the formulaeA1 andA2 hold,
and∨ is the disjunction of formulae andA1∨A2 holds when at least one ofA1 andA2

holds. Moreover the meaning of〈a〉A (possibility operator) is ”it is possible to do an
a-action to a state whereA holds” and the meaning of[a]A (necessity operator) is ”for
all a-actions performedA holds”. X =µ A is a minimal fixpoint equation, whereA is
an assertion (i.e. a simple modal formula without recursion operator), andX =ν A is a
maximal fixpoint equation. Roughly, the semanticJDK of the list of equationsD is the
solution of the system of equations corresponding toD . According to this notation,
JDK(X) is the set of values of the variableX, andE |= D ↓ X can be used as a short
notation forE ∈ JDK(X). The formal semantic is in Table 3 in appendix.

The following standard result ofµ-calculus will be useful in the reminder of the
paper.

Theorem 1 ([20]) Given a formulaφ it is possible to decide in exponential time in the
length ofφ if there exists a model ofφ and it is also possible to give an example of such
model.

Partial model checking(pmc) is a technique that was originally developed for compo-
sitional analysis of concurrent systems (processes) (see [2]). The intuitive idea under-
lying thepmcis the following: proving thatE‖F satisfies a formulaφ (E‖F |= φ) is
equivalent to proving thatF satisfies a modified specificationφ//E

(F |= φ//E), where
//E is the partial evaluation function for the parallel composition operator. The for-
mulaφ is specified by use theequationalµ-calculus. A useful result of partial model
checking is the following.

Lemma 1 ([2]) Given a processE‖F and a formulaφ we have:E‖F |= φ iff F |=
φ//E .

The reduced formulaφ//E depends only on the formulaφ and on processE. No
information is required on the processF which can represent a possible enemy. Thus,
given a certain systemE, it is possible to find the property that the enemy must satisfy
to make a successful attack on the system. It is worth noticing that partial model
checking function may be automatically derived from the semantics rules used to define
a language semantics. Thus, the proposed technique is very flexible.

A lemma similar to Lemma 1 holds for every process algebra operators (see [2]).
The partial model checking functions for parallel operator, relabeling and restriction
are given in Table 4 and Table 5 in appendix.

2.4 Characteristic formulae

A characteristic formulais a formula in equationalµ-calculus that completely charac-
terizes the behavior of a (state in a) LTS modulo a chosen notion of behavioral relation.
It is possible to define the notion of characteristic formula for a given finite state process
E w.r.t. weak bisimulation as follows (see [17]).

Definition 3 Given a finite state processE, its characteristic formula (w.r.t. weak
bisimulation)DE ↓ XE is defined by the following equations for everyE′ ∈ Der(E),
XE′ =ν (

∧
a;E′′:E′ a→E′′〈〈â〉〉XE′′) ∧ (

∧
a∈Act([a](

∨
E′′:E′ â⇒E′′

XE′′)))
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where〈〈â〉〉 is the equivalent of the modality operator〈â〉 w.r.t. weak bisimulation,
which can be introduce as abbreviation (see [17]):

〈〈ε〉〉φ def
= µX.φ ∨ 〈τ〉X 〈〈a〉〉φ def

= 〈〈ε〉〉〈a〉〈〈ε〉〉φ
The following lemma characterizes the power of these formulae.

Lemma 2 ([17]) Let E1 andE2 be two finite-state processes. IfφE2 is characteristic
for E2 then:

1. If E1 ≈ E2 thenE1 |= φE2

2. If E1 |= φE2 andE1 is finite-state thenE1 ≈ E2.

It is possible to define the notion of characteristic formula for a finite state process E
w.r.t. weak simulation as follows.

Definition 4 Given a finite state process, its characteristic formula (w.r.t. weak sim-
ulation) DE ↓ XE is defined by the following equations for everyE′ ∈ Der(E),
XE′ =ν

∧
a∈Act([a](

∨
E′′:E′ â⇒E′′

XE′′))

Following the reasoning used in [17] for the definition of characteristic formula w.r.t
strong bisimulation. The following proposition holds.

Lemma 3 Let E be a finite-state process and letφE,¹ be its characteristic formula
w.r.t. weak simulation,F ¹ E ⇔ F |= φE,¹
2.5 Enforcement mechanisms and Security automata

In this paper we chose to follow the semantic approach given by Ligatti and al. in [4]
to describe the behavior of four different kind of security automata.

A security automatonat least consist of a (countable) set of states,Q, a set of
actionsAct and a transition (partial) functionδ : Act × Q → Q. We use alsoσ to
denote a sequences of actions,· for the empty sequence andτ1 to represent an internal
action.

The execution of each different kind of security automata is specified by a labeled
operational semantics. The basic single-step judgment has the form(σ, q) a−→ (σ′, q′)
whereσ′ andq′ denote the action sequence and state after the automaton takes a single
step, anda denotes the sequence of actions produced by the automaton. The single-step
judgment can be generalized to a multi-step judgment ((σ, q)

γ
=⇒2 (σ′, q′)), whereγ

is a sequences of actions, as follows.

(σ, q) .=⇒ (σ, q)
(Reflex)

(σ, q) a−→ (σ′′, q′′) (σ′′, q′′)
γ

=⇒ (σ′, q′)

(σ, q)
a;γ
=⇒ (σ′, q′)

(Trans)

The operational semantics for each security automaton is the following.

1In [4] internal actions are denoted by·. We useτ because we use process algebras where internal actions
are commonly denoted byτ .

2Consider a finite sequence of visible actionsγ = a1, . . . , an. Here we use⇒ to denote automata
computation. Before we use the same notation for process algebra computation. The meaning of the symbol
will be clear from the context.
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Truncation automaton. The operational semantic of truncation automata is:

(σ, q) a−→T (σ′, q′) (T-Step)

if σ = a; σ′

andδ(a, q) = q′

(σ, q) τ−→T (·, q) (T-Stop)

otherwise.

Suppression automaton.It is define as(Q, q0, δ, ω) whereω : Act×Q → {−, +} in-
dicates whether or not the action in question should be suppressed (-) or emitted
(+).

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = +
(σ, q) τ−→S (σ′, q′) (S-StepS)

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = −
(σ, q) τ−→S (·, q) (S-Stop)

otherwise.

