

C

Consiglio Nazionale delle Ricerche

_______ ___ ______ _____

PPaarrttiiaall mmooddeell cchheecckkiinngg,, pprroocceessss aallggeebbrraa
ooppeerraattoorrss aanndd ssaattiissffiiaabbiilliittyy

pprroocceedduurreess ffoorr ((aauuttoommaattiiccaallllyy)) eennffoorrcciinngg
sseeccuurriittyy pprrooppeerrttiieess

FF.. MMaarrttiinneellllii,, II.. MMaatttteeuuccccii

IIT TR-07/2005

Technical report

Marzo 2005

Iit

Iit

Istituto di Informatica e Telematica

Partial model checking, process algebra operators and satisfiability
procedures for (automatically) enforcing security properties∗

Fabio Martinelli1, Ilaria Matteucci1,2

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy1

{Fabio.Martinelli, Ilaria.Matteucci}@iit.cnr.it
Dipartimento di Matematica, Università degli Studi di Siena2

Abstract

In this paper we show how the partial model checking approach for the analysis of secure systems may
be also useful for enforcing security properties. We define a set of process algebra operators that act as pro-
grammable controllers of possibly insecure components. The program of these controllers may be automatically
obtained through the usage of satisfiability procedures for a variant of mu-calculus.

1 Overview

Many approaches for the analysis of security properties have been successfully developed in the last two decades.
One is based on the idea that potential attackers should be analyzed as if they were un-specified components of a
system; thus reducing security analysis to the analysis ofopensystems [7, 8, 10].

More recently there has been also interest on developing techniques to study how to enforce security properties.
One notable example is the security automata in [14] and some extensions proposed in [5].

The paradigm of analysis of security as analysis of open systems has been extended to cope with security
protocols [10], fault tolerance [4] and recently access control based on trust management [11]. In this paper we
enrich this theory with a method for (automatically) enforcing security properties.

Basically, we define a set of process algebra operators that act as programable controllers of a component that
must be managed in order to guarantee that the overall system satisfies a given security policy. Also, we developed
a technique to automatically synthesize the appropriate controllers. This represent a significant contribution w.r.t.
to the previous work in [14, 5] where this issue was not addressed. The synthesis is based on a satisfiability
procedure for the mu-calculus.

Moreover, under certain hypothesis on the observation power of the enforcing controllers, we are able to enforce
some non-interference properties (for finite-state systems) that were not intentionally addressed in [14], due to the
specific assumptions they had on the enforcing mechanisms.

Our logical approach is also able to cope with composition problems, that have been considered as an interesting
issue in [2], however, not addressed in the journal version [5].

This paper is organized as follows. Section 2 recalls the basic theory about the analysis of security properties,
especially non-interference as properties of open systems. Section 3 explains our approach and Section 4 extends
it to manage several kind of enforcement mechanisms. Section 5 illustrates an example. Section 6 presents a
discussion on related work and eventually Section 7 concludes the paper.

∗Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by a CREATE-NET grant for the project
“Quality of Protection (QoP)”.

1

2 Background

In this section we briefly recall some technical machinery used in our approach and also a logical approach for
dealing with information flow properties.

2.1 A language for describing concurrent and distributed systems

We now describe the syntax for theSecurity process algebra(SPA) [3] used to describe concurrent and distributed
systems that is derived from CCS process algebra of R. Milner [12]:

E ::= 0 | α.E | E1 + E2 | E1‖E2 | E\L | Z

whereα is an action inAct, L ⊆ L andZ is a process constant that must be associated with a definitionZ
.= E.

As usual, we assume that constants areguarded[12], i.e. they must be in the scope of some prefix operatorα.E′.
The set ofSPA processes, i.e., of terms with guarded constants, is denoted withE , ranged over byE,F, P,Q
We will often use some usual syntactic simplifications, e.g., omission of trailing0’s as well as omission of brackets
on restriction on a single action. We useSort(E) to denote the set of actions that occurs in the termE.

We give an informal overview ofSPA operators:

• 0 is a process that does nothing.

• α.E is a process that can perform anα action and then behaves asE;

• E1 + E2 (choice) represents the nondeterministic choice between the two processesE1 andE2;

• E1‖E2 (parallel) is the parallel composition of processes that can proceed in an asynchronous way but they
must synchronize on complementary actions to make a communication, represented by an internal actionτ .

• E\L (restriction) is the processE when actions inL ∪ L are prevented.

The operational semantics of SPA terms is given in terms of Labeled transitions Systems (LTS).

Definition 2.1 A labeled transition system(E , T) (LTS) of concurrent processes overAct has the process ex-
pressionsE as its states, and its transitionsT are exactly which can be inferred from the transition rules for
processes.

In the appendix the interested reader may find the formal definition of the semantics.

2.2 Strong and weak bisimulations

Often it is necessary to compare processes that are expressed using different terms but have the same behavior. We
thus recall some useful relations on processes.

Definition 2.2 Let (E , T) be an LTS of concurrent processes, and letR be a binary relation overE . ThenR is
calledstrong simulation(denoted by≺) over(E , T) if and only if, whenever(E, F) ∈ R we have:

if E
a→ E′ then there existsF ′ ∈ E s. t.F

a→ F ′ and(E′, F ′) ∈ R

Now, we can definestrong bisimulation:

Definition 2.3 A binary relationR overE is said astrong bisimulation(denoted by∼) over the LTS of concurrent
processes(E , T) if bothR and its converse are strong simulation.

2

We define another kind of bisimulation:weak bisimulation. This relation is used when there is the necessity
to understand if systems with different internal structure, and hence different internal behavior, have the same
external behavior and thus may be considered observationally equivalent.

Before, we give the notion ofobservational relations: E
τ⇒ E′ (or E ⇒ E′) if E

τ→∗
E′ (where

τ→∗
is the

reflexive and transitive closure of the
τ→ relation); fora 6= τ , E

a⇒ E′ if E
τ⇒ a→ τ⇒ E′.