Insertion automaton. It is define as(Q, q0, δ, γ) whereγ : Act×Q → Act×Q that
specifies the insertion of an action into the sequence of actions of the program. It
is necessary to note that in [4, 7] the automaton inserts a finite sequence of actions
instead of only one action, i.e., it controls if a wrong action is performed by
functionγ. If it holds, the automaton inserts a finite sequence of actions, hence
there exists a finite number of intermediate states. Without loss of generality,
we consider that it performs only one action. In this way we openly consider all
intermediate state. Note that the domain ofγ is disjoint from the domain ofδ in
order to have a deterministic automata;

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a; σ′

andδ(a, q) = q′

(σ, q) b−→I (σ, q′) (I-Ins)

if σ = a; σ′

andγ(a, q) = (b, q′)
(σ, q) τ−→I (·, q) (I-Stop)

otherwise.
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Edit automaton. It is defined as(Q, q0, δ, γ, ω) whereγ : Act×Q → Act×Q that
specifies the insertion of a finite sequence of actions into the program’s action
sequence andω : Act × Q → {−, +} indicates whether or not the action in
question should be suppressed (-) or emitted (+). Also here the domain ofγ is
disjoint from the domain ofδ in order to have a deterministic automata.

(σ, q) a−→E (σ′, q′) (E-StepA)

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = +
(σ, q) τ−→E (σ′, q′) (E-StepS)

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = −
(σ, q) b−→E (σ, q′) (E-Ins)

if σ = a; σ′

andγ(a, q) = (b, q′)
(σ, q) τ−→E (·, q) (E-Stop)

otherwise.

3 Modeling security automata with process algebra

In this Section we give the semantics of some process algebra operators that act as
controller operators, denoted byY .K X whereK ∈ {T, S, I, E}3. These can permit
to control the behavior of the (possibly untrusted) componentX, given the behavior of
the control programY .

3.1 Our controller operators in process algebra

To compare security automata with our controllers, it is crucial to have a rigorous defi-
nition of the semantic rules that describe the behavior of each operator. We denote with
E the program controller and withF the target. We work, without loss of generality,
under the additional assumption thatE andF never perform the internal actionτ .
3.1.1 Truncation automata:.T

E
a→ E′ F a→ F ′

E .T F
a→ E′ .T F ′

This operator models the truncation automaton that is similar to Schneider’s automaton
(when considering only deterministic automata, e.g., see [4, 7]). Its semantic rule states
that if F performs the actiona and the same action is performed byE (so it is allowed
in the current state of the automaton), thenE .T F performs the actiona, otherwise it
halts. The following proposition holds.

3We choose these symbols to denote four operators that have the same behavior of truncation, suppres-
sion, insertion and edit automata, respectively.
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Proposition 1 Each sequences of actions that is an output of atruncation automata
(Q, q0, δ) is also derivable from.T and vice-versa.

3.1.2 Suppression automata:.S

E
a→ E′ F a→ F ′

E .S F
a→ E′ .S F ′

E
−a−→ E′ F

a→ F ′

E .S F
τ→ E′ .S F ′

where−a is a control action not inAct (so it does not admit a complementary action).
As for the truncation automaton, ifF performs the same action performed byE also
E .S F performs it. On the contrary, ifF performs an actiona thatE does not perform
andE can perform the control action−a thenE .S F performs the actionτ thatsup-
pressesthe actiona, i.e.,a becomes not visible from external observation. Otherwise,
E .S F halts. The following proposition holds.

Proposition 2 Each sequences of actions that is an output of asuppression automata
(Q, q0, δ, ω) is also derivable from.S and vice-versa.

3.1.3 Insertion automata:.I

E
a→ E′ F

a→ F ′

E .I F
a→ E′ .I F ′

E 6 a→ E′ E
+a.b−→ E′ F

a→ F ′

E .I F
b→ E′ .I F

4

where+a is an action not inAct. If F performs an actiona that alsoE can perform,
the whole system makes this action. IfF performs an actiona thatE does not perform
andE detects it by performing a control action+a, then the whole system perform the
an actionb. It is possible to note that in the description of insertion automata in [4]
the domains ofγ andδ are disjoint. In our case, this is guarantee by the premise of

the second rule in which we have thatE 6 a−→ E′, E
+a.b−→ E′. In fact for the insertion

automata, if a pair(a, q) is not in the domain ofδ and it is in the domain ofγ it means
that the actiona and the stateq are not compatible so in order to change state an action
different froma must be performed. It is important to note that it is able to insert
new actions but it is not able to suppress any action performed byF . The following
proposition holds.

Proposition 3 Each sequences of actions that is an output of ainsertion automata
(Q, q0, δ, γ) is also derivable from.I and vice-versa.

3.1.4 Edit automata:.E

In order to do insertion and suppression together we define the following controller
operator. Its rule is the union of the rules of the.S and.I .

E
a→ E′ F

a→ F ′

E .E F
a→ E′ .E F ′

E
−a−→ E′ F

a→ F ′

E .E F
τ→ E′ .E F ′

E 6 a→ E′ E
+a.b→ E′ F

a→ F ′

E .E F
b→ E′ .E F

4This meansE
+a−→ Ea

b−→ E′. However we consider+a.b as a single action, i.e. the stateEa is hide
and we do not consider it inDer(E).
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This operator combines the power of the previous two ones. The following proposition
holds.

Proposition 4 Each sequences of actions that is an output of anedit automata
(Q, q0, δ, γ, ω) is also derivable from.E and vice-versa.

It is important to note that we introduced the control action−a in the semantic of.S

and+a in the semantic of.I in order to find operators that were as similar as possible to
suppression and insertion automata, respectively. Other definitions could be possible,
although some attempts we made failed on defining and tractable semantics.

4 Synthesis of controller programs

Exploiting our framework we can build a program controllerY which allows to enforce
a desired security property for any target systemX. We present an extension of [12].
Here we have four different operators and in particular we have to deal with control
actions.

Let S be a system, and letX be one component that may be dynamically changed
(e.g., a downloaded mobile agent) that we consider an unknown agent, i.e. we do not
know what is the behavior ofX. At the beginning we have the systemS‖X, and
we want that it enjoys a security property expressed by a logical formulaφ, i.e.,∀X
(S‖X)\L |= φ. In order to protect the system we may simply check the correctness of
each processX before it is executed or, if it is not possible (or not desirable), we may
define a controller that, in any case, forces each process to behave correctly.

We study here how to build a program controller in order to force the intruder to
behave correctly, i.e. as prescribed by the formulaφ. Thus, we want to find a control
programY such that:

∀X (S‖Y .K X)\L |= φ (2)

By using the partial model checking approach proposed in [11], we can focus on
the properties ofY .K X, i.e.:

∃Y ∀X (Y .K X) |= φ′ (3)

whereφ′ = φ//S,\L. In order to manage the universal quantification in (3), we prove
the following proposition.