We, now, give the definition of weak simulation. This definition is very similar to the definition of strong
simulation, but reference to experiments

e⇒ instead of arbitrary actions
a→.

Definition 2.4 LetR be a binary relation over a set of processE . ThenR is said to be aweak— simulation
(denoted by-) if, whenever(E,F) ∈ R,

if E
e→ E′ then there existsF ′ ∈ E s. t.F

e⇒ F ′ and(E′, F ′) ∈ R.

We, now, give a definition similar to the 2.3 for the weak bisimulation.

Definition 2.5 A binary relationR overE is said aweak bisimulationover the LTS of concurrent processes(E , T)
if bothR and its converse are weak simulation.

Every strong simulation is also a weak one (see [12])

2.3 Equationalµ-calculus

Modal µ-calculus is a process logic well suited for specification and verification of systems whose behavior is
naturally described by state changes by means of actions. It is a normal modal logicK augmented with recursion
operators. It permits us to express a lot of interesting properties likesafetyproperties as well aslivenessproperties,
as well as allowing us to express equivalence conditions over LTS.

Equationalµ-calculus is based on fixpoint equations that substitute recursion operators, so it permits to define
recursively the properties of a given systems.

We use the equationalµ-calculus instead of modalµ-calculus because the first one is very suitable for partial
model checking (see [1]). Leta be inAct andX be a variable ranging over a finite set of variablesV ars.

We give the grammar:

A ::= X | T | F | X1 ∧X2 | X1 ∨X2 | 〈a〉X | [a]X

D ::= X =ν AD | X =µ AD | ε
X =ν A is a minimal fixpoint equation, whereA is an assertion, i.e. a simple modal formula without recursion
operator, andX =µ A is a maximal fixpoint equation. Roughly, the semanticJDK of the list of equationsD is the
solution of the system of equations corresponding toD. According to this notation,JDK(X) is the value of the
variableX, and we writeE |= D ↓ X as a notation forE ∈ JDK(X).

The following result can be proved by putting together standard results for decision procedures forµ-calculus
(see [15]).

Theorem 2.1 Given a formulaγ it is possible to decide in deterministic exponential time in the length ofγ if there
exists a structure which is a model ofγ and it is also possible to give an example of it.

3

2.4 Characteristic formulae

A characteristic formula is a formula in equationalµ-calculus that completely characterizes the behavior of a (state
in a) state-transition graph modulo a chosen notion of behavioral relation. It is possible to define the notion of
characteristic formula for a given finite state processE w.r.t. weak bisimulation as follows (see [13]).

Definition 2.6 Given a finite state processE, its characteristic formula (w.r.t. weak bisimulation)DE ↓ XE is
defined by the following equations for everyE′ ∈ Der(E), a ∈ Act:

XE′ =ν (
∧

a;E′′:E′ a→E′′

〈〈a〉〉XE′′) ∧ (
∧
a

([a](
∨

E′′:E′ a⇒E′′

XE′′)))

where〈〈a〉〉 of the modality〈a〉 which can be introduce as abbreviation (see [13]):

〈〈ε〉〉φ def
= µX.φ ∨ 〈τ〉X

〈〈a〉〉φ def
= 〈〈ε〉〉〈a〉〈〈ε〉〉φ

We have the following lemma that characterize the power of these formulas.

Lemma 2.1 LetE1 andE2 be two different finite-state processes. IfφE2 is characteristic forE2 then:

1. If E1 ≈ E2 thenE1 |= φE2

2. If E1 |= φE2 andE1 is finite-state thenE1 ≈ E2.

2.5 Partial model checking

We use partial model checking technique that was developed for compositional analysis of concurrent systems
(processes) (see [1]). The idea is the following: we consider a system which is the parallel composition of two
process,E‖F . We want to study if this system verifies a given formulaφ or not. In formula:

E‖F |= φ (1)

With partial model checking we can reduce the previous property to:

F |= φ//E (2)

Lemma 2.2 Given a processE‖F and a formulaφ we have:

E‖F |= φ iff F |= φ//E

In this way, we can notice that the reduced formulaφ//E only depends on the formulaφ and the processE. No
information is required on the processF . We assume thatF represents a possible enemies. Thus, given a certain
systemE, we can find the property that the enemies must satisfy in order to make a successful attack on the system.
It is worth noticing that partial model checking functions may be automatically derived from the semantics rules
used to define a language semantics (Structured Operational Semantics). Thus the proposed technique is very
flexible.

In the appendix there is the partial evaluation function for parallel operator.

4

2.6 A logical approach for specifying and analyzing information flow properties

Information flowis a main topic in the theoretical study of computer security. We can find several formal definitions
in the literature (see [6]). To describe this problem, we can consider two users,High andLow interacting with the
same computer system. We ask if there is any flow of information fromHigh to Low. The central property is the
itshape Non Deducibility on composition (NDC, see [3]): the low level users cannot infer the behavior of the high
level user from the system because for the the low level users the system is always the same. This idea can be
represented as follow:

∀Π ∈ High usersE | Π ≡ E w.r.t. Low users

We study this property in term ofSPAparallel composition operator andbisimulationequivalence.
We denote withBNDC a security property calledBisimulation Non Deducibility on Compositions.

Definition 2.7 Let EH = {Π | Sort(H) ⊆ H ∪ {τ}} be the set of High users.E ∈ BNDC if and only if
∀Π ∈ EH we have(E‖Π)\H ≈ E\H.

By using the characteristic formulae of a process we may express this information flow property in a logical way.

E ∈ BNDC iff ∀Π ∈ S : (E‖Π)\H |= φ≈,E\H

By using partial model checking we have a method for reducing the verification of the previous property to a
validity checking problem inµ-calculus (see [7]). (We must remember that this is true only if we consider finite-
state processes.)