Proposition 5 For everyK ∈ {T, S, I, E} Y .K X ¹ Y [fK] holds, wherefK is a
relabeling function depending onK. In particular, fT is the identity function onAct5

and

fS(a) =
{

a if a ∈ Act
τ if a = −a

fI(a) =
{

a if a ∈ Act
τ if a = +a

fE(a) =
{

a if a ∈ Act
τ if a ∈ {+a,−a}

Now we restrict ourselves to a subclass of equationalµ-calculus formulae that is de-
noted byFrµ. This class consists in equationalµ-calculus formulae without〈 〉. It is
easy to prove that this set of formulae is close for partial model checking function. The
following result holds.

5Here the setAct must be consider enriched by control actions
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Proposition 6 LetE andF be two finite state processes andφ ∈ Frµ. If F ¹ E then
E |= φ ⇒ F |= φ.

At this point in order to check the equation (3) it is sufficient to check:

∃Y Y [fK] |= φ′

To further reduce the previous equation, we can use the partial model checking function
for relabeling operator. Hence, for everyK ∈ {T, S, I, E} we calculateφ′′K = φ′//[fK]

.

Thus we obtain:
∃Y Y |= φ′′K (4)

In this way we reduce ourselves to a satisfiability problem inµ-calculus that can be
solved by Theorem 1.

5 Automated synthesis of Schneider’s controller opera-
tor

In this section we synthesize a maximal program controllerY for the operatorY .T X
by exploiting the theory developed by Walukiewicz in [13, 21].

We define the notion of maximal model w.r.t. the relation of simulation as follows:
a processE is a maximal model for a given formulaφ iff E |= φ and∀E′ s.t.E′ |=
φ, E′ ¹ E.

Informally, the maximal program controllerY is the process that restricts as less as
possible the activity of the targetX.

Usually the discovered model is a non-deterministic process. In order to find a
deterministic model we consider a subset of formulae ofFrµ without∨. This set of
formulae is called theuniversal conjunctiveµ-calculus formulae, ∀∧µC (see [6]).

Definition 5 The set∀∧µC of universal conjunctiveµ-calculus formulaeis the largest
subset of equationalµ-calculus formulae that can be written without either the∨ op-
erator and the〈 〉 modality.

Proposition 7 Given a formulaφ ∈ ∀∧µC, a maximal deterministic modelE of this
formula exists.

Due to the fact that Schneider in his article [18] is interested intrace of executions6, we
assume that the process with a good behavior is deterministic, i.e., we are interested in
properties of the form(E‖X)\L ¹ E\L whereE\L a deterministic process. Hence
the characteristic formula ofE, XE′ =ν

∧
a∈Act([a](

∨
E′′:E′ â⇒E′′

XE′′))), becomes
simpler because

∨
E′′:E′ â⇒E′′

XE′′ is reduced either toXE′′ or to false. So it is in
∀∧µC.

In order to apply our logical approach based on partial model checking we also
need to ensure that after the partial model checking phase for the characteristic formula

6For anyE ∈ E the setTr(E) of traces associated withE is Tr(E) = {γ ∈ (Act\{τ})∗|∃E′ :

E
γ

=⇒ E′}.
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we still get a formula in∀∧µC whose satisfiability procedure returns a deterministic
process. This actually holds.

Proposition 8 ([6]) ∀∧µC is closed under the partial model checking function.

Thus, by using the result in proposition 7, it is possible to find a maximal deterministic
model that synthesizes a controller operator to force a security policy, i.e. the synthesis
of a truncation automaton for a component that will allow the whole system to enjoy
the desired security property.

6 A simple example
Consider the processS = a.b.0 and consider the following equational definitionZ =ν

[τ ]Z ∧ [a][[c]]7F. It asserts that after every actiona cannot be perform an actionc.
Let Act = {a, b, c, τ, ā, b̄, c̄} be the set of actions. Applying the partial evaluation
for the parallel operator we obtain, after some simplifications, the following system of
equation, that we denoted withD:
Z//S

=ν [τ ]Z//S
∧ [ā]Z//S′ ∧ [a]W//S

∧W//S′
W//S′ =ν [τ ]W//S′ ∧ [b̄]W//0

∧ [c]F
Z//S′ =ν [τ ]Z//S′ ∧ [b̄]Z//0

∧ [a]W//S′
W//S

=ν [τ ]W//S
∧ [ā]W//S′ ∧ [c]F

Z//0
= T

W//0
= T

whereS
a−→ S′ soS′ is b.0.

The information obtained through partial model checking can be used to enforce a
security policy. In particular, choosing one of the four operators and using its definition
we simply need to find a processY [fK], whereK depend on the chosen controller, that
is a model for the previous formula. In this simple example we choose the controller
operator.S . Hence we apply the partial model checking for relabeling functionfS

to the previous formula, that we have simplified replacingW//0
andZ//0

by T. We
obtain thatD//fS

is:

Z//S
=ν [−c]Z//S

∧ [ā]Z//S′ ∧ [a]W//S
∧W//S′

W//S′ =ν [−c]W//S′ ∧ [b̄]T ∧ [c]F
Z//S′ =ν [−c]Z//S′ ∧ [b̄]T ∧ [a]W//S′
W//S

=ν [−c]W//S
∧ [ā]W//S′ ∧ [c]F

We can note note the processY = a. − c.0 is a model ofD//fS
. Then, for any

componentX, we haveS‖(Y .S X) satisfiesD. For instance, considerX = a.c.0.
Looking at the first rule of.S , we have:

(S‖(Y .S X)) = (a.b.0‖(a.− c.0 .S a.c.0)) a−→ (a.b.0‖(−c.0 .S c.0))

Using the second rule we eventually get:

(a.b.0‖(−c.0 .S c.0)) τ−→ (a.b.0‖0 .S 0)

7We define[[c]]φ as¬〈〈c〉〉¬φ where〈〈c〉〉 is defined as follows:〈〈ε〉〉φ def
= µX.φ∨〈τ〉X, 〈〈c〉〉φ def

=
〈〈ε〉〉〈c〉〈〈ε〉〉φ. (see [17]).
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and so the system still preserve its security since the actions performed by the compo-
nentX have been prevented from being visible outside.

7 Discussion on enforcing techniques

7.1 Security automata

As we have already said, one way to enforce security properties is with amonitor that
runs in parallel with thetarget program (see [18]). A program monitor can be for-
mally modeled by asecurity automaton. A security automatondefined in [18] is a
triple (Q, q0, δ) whereQ is a set of states,q0 is the initial one andδ : Act ×Q → Q,
whereAct is a set of security-relevant actions, is the transition function. A security
automata processes a sequencea1a2 . . . of actions. At each step only one action is
considered and for each action we calculate theglobal stateQ′ that is the set of the
possible states for the current action, i.e. if the automaton is checking the actionai

thenQ′ =
⋃

q∈Q′ δ(ai, q). If the automaton can make a transition on a given action,
i.e. Q′ is not empty, then the target is allowed to perform that step. The state of the
automaton changes according to the transition rules. Otherwise the target execution is
terminated. Thus, at every step, it verifies if the action is in the set of the possible ac-
tions or not. As we have already shown, in [7] four different kind of security automata
are defined. To study the cost in term of time of these security automata, we must
consider how much transition function costs. Since the security automata we consider
are deterministic (thusQ′ would be either a singleton or empty), by using the standard
graphical representation through matrix, it is easy to understand that the cost in time
is O(1). Thus, given a sequence ofn actions, we needO(n) to check whether this
sequence is acceptable or not.

7.1.1 Enforceable properties with Security automata

Referring to [18], the truncation automata is able to enforce security property that cor-
responds to a safety property (according to [18], a property is a safety one, if whenever
it does not hold in trace then it does not hold in any extension of this trace).

Refer to [7] we consider theeffectively enforcement. This definition of enforce-
ment uses a system-specific equivalence relation (∼=) on executions that is reflexive,
symmetric and transitive. Moreover, any property that we might consider should not
distinguish equivalent sequences:

σ ∼= σ′ ⇒ P (σ) ⇔ P (σ′)

whereP is the property that we want enforce.

Definition 6 A automatonA with starting stateq0 effectively enforcesa propertyP

on the system with action setAct iff ∀σ ∈ −→Act8 ∃q′ ∃σ′ ∈ −→Act:

1. (σ, q0)
σ′=⇒A (·, q′)

8−→Act is the set of sequences of actions
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truncating props

insertion props suppression props

editing properties

Figure 1: A taxonomy ofeffectivelyenforceable security properties

2. P (σ′), and

3. P (σ) ⇒ σ ∼= σ′.

The power of the four different kinds of security automata is different as we show in
Figure 1.

7.2 Model checking a path

A technique that is used in run-time verification is themodel checking a path, i.e.,
solve the model checking problem on a single path instead on the whole model. It was
introduced by Markey and Schnoebelen in [9].

In particular, this technique is developed for model checking of linear time logic.
We recall some definitions, even if, we will not recall the syntax and semantics ofLTL.

Definition 7 A path is a finite sequence of statesπ = s0, s1, . . . where astateis a
valuations ∈ 2AP of the atomic proposition (namelyAP ). |π| ∈ N ∪ {ω} denotes the
length ofπ.

Let L a linear logic.
Path Model Checking for L (PMC(L)):
Input: given a pathu and a temporal formulaφ of L.
Output: yes iff u |= φ, no otherwise.
Using standard dynamic programming methods a path can obviously be checked

in bilinear time,O(|path| × |formula|). In particular, we recall here some important
results on linear temporal logic.

Theorem 2 ([9]) PMC(LTL) can be solved in timeO(|u| × |φ|) whereφ is anLTL
formula.

Theorem 3 ([9]) PMC(LTL + Past) can be solved in timeO(|u| × |φ|) whereφ is
anLTL + Past formula.
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Logic: Relabeling:

FOMLO PSPACE− complete
LTL PTIME− easy
LTL + Past PTIME− easy
LTL + Past + Now PTIME− complete
LTL + Chop PTIME− complete

Table 1: Checking richly expressing logics on paths

In [9] article, authors study the complexity of the model checking a path on linear
temporal logic and prove that for the first-order monadic logic of order the algorithm
is PSPACE-complete. In [10], they prove that model checking a path of modalµ-
calculus formulae has the complexity ofO(|u| × |φ|ad) wheread is the alternation
depth (when dealing with safety properties it is 1).

We show in Table 19 all the complexity results.

7.2.1 Enforceable properties with model checking (paths)

We can use this approach in order to enforce security properties. This technique permit
us to control if a target execution is correct or not. As we have already said, this
techniques was developed in order to deal with run-time verification.

The algorithm: The behavior of the target is not known a priori. To every target
action is associated a new target state. Thus every time an action is performed a new
state is add to the path that have to be checked. Hence for every action we applyPMC
on the new path. For example, letπt the sequence of states at timet. We can apply
path model checking onπt. If the output is ”yes” we allow that the target performs the
next actiona, otherwise we stop it. After an actiona the target goes in a new statest+1

and the sequences of state becomesπt+1 and we repeat the same algorithm. Using
standard dynamic programming, that works by memorizing outputs that are obtained
at the previous step of the algorithm, the cost of this method isO(|path| × |φ|) where
φ is aLTL formula.

We can note that this technique is developed oLTL formulae and, in [9], the au-
thors give the cost of the algorithm forLTL formulae and forLTL + Past formulae.
These two logics are suitable for express safety properties.

7.3 Comparison

It is easy to note that using this technique it is easy to implement a controller with the
same behavior of truncation automata. In fact, this technique permits to recognize a
bad action but it does not give any advantage to repair it. Security automata instead
allow us to modify the behavior of a target system to make it compliant with the policy.

9Take from [9]
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This is a main difference from a declarative policy language as logic instead of an
operational one as security automata.
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A Tables

In this section there are all the table whose references are in the paper. The first table
shows the operational semantics ofCCS; the second one the equationalµ-calculus.
The last two tables show how partial evaluation function works w.r.t. parallel, restric-
tion and relabeling operators respectively.

B Technical proofs

Lemma 3 Let E be a finite-state process and letφE,¹ be its characteristic formula
w.r.t. weak simulation thenF ¹ E ⇔ F |= φE,¹.
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Prefixing:
a.x

a−→ x

Choice: x
a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

Parallel: x
a−→ x′

x‖y a−→ x′‖y
y

a−→ y′

x‖y a−→ x‖y′
x

l−→ x y
l̄−→ y′

x‖y τ−→ x′‖y′
Restriction: x

a−→ x′

x\L a−→ x′\L
Relabeling: x

a−→ x′

x[f ] a′−→ x′[f ]

Table 2:GSOSsystem for CCS.

JTK′ρ = S JFK′ρ = ∅ JXK′ρ = ρ(X) JA1 ∧A2K′ρ = JA1K′ρ ∩ JA2K′ρ
JA1 ∨A2K′ρ = JA1K′ρ ∪ JA2K′ρ J〈a〉AK′ρ = {s | ∃s′ : s

a→ s′ ands′ ∈ JAK′ρ}
J[a]AK′ρ = {s | ∀s′ : s

a→ s′ impliess′ ∈ JAK′ρ}

We uset to represent union of disjoint environments. Letρ be the environment ( a
function from variables to values) andσ be in{µ, ν}, thenσU.f(U) represents theσ
fixpoint of the functionf in one variableU .
JεKρ = [] JX =σ AD′Kρ = JD′K(ρt[U ′/X]) t [U ′/X]
whereU ′ = σU.JAK′(ρt[U/X]tρ′(U)) andρ′(U) = JD′K(ρt[U/X]).
It informally says thatthe solution to(X =σ A)D is theσ fixpoint solutionU ′ of JAK
where the solution to the rest of the lists of equationsD is used as environment.