Proposition 2.1 BNDC is decidable for all finite state processesE.

Our logical approach has been extended to cope with several security properties. Thus the approach we are
going to introduce is applicable to a wide set of security properties.

3 Our approach for enforcing security properties

We wish to provide a framework where we are able to enforce specific security properties. We assume to have a
systemS that will cooperate with another high componentX (S‖X), possibly not known a priori. We would like
that the visible low behavior of this system is always the same regardless of the high component behavior.

By using the theory in [8], one can study whether a potential enemy could exists. In particular, we know the
necessary and sufficient conditions that an enemy should satisfy in order to alter the visible behavior of the system.

In order to protect the system we may simply check each process before executing it or, if we do not have this
possibility we may define a controller that in any case force it to behave correctly.

We consider three levels of observability on the processX:

1. we cannot inspect its code; if X performs an action we may detect and intercept it;

2. we know which are the possible next steps and whether theX cannot perform a given action;

3. we are able to access its whole code.

Depending on these three scenarios, different techniques may be applied to enforce security properties.
In particular, in this last case, we can applied partial model checking to the system(S‖X), so we obtainX |= φ′

from S‖X |= φ whereφ′ = φ//S . In order to investigate ifX satisfies the formulaφ′ or not, we can applied model
checking technique. We can notice that, in this case, a controller is not necessary. Clearly this technique works as
far as decidability issues are solved.

5

In the other two cases, the introduction of a controller operator helps us to guarantee a correct behavior of the
entire system. The remaining two cases are similar but not equal. In fact, in the second case we can analyze the
set of possible next step in order to understand if the following action thatX is going to perform is correct or not
and eventually we can modify the behavior of the system and force it to be correct. Again, the inspection of the
next step could not be a decidable problem. We assume it is in the following.

We assume to have an operator, sayY .∗ X, that can permit to control the behavior of the componentX,
given the behavior of a control programY . Note that differently from other approaches the control target and the
controller are expressed in a similar formalism.

Example 3.1 Let E andF be two different process, and leta ∈ Act be an action. We define a new operator.′

(controller operator) by this two rules:
E

a→ E′ F
a→ F ′

E .′ F a→ E′ .′ F ′ (3)

E
a→ E′

E .′ F a→ E′ .′ F
(4)

This controller operator can be helpful in the first scenario that we have illustrated before. In fact with this
operator we force the system to make always the right action also if we don’t know what actionX is going to
perform. A more clever controller may be defined if we are permitted to observe the possible next steps ofF .

3.1 Enforcing security properties

Let S be a system, and letX one of its components (e.g., a downloaded mobile agent). We say that the new system
S‖X enjoys a security property expressed iff for every behavior of the componentX, the behavior of the system
S enjoys that security property:

∀X(S‖X)\H |= φ (5)

whereH = Sort(X) andφ expresses the correct behavior of the system. We want to prove that exists an agentY
such that:

∀X(S‖Y .∗ X)\H |= φ (6)

After one step of partial model checking, we obtain the equivalent property:

∃Y ∀X (Y .∗ X) |= φ′ (7)

whereφ′ = φ//(S\H).
While the equation 7 should be the property to manage, it might not be easy. However, we note that if the

controller operator satisfies the following additional property

Assumption 3.1 For everyX andY , we have:

Y .∗ X ∼ Y

then the property7 is equivalent to:
∃Y Y |= φ′ (8)

As a matter of fact, the previous assumption permits us to conclude thatY .∗ X andY are strongly equivalent on
so they satisfy the same formulas. The formulation 8 is easier to be managed.

We note that the operator.′ defined in the Example 3.1 enjoys Assumption 3.1.

Proposition 3.1 The operator. enjoys Assumption 3.1.

While designing such a processY could not be difficult in principle, we can take advantage of our logical approach
and obtain an automated procedure as follows.

6

3.2 Automated synthesis of controllers

We may exploit the satisfiability procedure of theorem 2.1 for achieving the automated synthesis of suitable con-
trollers that enforce specific security properties, i.e. find a suitableY for 8. Unfortunately, the satisfiability
procedure has a complexity that is, in the worst case, exponential in the size of the formula. Eventually, this
provide us with an automated mechanism to enforce security properties.

3.3 Composition of properties

Our logical approach is able to struggle successfully with composition problems. If we should force many different
security policies, we have only to force the conjunction of this policies. In formulas: letφ1, · · · , φn ben different
security policies,S be our system andX be an external agent, we have:

∀X(S‖X)\H |= φ1 . . . ∀X(S‖X)\H |= φn

The following step to solve is reduce thisn proposition to one in the following way:

∀X(S‖X)\H |=
∧

i=1,··· ,n
φi (9)

If we assume
∧

i=1,···n φi = φ, we have the same situation that we have described by the formula 7.

4 Other controllers

We can define other controller operators as follows.
The controller.′′ have two rules:

E
a→ E′ F a→ F ′

E .′′ F a→ E′ .′′ F ′ (10)

E
a→ E′ F

a
6→ F ′

E .′′ F a→ E′ .′′ F
(11)

This controller is the most complete: ifF does not have a correct behavior, the processE correct the action of
F , so the system maintains a honest behavior, elseF make its action.

The following result holds.

Proposition 4.1 The preposition 3.1 holds also for two operator:.′ and.′′.

Another interesting operator is described by the following rule:

E
a→ E′ F a→ F ′

E .′′′ F a→ E′ .′′′ F ′ (12)

However, it is useful to note that for this operator a weaker proposition holds.

Proposition 4.2 BetweenY .′′′ X andY holds the following relations:

Y .′′′ X ≺ Y

i.e. Y .′′′ X andY are strong similar but not bisimilar.

As a matter of fact, for this operator we can ensure that the systems is secure only w.r.t. security properties that
are safety properties. Such properties are preserved under weak simulation (e.g. see [4]). Thus, we can enforce
safety properties through this controller.