Table 3: Equationalµ-calculus

Proof: In order to prove the following proposition we give the following chain:

F ¹ E ⇔ ∀a F
a→ F ′ ∃E′ E

a⇒ E′ ∧ F ′ ¹ E′ ⇔
∀a F

a→ F ′ F ′ |= ∨
XE′ ⇔ ∀a F |= [a](

∨
XE′) ⇔

F |= ∧
([a](

∨
XE′))

2

Before starting to prove proposition 1, 2, 3, 4, we note that in our controller operator
the halt condition is not roundly given because this occurs when there are not rule that
could be applied, i.e., when premises of all rules are not verify. As we have already
note, also in security automata described in section 2.5, the actionτ in stop rule of each
automata is an internal action that is not really performed. So in our proofs, without
loss of validity, we can omit the stop case because the stop rule of each automata is
equivalent to the halt condition of respectively operator.

Proposition 1 Each sequence of actions that is an output of atruncation automata
(Q, q0, δ) is also derivable from.T and vice-versa.

Proof: To simplify the notation,(σ, q) denotes a generic state of automata and
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(D↓ X)//t = (D//t)↓ Xt ε//t = ε
(X =σ AD)//t = ((Xs =σ A//s)s∈Der(E))(D)//t X//t = Xt

[a]A//s = [a](A//s)∧∧
s

a−→s′ A//s′, if a 6= τ A1 ∧A2//s = (A1//s) ∧ (A2//s)
〈a〉A//s = 〈a〉(A//s) ∨∨

s
a−→s′ A//s′, if a 6= τ A1 ∨A2//s = (A1//s) ∨ (A2//s)

[τ ]A//s = [τ ](A//s)∧∧
s

τ−→s′ A//s′ ∧∧
s

a−→s′ [a](A //s′)
〈τ〉A//s = 〈τ〉(A//s) ∨∨

s
τ−→s′ A//s′ T//s = T F//s = F

Table 4: Partial evaluation function for parallel operatorE‖ .

Restriction: Relabeling:
X//\L = X X//[f ] = X

〈a〉A//\L =
{ 〈a〉(A//\L) if a 6∈ L ∪ L̄

F if a ∈ L
〈a〉A//[f ] =

∨
b:f(a)=b〈b〉(A//[f ])

[a]A//\L =
{

[a](A//\L) if a 6∈ L ∪ L̄
T if a ∈ L

[a]A//[f ] =
∧

b:f(a)=b〈b〉(A//[f ])

A1 ∧A2//\L = (A1//\L) ∧ (A2//\L) A1 ∧A2//[f ] = (A1//[f ]) ∧ (A2//[f ])
A1 ∨A2//\L = (A1//\L) ∨ (A2//\L) A1 ∨A2//[f ] = (A1//[f ]) ∨ (A2//[f ])
T//\L = T T//[f ] = T
F//\L = F F//[f ] = F

Table 5: Partial evaluation function for restriction and relabeling operator.

E.T F a generic state of the process. In order to define a relation of strong bisimulation
RT , we underline that every couple(σ, q) of the suppression automata depend onδ.
As the processE is a constant, also it can depend on this function. So we denoteE
with Eq. This process has the following definition:

Eq = a.Eq′ iff δ(a, q) = q′

Now we can defineRT in the following way:

RT = {((σ, q), Eq .T F ) : (σ, q) ∈ −→Act×Q, F
σ7→}

Assume that(σ, q) a−→T (σ′, q′). For the semantic rule of.T , if Eq a−→ Eq′ and

F
a−→ F ′ perform the actiona alsoEq .T F

a−→ Eq′ .T F ′ andF ′ σ′7→.

Now assume thatEq .T F
a−→ Eq′ .T F ′ andF ′ σ′7→. This means thatδ(a, q) = q′

and σ = a; σ′. We should prove that exists a(σ, q)′ s.t. (σ, q) a−→T (σ, q)′ and
(Eq′ .T F ′, (σ, q)′) ∈ RT . For the rule T-Step,(σ, q) a−→T (σ′, q′). So the couple that
we are looking for is(σ′, q′). 2

Proposition 2Each sequence of actions that is an output of asuppression automata
(Q, q0, δ, ω) is also derivable from.S and vice-versa.

Proof: The scheme of the proof and the notation are the same of the previous one.
Every couple(σ, q) of the suppression automata depend onδ andω hence we denote
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E with Eq,ω and define it as follows

Eq,ω = a.Eq′,ω iff ω(a, q) = + andδ(a, q) = q′

= −a.Eq′,ω iff ω(a, q) = − andδ(a, q) = q′

Now we can defineRS in the following way:

RS = {((σ, q), Eq,ω .S F ) : (σ, q) ∈ −→Act×Q, F
σ7→}

We have two cases: the first one is similar of proposition 1 in fact, let((σ, q), Eq,ω.SF )
be inRS and (σ, q) a−→S (σ′, q′). We should prove that exists a(Eq,ω .S F )′ s.t.
Eq,ω .S F

a−→ (Eq,ω .S F )′ and((σ′, q′), (Eq,ω .S F )′) ∈ RS . By the first rule
of .S and by definition ofEq,ω, using a similar reason of the proof of proposition 1,
we trivially have the thesis. On the other hand, let(Eq,ω .S F, (σ, q)) be inRS and
Eq,ω.SF

a−→ Eq′,ω.SF ′. We should prove that exists a(σ, q)′ s.t. (σ, q) a−→S (σ, q)′

and (Eq′,ω .S F ′, (σ, q)′) ∈ RS . For the rule S-StepA we have that(σ′, q′) is the
solution we are looking for. The reasoning is similar to the previous one.

Now, let ((σ, q), Eq,ω .S F ) be inRS and(σ, q) τ−→S (σ′, q′). We should prove
that exists a(Eq,ω .S F )′ s.t. Eq,ω .S F

τ−→ (Eq,ω .S F )′ and((σ′, q′), (Eq,ω .S

F )′) ∈ RS . We have, by the second rule of.S and by the definition ofEq,ω, that

if Eq,ω −a−→ Eq′,ω andF
a−→ F ′ thenEq,ω .S F

τ−→ Eq′,ω .S F ′. We have also
F ′ σ7→′

.So((σ′, q′), Eq′,ω .S F ′) ∈ RS trivially.
Now assume that(Eq,ω .S F, (σ, q)) be inRS andEq,ω .S F

τ−→ Eq′,ω .S F ′.
Remembering that neitherE nor F can perform the actionτ , this transection means
thatδ(a, q) = q′ andω(a, q) = −. We should prove that exists a(σ, q)′ s.t. (σ, q) τ−→S

(σ, q)′ and(Eq′,ω .S F ′, (σ, q)′) ∈ RS . For the rule S-StepS we have that(σ′, q′) is
the solution we are looking for. The reasoning is similar to the previous one.2

Proposition 3 Each sequence of actions that is an output of ainsertion automata
(Q, q0, δ, γ) is also derivable from.I and vice-versa.