7

4.1 Implementability issues for our controllers

We discuss in this section, how and also if, these controllers (.′, .′′ and.′′′) can be effectively implemented.
For the first controller operator,.′, we can note that this operator may in any moment neglect the agent behavior

because the behavior of the system may simply follow the behavior of the controller process. In particular, the
controller may always choose to perform its correct action, rather than waiting for an action by the target.

Thus, it would be easily implementable in all the three scenarios.
The operator.′′ cannot be implemented in the scenario 1: if we cannot decide a priori which are possible next

steps that the external agent is able and not able to perform and so we cannot implement the second rule (11).
In the scenario 2) such an operator would be implementable. It would be also possible in the scenario 2) to give
priority to the first rule in order to allow always the correct actions of the target. Thus, controller.′′ would be our
favorite, if we could consider scenario 2).

The last controller operator, as we will say after, can be implemented in any scenarios. As a matter of fact, it
coincides with the monitors defined in [14]. Below we discuss more deeply this point.

5 A simple example

Consider the processE = l.0 + h.h.l.0. The system E where no high level activity is present is weakly bisimilar
to l.0.

Consider the following equational definition (please note thatY is a variable here):

F =ν ([τ]F) ∧ [l]T ∧ 〈〈l〉〉T

It asserts that a process may and must perform the visible actionl.
As for the study ofBNDC-like properties we can apply the partial evaluation for the parallel operator we

obtain after some simplifications:
FE =ν ([τ]FE) ∧ [h]〈〈h〉〉T

which, roughly, expresses that after performing a visibleh action, the system reaches a configuration s.t. it must
perform another visibleh action.

The information obtained through partial model checking can be used to enforce a security policy which pre-
vents a system from having certain information leaks. In particular, if we use the definition of the controller as.′′,
we simply need to find a process that is a model for the previous formula, sayY = h.h.0.

Then, for any componentX, we have(E‖(Y .′′ X)) \ {h} satisfiesF .
For instance, considerX = h.0. The system

(E‖(Y .′′ X)) \ {h} τ−→ (h.l.0‖(h .′′ 0)) \ {h}

Thus, using the second rule the controller may force to issue anotherh and thus we eventually get

(h.l.0‖(h .′′ 0)) \ {h} τ−→ (l.0‖(0 .′′ 0)) \ {h} ≈ l.0

and so the system still preserve its security since the actions performed by the componentX have been prevented
from being visible outside. On the contrary, if the controller would not be there there there would be a deadlock
after the first internal action.

8

6 Discussion on related work

In [9], we presented preliminary work based on different techniques for automatically synthesizing systems en-
joying a very strong security property, i.e. SBSNNI (e.g., see [3]). That work did not deal with controllers.

Much of prior work is about the study of enforceable properties and related mechanisms.
In [14], Schneider deals with enforceable security properties in a systematic way. He discusses whether a given

property is enforceable and at what cost. To study those questions, Schneider uses the class of enforceable mech-
anisms (EM) that work by monitoring execution steps of some system, herein called thetarget, and terminating
the target’s execution if it is about to violate the security property being enforced. The author asserts there isn’t
any EM (Execution Monitoring) that can enforce information flow because it can’t be formalized like a safety
property. The security automata defined in [14] have the follow behavior:

• If the automaton can make a transition on given input symbol, then the target is allowed to perform that step.
The state of the automaton changes according to the transition rules.

• otherwise the target is terminated and we can deduce that security property can be violated.

He explicitly assumes to be in the scenario that we call 1).
We can note that our controller operator,.′′′, have the same behavior of the security automata for enforcement

that Schneider defines in his article.
The operator.′′′ have only the following rule:

E
a→ E′ F a→ F ′

E .′′′ F a→ E′ .′′′ F

Roughly speaking, if processF does the correct action thenE .′′′ F does a correct transaction else the system
stops.

This fact is very important because, as we say in the proposition 4.2,Y .′′′X andY are strongly similar but not
bisimilar. So this two processes are not strongly equivalent and they don’t satisfy all the same formulas. So, also
with our formalism, we can not enforce information flow with this operator.

We can however define an operator in scenario 1) that enforces information flow property. The cost of this
operation is that the behavior of the controller component may be completely neglected. Thus, from a practical
point of view, our operator is not very useful in practice.

However, we may notice that our work is a contribution w.r.t. the work of Schneider since it allows the automatic
construction of the correct monitor.

Also in [5, 2] there is the idea that information flow can not be forced by an automaton. The reasoning is
the same that is given by Schneider in [14]: information flow can only be specified as a condition on the set of
possible execution of a program instead a property is defined exclusively in term of individual execution and may
not specify a relationship between different executions of the program.

In both of these articles, many types of automata are illustrated. All of them are in the scenario 1). The automata
waits for an action of the target. In particular, in [5] there are four different automata:

truncation automata it can recognize bad sequences of actions and halt program execution before the security
property is violated, but cannot otherwise modify program behavior. These automata are similar to Schnei-
der’s original security monitor;

suppression automatain addition to being able to halt program execution, it has the ability to suppress individual
program actions without terminating the program outright;

insertion automata it is able to insert a sequence of actions into the program action stream as well as terminate
the program;

9

edit automata it combines the powers of suppression and insertion automata. It is able to truncate action se-
quences and insert or suppress security-relevant actions at will.

Now we should give a definition of these automata by our formalism. Since that truncation automata is the same
automata is described in [14], we already define a controller operator which have the same outputs.

Now we should prove the same properties for the other automata. For this reason, we introduce the following
controller operators:.S , .I and.E .

To be able to compare these automata with controllers definable in our framework, it is crucial to have a rigorous
definition of semantic rules that describe the behavior of each operator:

.S

E
a→ E′ F a→ F ′

E .S F
a→ E′ .S F ′ (13)

E 6 a→ E′ E
−a−→ E′ F

a→ F ′

E .S F
τ→ E′ .S F ′ (14)

where−a is an action not inAct, so it doesn’t admit a complementary action, which is made by the process
E in order to verify that the processF performs the actiona and τ is an internal action that permit to
suppress the actiona which is made byF .

.I

E
a→ E′ F

a→ F ′

E .I F
a→ E′ .I F ′ (15)

E 6 a→ E′′ E
+a.b1···bn→ E′ F

a→ F ′

E .I F
b1···bn→ E′ .I F

(16)

where+a is an action not inAct, so it doesn’t admit a complementary action, which is perform by the
processE in order to verify if the processF is going to perform the actiona. In this case the controller
process insert a sequence of actionb1 · · · bn and the entire system performs this sequence of actions1.

.E

E
a→ E′ F

a→ F ′

E .E F
a→ E′ .E F ′ (17)

E 6 a→ E′ E
−a−→ E′ F

a→ F ′

E .E F
τ→ E′ .E F ′ (18)

E 6 a→ E′′ E
+a.b1···bn→ E′ F

a→ F ′

E .E F
b1···bn→ E′ .E F

(19)

These three rules derive from the union of the two previous controller operators.

We should prove the following general result:

Proposition 6.1 LetK be a set of different kind of automata,K = {suppression, insertion, edit}. If an K-
automata outputs a sequence of actionsσ then the controller operator.K is able to infer the same sequence of
actions. Also vice-versa holds.

The proofs are given in the appendix.

1Here, we consider a multiple step relation in this rule; it could be possible to define a one step rule by inserting additional control
actions. A more precise correspondence is thus worth of investigation but out of the scope of this paper.

10

7 Conclusion and future work

We illustrated some preliminary results towards a uniform theory for enforcing security properties based on a
process calculi and logical formalization of security properties. With respect to prior work in the area we also
add the possibility to automatically build enforcing mechanisms. Much work need to be done in order to make
our approach more feasible in practice. We argue that there are many security properties whose corresponding
controller may be built more efficiently. Moreover, the comparison among our framework and others should be
better developed.

With this work, we contribute to extend a framework based on process calculi that have been shown to be very
suitable to model and verify security properties. We argue that extending our approach to consider timed security
properties should be possible and worth of investigation.

References

[1] H. R. Andersen. Partial model checking. InLICS ’95: Proceedings of the 10th Annual IEEE Symposium on Logic in
Computer Science, page 398. IEEE Computer Society, 1995.

[2] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In I. Cervesato, editor,Foundations of Computer
Security: proceedings of the FLoC’02 workshop on Foundations of Computer Security, pages 95–104, Copenhagen,
Denmark, 25–26 July 2002. DIKU Technical Report.

[3] R. Focardi and R.Gorrieri. A classification of security properties.Journal of Computer Security, 3(1):5–33, 1997.

[4] S. Gnesi, G. Lenzini, and F. Martinelli. Logical specification and analysis of fault tolerant systems through partial
model checking.International Workshop on Software Verification and Validation (SVV), ENTCS., 2004.

[5] J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for run-time security policies.Interna-
tional Journal of Information Security, 4(1–2):2–16, Feb. 2005.

[6] G. Lowe. Semantic models for information flow.Theor. Comput. Sci., 315(1):209–256, 2004.

[7] F. Martinelli. Formal Methods for the Analysis of Open Systems with Applications to Security Properties. PhD thesis,
University of Siena, Dec. 1998.

[8] F. Martinelli. Partial model checking and theorem proving for ensuring security properties. InCSFW ’98: Proceedings
of the 11th IEEE Computer Security Foundations Workshop, page 44. IEEE Computer Society, 1998.

[9] F. Martinelli. Towards automatic synthesis of systems without informations leaks. InProceedings of Workshop in
Issues in Theory of Security (WITS), 2000.

[10] F. Martinelli. Analysis of security protocols asopensystems.Theoretical Computer Science, 290(1):1057–1106, 2003.

[11] F. Martinelli. A uniform approach for the analysis of security protocols and access control systems.FMOODS 2005,
LNCS, 2005.

[12] R. Milner. Communicating and mobile systems: theπ-calculus. Cambridge University Press, 1999.

[13] M. Müller-Olm. Derivation of characteristic formulae. InMFCS’98 Workshop on Concurrency, volume 18 ofElectronic
Notes in Theoretical Computer Science (ENTCS). Elsevier Science B.V., August 1998. 12 pages, MFCS’98 Workshop
on Concurrency.

[14] F. B. Schneider. Enforceable security policies.ACM Transactions on Information and System Security, 3(1):30–50,
2000.

11

[15] R. S. Street and E. A. Emerson. An automata theoretic procedure for the propositionalµ-calculus. Information and
Computation, 81(3):249–264, 1989.

A Partial evaluation function for parallel operator

In this section we give some rules for partial evaluation function for parallel operator given by Andersen in [1]:

(D↓X)//t = (D//t)↓Xt

ε//t = ε

(X =σ AD)//t = ((Xs =σ A//s)s∈Der(t))(D)//t

X//t = Xt

[a] A//s = [a](A//s)∧
∧

s
a→s′

A//s′ if a6=τ

[τ] A//s = [τ](A//s)∧
∧

s
τ→s′

A//s′∧
∧

s
a→s′

[ā](A//s′)

(A1∧A2)//s = ((A1)//s)∧((A2)//s)
T//s = T

B Semantics of equationalµ-calculus

We give the formal semantics of equationalµ-calculus (see [1]). It is assumed that variables appear only once on
the left-hand sides of the equations of the list. We denote the set of this variable withDefD. Let 〈S,A, { a→}a∈A〉
be an LTS extended withρ an enviroment that assigns subsets ofS to the variables that appear in the assertions of
D, but which are not inDef(D). The semanticsJAK′ρ of an assertionA is the following:

JTK′ρ = S

JFK′ρ = ∅
JXK′ρ = ρ(X)

JA1 ∧A2K′ρ = JA1K′ρ ∩ JA2K′ρ
JA1 ∨A2K′ρ = JA1K′ρ ∪ JA2K′ρ

J〈a〉AK′ρ = {s | ∃s′ : s
a→ s′ ands′ ∈ JAK′ρ}

J[a]AK′ρ = {s | ∀s′ : s
a→ s′ impliess′ ∈ JAK′ρ}

The semantics of a list of equationsD, JDKρ is an enviroment that assigns subsets ofS to variables inDef(D).
A list of equations is closed if every variable that appears in the assertions of the list is inDef(D). We uset
to represent union of disjoint environments. Letσ be in {µ, ν}, thenσU.f(U) represents theσ fixpoint of the
functionf in one variableU .