Proof: The scheme of the proof and the notation are the same of the previous one.
Every couple(σ, q) of the suppression automata depend onδ andγ hence we denote
E with Eq,γ and define it as follows.

Eq,γ = a.Eq′,γ iff δ(a, q) = q′

= +a.b.Eq′,γ iff γ(a, q) = (b, q′)

Now we can defineRI in the following way:

RI = {((σ, q), Eq,γ .I F ) : (σ, q) ∈ −→Act×Q, F
σ7→}

We have two cases: the first one is similar of proposition 1 in fact, let((σ, q), Eq,γ.I

F ) be inRI and(σ, q) a−→I (σ′, q′). We should prove that exists a(Eq,γ .I F )′ s.t.
Eq,γ .I F

a−→ (Eq,γ .I F )′ and((σ′, q′), (Eq,γ .I F )′) ∈ RI . By the first rule of
.I and by definition ofEq,γ ,using a similar reasoning of the proof of proposition 1,
we trivially have the thesis. On the other hand, let(Eq,γ .I F, (σ, q)) be inRI and
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Eq,γ .I F
a−→ Eq′,γ .I F ′. We should prove that exists a(σ, q)′ s.t. (σ, q) a−→I (σ, q)′

and(Eq′,γ .I F ′, (σ, q)′) ∈ RI . For the rule I-Step we have that(σ′, q′) is the solution
we are looking for. The reasoning is similar to the previous one.

Now let ((σ, q), Eq,γ .I F ) be inRI and(σ, q) b−→I (σ, q′). We should prove that

exists a(Eq,γ .I F )′ s.t.Eq,γ .I F
b−→ (Eq,γ .I F )′ and((σ, q′), (Eq,γ .I F )′) ∈ RI .

We have, by second rule of.I and by to the definition ofEq,γ , that if Eq,γ 6 a−→ Eq′,γ ,

Eq,γ +a.b−→ Eq′,γ andF
a−→ F ′ thenEq,γ .I F

b−→ Eq′,γ .I F . So(Eq,γ .I F )′ is
Eq′,γ .I F and((σ, q′), Eq′,γ .I F ) ∈ RI trivially.

Now, let(Eq,γ .I F, (σ, q)) be inRI andEq,γ .I F
b−→ Eq′,γ .I F . this means that

σ = a;σ′ andγ(a, q) = (b, q′). We should prove that exists a(σ, q)′ s.t. (σ, q) b−→
(σ, q)′ and(Eq′,γ .I F, (σ, q)′) ∈ RI . For the rule I-Ins we have that(σ, q′) is the
solution we are looking for. The reasoning is similar to the previous one.2

Proposition 4 Each sequence of actions that is an output of anedit automata
(Q, q0, δ, γ, ω) is also derivable from.E and vice-versa.

Proof: In order to prove this lemma, we give the relation of bisimulationRE which
exists between edit automata and the controller operator.E .

Eq,γ,ω = a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = +

= −a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = −
= +a.b.Eq′,γ,ω iff γ(a, q) = (b, q′)

We defineRE in the following way:

RE = {((σ, q), Eq,γ,ω .E F ) : (σ, q) ∈ −→Act×Q, Eq,γ,ω .E F ∈ P, F
σ7→}

We have three cases ad their proof following the reasoning made in the proof of lemma
2 and lemma 3. In fact:

• – Let ((σ, q), Eq,γ,ω .E F ) be inRE and(σ, q) a−→E (σ′, q′). We should
prove that exists a(Eq,γ,ω .E F )′ s.t. Eq,γ,ω .E F

a−→E (Eq,γ,ω .E F )′

and ((σ′, q′), (Eq,γ,ω .E F )′) ∈ RE . We have, by the first rule of.E

and by definition ofEq,γ,ω, that if Eq,γ,ω a−→E Eq′,γ,ω andF
a−→ F ′

thenEq,γ,ω .E F
a−→ Eq′,γ,ω .E F ′. Now F ′ σ7→′

. So(Eq,γ,ω .E F )′ is
Eq′,γ,ω .E F ′ and((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE trivially.

– Let (Eq,γ,ω .E F, (σ, q)) be inRE andEq,γ,ω .E F
a−→ Eq′,γ,ω .E F ′.

We should prove that exists a(σ, q)′ s.t. (σ, q) a−→ (σ, q)′ and(Eq′,γ,ω .E

F ′, (σ, q)′) ∈ RE . For the rule E-StepA we have that(σ′, q′) is the solution
we are looking for. The reasoning is similar to the previous one.

• – Let ((σ, q), Eq,γ,ω .E F ) be inRE and(σ, q) τ−→E (σ′, q′). We should
prove that exists a(Eq,γ,ω .E F )′ s.t. Eq,γ,ω .E F

τ−→ (Eq,γ,ω .E F )′

and ((σ′, q′), (Eq,γ,ω .E F )′) ∈ RE . We have, by second rule of.E

and by the definition ofEq,γ,ω, that if Eq,γ,ω −a−→ Eq′,γ,ω andF
a−→ F ′

thenEq,γ,ω .E F
τ−→ Eq′,γ,ω .E F ′. Now F ′ σ7→′

. So(Eq,γ,ω .E F )′ is
Eq′,γ,ω .E F ′ and((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE trivially.
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– Let (Eq,γ,ω .E F, (σ, q)) be inRE andEq,ω .E F
τ−→ Eq′,γ,ω .E F ′. We

should prove that exists a(σ, q)′ s.t. (σ, q) τ−→e (σ, q)′ and(Eq,γ,ω .E

F ′, (σ, q)′) ∈ RE For the rule E-StepS we have that(σ′, q′) is the solution
we are looking for. The reasoning is similar to the previous one.

• – Let ((σ, q), Eq,γ,ω .E F ) be inRE and(σ, q) b−→E (σ, q′). We should

prove that exists a(Eq,γ,ω .E F )′ s.t. Eq,γ,ω .E F
b−→ (Eq,γ,ω .E F )′

and((σ, q′), (Eq,γ,ω .E F )′) ∈ RE . We have, by third rule of.E and by

the definition ofEq,γ,ω that if Eq,γ,ω 6 a−→ Eq′,γ,ω, Eq,γ,ω +a.b−→ Eq′,γ,ω

andF
a−→ F ′ thenEq,γ,ω .E F

b−→ Eq′,γ,ω .E F . So(Eq,γ,ω .E F )′ is
Eq′,γ,ω .E F and((σ, q′), Eq′,γ,ω .E F ) ∈ RE trivially.