JεKρ = []
JX =σ AD′K = JD′K(ρt[U ′/X]) t [U ′/X]

where
U = σU.JAK′(ρt[U/X]tρ′(U)) andρ′(U) = JD′K(ρt[U/X])

12

It informally says thatthe solution to(X =σ A)D is theσ fixpointsolutionU ′ of JAK where the solution to the
rest of the lists of equationsD is used as environment.

C Operational Semantics of SPA

Prefixing:

α.E
α−→ E

Choice:
E1

a−→ E′
1

E1 + E2
a−→ E′

1

E2
a−→ E′

2

E1 + E2
a−→ E′

2

Parallel:

E1
a−→ E′

1

E1‖E2
a−→ E′

1‖E2

E2
a−→ E′

2

E1‖E2
a−→ E1‖E′

2

E1
l→ E′

1 E2
l→ E′

2

E1‖E2
τ→ E′

1‖E′
2

Constant:
Z

.= E E
α−→ E′

Z
α−→ E′

Restriction:
E1

α−→ E′
1

E1\L α−→ E′
1\L

(α 6∈L∪L)

Figure 1: Operational semantics forSPA.

D Technical proofs

Proposition 3.1For everyX exists anY such that:

Y . X ∼ Y

Proof : We show that the following relation is a strong bisimulation:

R = {(E . F,E) | E ∈ Proc(Y), F ∈ Proc(X)}

whereProc(Y) is the set of process thatY can do,Proc(X) is the same forX.

(E . F, E) ∈ R : Assume that(E . F, E) ∈ R and(E . F, E) a→ (E . F, E)′. According to given semantic
rules,(E . f)′ can beE′ . F or E′ . F ′. For both of this cases, we have that existsE′ s.t. E

a→ E′. We
have also(E′ . F, E′) ∈ R or (E′ . F ′, E′) ∈ R. It’s depend on which rule we have applied.

(E,E . F) ∈ R : Assume that is true the converse of the relationR and we haveE → E′. Using one of the two
rules that we have for the monitoring operator., we can have two different options for(E . F)′. In both
cases exists(E . F)′ s.t. (E . F) a→ (E . F)′ and(E′, (E . F)′) ∈ R−1.

2

13

Proposition 4.1The preposition 3.1 holds also for two operator:.′ and.′′.
Proof: With the same argument of the previous demonstration, we can proof thatY .′′X ∼ Y andY .′′′X ∼ Y .

2

Proposition 4.2BetweenY .′′′ X andY holds the following relation:

Y .′′′ X ≺ Y

i.e. Y .′′′ X andY are strong similar but not bisimilar.
Proof: We have only the following rule:

E
a→ E′ F a→ F ′

E .′′′ F a→ E′ .′′′ F ′

We can notice behavior ofE .′′′′ F depend on behavior ofE and on behavior ofF . This two processes is not

bisimilar because we can haveE
a→ E′ andF

a
6→ F ′. In this case we can not concludeE .′′′ F a→ E′ .′′′ F ′.

E .′′′ F andE are strongly similar: we assume thatE .′′′ F a→ E′ .′′′ F ′ andF
a→ F ′ then, by the rule 12 we

have thatE
a→ E′ and, obviously,(E′ .′′′ F ′, E′) ∈ R. With a similar reasoning we prove also thatY .′′′X ≺ X.

2

E Technical proofs about related work

In order to prove the theorem 6.1, we note that a security automata is a deterministic finite-state or countably
infinite-state machine that is defined with respect to some system with action setAct and in our approach, we
consider only finite state processes. We also have to note that in both of case we must consider only one action for
single step. With this additional hypothesis we are able to effectively prove theorem 6.1.

We now report all the definition of automata that are given in [2]. We start giving some notation: withσ we
denote a sequences of actions,· is the empty sequence,δ is a partial functionδ : Act × Q → Q, it specifies the
transition function for the automata and indicates that the automata should accept the current input and move in a
new state.

truncation automata The operational semantic of truncation automata is:

(σ, q) a−→T (σ′, q′) (T-Step)

if σ = a; σ′

andδ(a, q) = q′

(σ, q) τ−→T (·, q) (T-Stop)

otherwise

suppression automataIt is define as(Q, q0, δ, ω) whereω : Act × Q → {−, +} indicates whethere or not the
action in question is to be suppressed (-) or emitted (+).

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = +
(σ, q) τ−→S (σ′, q′) (S-StepS)

14

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = −
(σ, q) τ−→S (·, q) (S-Stop)

otherwise

isertion automata It is define as(Q, q0, δ, γ) whereγ : Act × Q → −→
Act × Q that specifies the insertion of a

finite sequence of actions into the program’s action sequence.

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a; σ′

andδ(a, q) = q′

(σ, q) b1···bn−→ I (σ, q′) (I-Ins)

if σ = a; σ′

andγ(a, q) = b1 · · · bn, q′

(σ, q) τ−→I (·, q) (I-Stop)

otherwise

edit automata It is define as(Q, q0, δ, γ, ω) whereγ : A × Q → −→A × Q that specifies the insertion of a finite
sequence of actions into the program’s action sequence andω : A × Q → {−, +} indicates wheter or not
the action i question is to be suppressed (-) or emitted (+).

(σ, q) a−→e (σ′, q′) (E-StepA)

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = +
(σ, q) τ−→e (σ′, q′) (E-StepS)

if σ = a; σ′

andδ(a, q) = q′

andω(a, q) = −
(σ, q) b1···bn−→ e (σ, q′) (E-Ins)

if σ = a; σ′

andγ(a, q) = b1 · · · bn, q′

(σ, q) τ−→e (·, q) (E-Stop)

otherwise

In order to guarantee homogeneity of notation, we assume to work with an LTS, since that both automata and
sequential process are LTS ([12]). We should give a proof of theorem 6.1 proving that a bisimulation exists
between automata and controller operator. First of all, we prove the following lemmas. From these results come,
immediately the prove of the previous theorem.

Lemma E.1 Every sequence of actions that is an output of asuppression automata(Q, q0, δ, ω) is also derivable
from.S and vice-versa.

15

Proof: To simplify the notation, we chose to denote with the form(σ, q) a generic state of automata and with
E .S F a generic state of the process. In order to define a relation of strong bisimulationRS , we underline that
every couple(σ, q) of the suppression automata depend onδ andω. Since that the processE is a constant, also it
can depend on these two function. So we denoteE with Eq,ω. This process has the following definition:

Eq,ω = a.Eq′,ω if ω(a, q) = + andδ(a, q) = q′

= −a.Eq′,ω if ω(a, q) = − andδ(a, q) = q′

Now we can defineRS in the following way:

RS = {((σ, q), Eq,ω .S F) : (σ, q) ∈ −→Act×Q,Eq,ω .S F ∈ P, F
σ7→}

We have two cases:

• – Let ((σ, q), Eq,ω .S F) be inRS and (σ, q) a−→S (σ′, q′). We should prove that exists aP ′ s.t.
Eq,ω .S F

a−→ P ′ and ((σ′, q′), P ′) ∈ RS . We have, by rule (13) and by definition ofEq,ω, that if

Eq,ω a−→ Eq′,ω andF
a−→ F ′ thenEq,ω.SF

a−→ Eq′,ω.SF ′. NowF ′ σ7→′
. So((σ′, q′), Eq′,ω.SF ′) ∈

RS follows immediately.

– Let(Eq,ω .S F, (σ, q)) be inR−1
S andEq,ω .S F

a−→ Eq′,ω .S F ′. We should prove that exists a(σ, q)′

s.t. (σ, q) a−→S (σ, q)′ and(Eq′,ω .S F ′, (σ, q)′) ∈ R−1
S . For the rule S-StepA we have that(σ′, q′) is

the solution we search for a similar reasoning to that we have illustrated in the previous point.

• – Let ((σ, q), Eq,ω .S F) be inRS and (σ, q) τ−→S (σ′, q′). We should prove that exists aP ′ s.t.
Eq,ω .S F

τ−→ (Eq,ω .S F)′ and((σ′, q′), P ′) ∈ RS . We have, by rule (14) and by the definition of

Eq,ω, that if Eq,ω 6 a−→ Eq′,ω, Eq,ω −a−→ Eq′,ω where the action−a is made byEq,ω in order to verify
thatF performs the actiona and then suppress it, andF

a−→ F ′ thenEq,ω .S F
τ−→ Eq′,ω .S F ′. We

have alsoF ′ σ7→′
.So((σ′, q′), Eq′,ω .S F ′) ∈ RS follows immediately.

– Let(Eq,ω .S F, (σ, q)) be inR−1
S andEq,ω .S F

τ−→ Eq′,ω .S F ′. We should prove that exists a(σ, q)′

s.t. (σ, q) τ−→S (σ, q)′ and(Eq,ω .S F ′, (σ, q)′) ∈ R−1
S For the rule S-StepS we have that(σ′, q′) is

the solution we search for a similar reasoning to that we have illustrated in the previous point.

2

Lemma E.2 Every sequence of actions that is an output of ainsertion automata(Q, q0, δ, γ)is also derivable from
.I and vice-versa.

Proof: To simplify the notation, we chose to denote with the form(σ, q) a generic state of automata and with
E .I F a generic state of the process. In order to define a relation of strong bisimulationRI , we underline that
every couple(σ, q) of the suppression automata depend onδ andγ. Since that the processE is a constant, also it
can depend on these two function. So we denoteE with Eq,γ . This process has the following definition:

Eq,γ = a.Eq′,γ if δ(a, q) = q′

= +a.b1 · · · bn.Eq′,γ if γ(a, q) = b1 · · · bn, q′

Now we can defineRI in the following way:

RI = {((σ, q), Eq,γ .I F) : (σ, q) ∈ −→Act×Q,Eq,γ .I F ∈ P, F
σ7→}

We have two cases:

16

• – Let ((σ, q), Eq,γ .I F) be inRI and(σ, q) a−→I (σ′, q′). We should prove that exists aP ′ s.t.Eq,γ .I

F
a−→ P ′ and ((σ′, q′), P ′) ∈ RI . We have, by rule (15) and by definition ofEq,γ , that if Eq,γ a−→

Eq′,γ andF
a−→ F ′ thenEq,γ .I F

a−→ Eq′,γ .I F ′. NowF ′ σ7→′
. So((σ′, q′), Eq′,γ .I F ′) ∈ RI

follows immediately.

– Let (Eq,γ .I F, (σ, q)) be inR−1
I andEq,γ .I F

a−→ Eq′,γ .I F ′. We should prove that exists a(σ, q)′

s.t. (σ, q) a−→i (σ, q)′ and(Eq′,γ .I F ′, (σ, q)′) ∈ R−1
I . For the rule I-Step we have that(σ′, q′) is the

solution we search for a similar reasoning to that we have illustrated in the previous point.