– Let (Eq,γ,ω .E F, (σ, q)) be inRE andEq,γ,ω .E F
b−→ Eq′,γ,ω .E F .

We should prove that exists a(σ, q)′ s.t. (σ, q) b−→ (σ, q)′ and(Eq′,γ .E

F, (σ, q)′) ∈ RE . For the rule E-Ins we have that(σ, q′) is the solution we
are looking for. The reasoning is similar to the previous one.

2

Proposition 5For everyK ∈ {truncation, suppression, insertion, edit} the follow-
ing relation holds

Y .K X ¹ Y [fK]

wherefK is a relabeling function definition of which depend onK.
In order to prove this proposition we prove the following four lemmas. The proof

of the proposition comes from these.

Lemma 4 The following relation holds

Y .T X ¹ Y [fT ] (5)

wherefT is the identity function.

Proof: We prove that the following relation is a weak simulation.

ST = {(E .T F,E[fT ])|E, F ∈ E}

Note that beingfT the identity function we could omit it without loss of generality.
Assume thatE .T F

a→ E′ .T F ′ with the additional hypothesis thatF
a→ F ′ then,

by the rule of.T we have thatE
a⇒ E′ and, obviously,(E′ .T F ′, E′) ∈ ST . 2

Lemma 5 The following relation holds

Y .S X ¹ Y [fS ] (6)

where

fS(a) =
{

a if a ∈ Act
τ if a = −a
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Proof: We prove that the following relation is a weak simulation.

SS = {(E .S F, E[fS ])|E,F ∈ E}

There are two possible cases: the first one is whenE .S F performs the actiona. The
proof of this case is the same of the proof of lemma 4. IfE .S F

τ−→ E′ .S F ′ means

thatE
−a−→ E′ andF perform an actiona thatE should not perform. Applying the

relabeling functionfS to E we obtainE1 = E[fS ] s.t. E1
τ=⇒ E′

1. whereE′
1 is

E′[fS ]. Hence(E′ .S F ′, E′
1) ∈ SS . 2

Lemma 6 The following relation holds

Y .I X ¹ Y [fI ] (7)

where

fI(a) =
{

a if a ∈ Act
τ if a = +a

Proof: We prove that the following relation is a weak simulation.

SI = {(E .I F, E[fI ])|E,F ∈ E}

There are two possible cases: the first one is whenE .I F performs the actiona. The

proof of this case is the same of the proof of lemma 4. IfE .I F
b−→ E′ .I F means

that E
+a.b−→ E′ andF perform an actiona that E should not perform in order to go

in the stateE′. Applying the relabeling functionfI to E we obtainE1 = E[fI ] s.t.

E1
b=⇒ E′

1. whereE′
1 is E′[fI ]. Hence(E′ .I F ′, E′1) ∈ SI . 2

Lemma 7 The following relation holds

Y .E X ¹ Y [fE ] (8)

where

fE(a) =
{

a if a ∈ Act
τ if a ∈ {−a,+a}

Proof: We prove that the following relation is a weak simulation.

SE = {(E .E F, E[fE ])|E, F ∈ E}

There are three possible cases: the first one is whenE .E F performs the actiona.
The proof of this case is the same of the proof of lemma 4. the other two case is the
following:

• E.E F
τ−→ E′.E F ′ we want to find aE′[fE ] s.t.E[fE ] τ−→ E[fE ]′. Referring

to the second rule of the edit automata we see thatE .E F
τ−→ E′ .E F ′ when

E
−a−→ E′. Through the relabeling functionfE we haveE[fE ] τ−→ E′[fE ] and

(E′ .E F ′, E′[fE ]) ∈ SE .
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• E .E F
b−→ E′ .E F we want to find aE′[fE ] s.t.E[fE ] b=⇒ E[fE ]′. Referring

to the last rule of edit automata we see thatE.E F
b−→ E′.E F whenE

+a.b−→ E′.
Through the relabeling functionfE we haveE[fE ] b=⇒ E′[fE ] and (E′ .E

F, E′[fE ]) ∈ SE

2 Proposition 6 Let E andF be two finite state processes andφ ∈ Frµ. If F ¹ E
thenE |= φ ⇒ F |= φ.

Proof: A translation from equationalµ-calculus to modalµ-calculus is possible
[1]. So first of all we consider the modal formula associated with the given formulaφ
then the proof may be divided in two part. Former we prove the proposition holds for
the formulae of modalµ-calculus without recursion operator, latter we extended the
results also toµX.φ andνX.φ.

The first part is very similar to the proof proposed by Stirling in [19] that is made
by induction on the structure of the formulaφ. The base case is clear. For the inductive
step first supposeφ = φ1 ∧ φ2 and that the result holds for the componentsφ1 andφ2.
By the definition of satisfaction relationE |= φ iff E |= φ1 andE |= φ2. By inductive
hypothesisF |= φ1 andF |= φ2 thenF |= φ. A similar argument justifies the case
φ = φ1 ∨ φ2. Next supposeφ = [a]φ1 andE |= φ. Therefore for anyE′ s.t. E

a⇒ E′

it follows thatE′ |= φ1. Let F
a→ F ′ we know that for someE′ there is the transition

E
a⇒ E′ andF ′ ¹ E′, so by inductive hypothesisF ′ |= φ1 and soF |= φ. Now we

have to prove that ifφ = µX.φ1 or φ = νX.φ1 the proposition holds. Referring to the
definition of minimum and maximum fixed point we can consider these as inductive
limit (the union) of formulae likeµXα.φ1, whereµX0.φ1 = F andµXα+1.φ1 =
φ1[µXα.φ1/X], andνXα.φ1 whereνX0.φ1 = T andνXα+1.φ1 = φ1[νXα.φ1/X].
In this wayE |= µX.φ1 iff E |= µXα.φ1 for someα iff E |= ∨

α(µXα.φ1) and
E |= νX.φ1 iff E |= νXα.φ1 for all α iff E |= ∧

α(νXα.φ1). In the former case we
have a sequence of disjunction and in the latter we have a sequence of conjunction. We
can apply again the argument of the first part of the proof.2

Proposition 7: Given a formulaφ ∈ ∀∧µC, a maximal deterministic modelE of
this formula exists.

In order to prove this proposition we introduce the following notions.

B.1 Canonical structure

The vocabulary of theµ-calculus is extended by a countable setDConsof fresh sym-
bols that will be referred to asdefinition constantand usually denotedU , V, · · · (see
[21]). These new symbols are now allowed to appear positively in formulae, like propo-
sitional variables. Adefinition list is a finite sequence of equations:D = ((U1 =
σ1X.α1(X)), · · · , (Un = σnX.αn(X)) whereU1, · · · , Un ∈ DCons andσiX.αi(X)
is a formula such that all definition constants appearing inαi are amongU1, · · · , Ui−1.
We assume thatUi 6= Uj andαi 6= αj for i 6= j. If i < j thenUi is said to be older
thanUj .