• – Let ((σ, q), Eq,γ .I F) be inRI and (σ, q) b1···bn−→ I (σ, q′). We should prove that exists aP ′ s.t.

Eq,γ .I F
b1···bn−→ P ′ and ((σ, q′), P ′) ∈ RI . We have, by rule (16) and by to the definition ofEq,γ ,

that if Eq,γ 6 a−→ Eq′′,γ , Eq,γ +a.b1···bn−→ Eq′,γ , where+a is an action made by the processEq,γ to verify
thatF performs the actiona and then the processEq,γ performs the sequence of actionsb1 · · · bn, and

F
a−→ F ′ thenEq,γ .I F

b1···bn−→ Eq′,γ .I F . So((σ, q′), Eq′,γ .I F) ∈ RI follows immediately.

– Let (Eq,γ .I F, (σ, q)) be inR−1
I andEq,γ .I F

b1···bn−→ Eq′,γ .I F . We should prove that exists a(σ, q)′

s.t. (σ, q) b1···bn−→ (σ, q)′ and(Eq′,γ .I F, (σ, q)′) ∈ R−1
I . For the rule I-Ins we have that(σ, q′) is the

solution we search for a similar reasoning to that we have illustrated in the previous point.

2

Lemma E.3 Every sequence of actions that is an output of anedit automata(Q, q0, δ, γ, ω) is also derivable from
.E and vice-versa.

Proof: In order to prove this lemma, we give the relation of bisimulationRE which exists between edit automata
and the controller operator.E .

Eq,γ,ω = a.Eq′,γ,ω if δ(a, q) = q′ andω(a, q) = +

= −a.Eq′,γ,ω if δ(a, q) = q′ andω(a, q) = −
= +a.b1 · · · bn.Eq′,γ,ω if γ(a, q) = b1 · · · bn, q′

We defineRE in the following way:

RE = {((σ, q), Eq,γ,ω .E F) : (σ, q) ∈ −→Act×Q,Eq,γ,ω .E F ∈ P, F
σ7→}

We have three cases:

• – Let ((σ, q), Eq,γ,ω .E F) be inRE and (σ, q) a−→e (σ′, q′). We should prove that exists aP ′ s.t.
Eq,γ,ω .E F

a−→e P ′ and ((σ′, q′), P ′) ∈ RE . We have, by rule (17) and by definition ofEq,γ,ω,

that if Eq,γ,ω a−→e Eq′,γ,ω and F
a−→ F ′ thenEq,γ,ω .E F

a−→ Eq′,γ,ω .E F ′. NowF ′ σ7→′
e. So

((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE follows immediately.

– Let (Eq,γ,ω .E F, (σ, q)) be inR−1
E andEq,γ,ω .E F

a−→ Eq′,γ,ω .E F ′. We should prove that exists

a (σ, q)′ s.t. (σ, q) a−→ (σ, q)′ and(Eq′,γ,ω .E F ′, (σ, q)′) ∈ R−1
E . For the rule E-StepA we have that

(σ′, q′) is the solution we search for a similar reasoning to that we have illustrated in the previous
point.

• – Let ((σ, q), Eq,γ,ω .E F) be inRE and (σ, q) τ−→e (σ′, q′). We should prove that exists aP ′ s.t.
Eq,γ,ω .E F

τ−→ P ′ and((σ′, q′), P ′) ∈ RE . We have, by rule 18 and by the definition ofEq,γ,ω, that

17

if Eq,γ,ω 6 a−→ Eq′,γ,ω, Eq,γ,ω −a−→ Eq′,γ,ω where the action−a is made byEq,γ,ω in order to verify
thatF performs the actiona and then suppress it, andF

a−→ F ′ thenEq,γ,ω .E F
τ−→ Eq′,γ,ω .E F ′.

NowF ′ σ7→′
. So((σ′, q′), Eq′,γ,ω .E F ′) ∈ RE follows immediately.

– Let (Eq,γ,ω .E F, (σ, q)) be inR−1
S andEq,ω .S F

τ−→ Eq′,γ,ω .E F ′. We should prove that exists

a (σ, q)′ s.t. (σ, q) τ−→e (σ, q)′ and(Eq,γ,ω .E F ′, (σ, q)′) ∈ R−1
E For the rule E-StepS we have that

(σ′, q′) is the solution we search for a similar reasoning to that we have illustrated in the previous
point.

• – Let ((σ, q), Eq,γ,ω .E F) be inRE and (σ, q) b1···bn−→ e (σ, q′). We should prove that exists aP ′ s.t.

Eq,γ,ω .E F
b1···bn−→ P ′ and ((σ, q′), P ′) ∈ RE . We have, by rule 19 and by the definition ofEq,γ,ω

that if Eq,γ,ω 6 a−→ Eq′′,γ,ω, Eq,γ,ω +a.b1···bn−→ Eq′,γ,ω, where+a is an action made by the processEq,γ,ω

to verify thatF performs the actiona and then the processEq,γ,ω performs the sequence of actions

b1 · · · bn, andF
a−→ F ′ thenEq,γ,ω .E F

b1···bn−→ Eq′,γ,ω .E F . So((σ, q′), Eq′,γ,ω .E F) ∈ RE follows
immediately.

– Let (Eq,γ,ω .E F, (σ, q)) be inR−1
E andEq,γ,ω .E F

b1···bn−→ Eq′,γ,ω .E F . We should prove that exists a

(σ, q)′ s.t. (σ, q) b1···bn−→ (σ, q)′ and(Eq′,γ .E F, (σ, q)′) ∈ R−1
E . For the rule E-Ins we have that(σ, q′)

is the solution we search for a similar reasoning to that we have illustrated in the previous point.

2

18

	cover7.pdf
	Consiglio Nazionale delle Ricerche
	Partial model checking, process algebra operators and satisf
	procedures for (automatically) enforcing security properties
	F. Martinelli, I. Matteucci
	Iit