A tableau sequentis a pair(Γ,D) whereD is a definition list andΓ is a finite set
of formulae such that the only constants that occur in them are those fromD. We will
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denote(Γ,D) by Γ `D.
A tableau axiomis a sequentΓ `D such that some formula and its negation occurs

in Γ.
Below we present the set of rules for constructingtableau. Let S be the following

set of tableau rules:

(and)α ∧ β, Γ `D
α, β, Γ `D

(or) α ∨ β, Γ `D
α, Γ `D β, Γ `D

(cons) U,Γ `D
αU, Γ `D whenever(U = σX.α(X)) ∈ D

(µ)
µX.α(X), Γ `D

U,Γ `D whenever(U = µX.α(X)) ∈ D
(ν)

νX.α(X),Γ `D
U,Γ `D whenever(U = νX.α(X)) ∈ D

(all 〈〉) Γ `D
{α, {β : [a]β ∈ Γ} `D : 〈a〉α ∈ Γ}

where in the last rule each formula inΓ is a propositional constant, a variable, a nega-
tion of one of them or a formula of the form〈b〉β or [b]β for some actionb and a
formulaβ.

Observe that each rule, except(or) or (all 〈〉), has exactly one premise.
The systemSmod is obtained fromS by replacing the rule(or) by two rules (orleft)

and(orright) defined in the obvious way.
The systemSref is obtained fromS by replacing the rule(all〈〉) by the rule

(〈〉) 〈a〉α, Γ `D
α, {β : [a]β ∈ Γ} `D with the same restrictions on formulae inΓ as in the case

of (all〈〉) rule.

Definition 8 Given a positive guarded formulaφ, a tableaufor φ is any labeled tree
〈K, L〉, whereK is a tree andL a labeling function, such that

1. the root ofK is labeled withφ `D whereD is the definition list ofφ;

2. if L is a tableau axiom thenn is a leaf ofK;

3. if L(n) is not an axiom then the sons ofn in K are created and labeled according
to the rules of the systemS.

A quasi-modelof φ is defined in a similar way to tableau, except the systemSmod is
used instead ofS and we impose the additional requirement that no leaf is labeled by
a tableau axiom. Aquasi-refutationof φ is defined in a similar way to tableau, except
the systemSref is used instead ofS and we impose the additional requirement that
every leaf is labeled by a tableau axiom.

Let P = (v1, v2, · · · ) be a path in the treeK. A traceT r on the pathP is any
sequence of formulas{αi}i∈I such thatαi ∈ L(vi) andαi+1 is eitherαi, if formula
αi was not reduced by the rule applied invi, or otherwiseαi+1 is one of the formulae
obtained by applying the rule toαi.

A constantU regenerateson the traceT r if for somei, ai = U andai+1 = α(U)
where(U = σX.α(X)) ∈ D. The traceT r is called aν-trace iff it is finite and does
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not end with a tableau axiom, or if the oldest constant in the definition listD which
is regenerated infinitely often onT r is a ν-constant. Otherwise the trace is called a
µ-trace.

Definition 9 A quasi modelPM is calledpre-modeliff any trace on any path ofPM
is aν-trace.

A quasi-refutation ofφ is called arefutationof φ iff on every path of there exists a
µ-trace.

Definition 10 Given a pre-modelPM, thecanonical structurefor PM is a structure
M = 〈SM, RM, ρM〉 such that

1. SM is the set of all nodes ofPMwhich are either leaves or to which (all〈〉) rule
was applied. For any noden ofPM we will denote bysn the closest descendant
of n belonging toSM.

2. (s, s′) ∈ RM(a) iff there is a sonn of s with sn = s′, such thatL(n) was
obtained fromL(s) by reducing a formula of the form〈a〉α.

3. ρM(p) = {s : p occurs in the sequentL(s)}.

In the following we assume pre-models (and so canonical models) that are built
using quasi-models where the (orleft) is applied only if the (orright) fails to provide a
pre-model. With this assumption, since we will apply the canonical model only to one
kind of formula with disjunction, we may control which branch will be followed and
so the kind of canonical model generated.

Proposition 9 ([21]) If there exists a pre-modelPM for a positive guarded sentence
φ thenφ is satisfiable in the canonical structure forPM.

B.2 Proof of proposition 7

Lemma 8 Letφ ∈ ∀∧µC andψ = X whereX =ν

∧
α∈Act([α]F ∨ (〈α〉X ∧ [α]X)).

If φ is satisfiable thenφ ∧ ψ is satisfiable.

Proof: The formulaX =ν

∧
α∈Act([α]F ∨ (〈α〉X ∧ [α]X)) or its equivalent formu-

lation in modalµ−calculusνX.
∧

α∈Act([α]F ∨ (〈α〉X ∧ [α]X)) holds in every state
(i.e. it is a tautology) and so ifE is a model ofφ thenE is also a model forψ. To prove
thatψ is a tautology one can build a refutation for its negation using theSref tableaux.

2

Lemma 9 LetE′ |= φ with φ ∈ ∀∧µC. Then the canonical modelE of φ∧ ψ, is such
thatE′ ¹ E.

Proof: We define the following relation:

R = {(E′, E)|∃φ,E′ |= φ ∈ ∀∧µC andE |= φ ∧ ψ

andE is the canonical structure forφ ∧ ψ}
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and prove thatR is a simulation.
Suppose thatE′ α−→ E′

1, E′ |= φ andE′
1 |= φ′ for someφ′ ∈ ∀∧µC. As a matter

of fact, due to the specific assumptions we have onφ, we may rewrite it in an equivalent
form φ∗ as∧α∈Act[α]φα. Thusφ′ would be equivalent toφα andφα is not equivalent
to F (since it has a modelE′).

In the canonical model (that must exist sinceφ ∧ ψ is satisfiable) the possibility
is to choose the (orright) and soE will do an α action reaching another state that is
a model forψ and is also a model forφα, see ruleall in the tableaux construction.
As a matter of fact the initial tableaux contruction exactly putsφ in the desired format
before applying the reduction. 2

Proof of proposition 7: It is necessary to prove that suchE is a model forφ, that
it is a maximal model and that it is a deterministic process. By Lemma A.1 it follows
that E is a model forφ. BeingE the canonical structure, it is easy to note that it is
deterministic because it performs only one action〈 〉 and so every rule that permits to
construct it has only a premise (see ruleall). The maximality follows from Lemma
A.2.

2
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