©

%ﬂd@'yﬁa Niionate detle Ficerche

Partial model checking, process algebra
operators and satisfiability
procedures for (automatically) enforcing
security properties

F. Martinelli, I. Matteucci

IIT TR-07/2005

Technical report

Marzo 2005

H /B

Istituto di Informatica e Telematica

H /B

Partial model checking, process algebra operators and satisfiability
procedures for (automatically) enforcing security properties

Fabio Martinellt, llaria Matteucci-?
Istituto di Informatica e Telematica - C.N.R., Pisa, Ifaly
{Fabio.Martinelli, llaria.Matteucg¢i@iit.cnr.it
Dipartimento di Matematica, Univeraitdegli Studi di Sierta

Abstract

In this paper we show how the partial model checking approach for the analysis of secure systems may
be also useful for enforcing security properties. We define a set of process algebra operators that act as pro-
grammable controllers of possibly insecure components. The program of these controllers may be automatically
obtained through the usage of satisfiability procedures for a variant of mu-calculus.

1 Overview

Many approaches for the analysis of security properties have been successfully developed in the last two decade
One is based on the idea that potential attackers should be analyzed as if they were un-specified components o
system; thus reducing security analysis to the analysipehsystems [7, 8, 10].

More recently there has been also interest on developing techniques to study how to enforce security propertie
One notable example is the security automata in [14] and some extensions proposed in [5].

The paradigm of analysis of security as analysis of open systems has been extended to cope with securi
protocols [10], fault tolerance [4] and recently access control based on trust management [11]. In this paper we
enrich this theory with a method for (automatically) enforcing security properties.

Basically, we define a set of process algebra operators that act as programable controllers of a component th
must be managed in order to guarantee that the overall system satisfies a given security policy. Also, we develope
a technique to automatically synthesize the appropriate controllers. This represent a significant contribution w.r.t
to the previous work in [14, 5] where this issue was not addressed. The synthesis is based on a satisfiabilit
procedure for the mu-calculus.

Moreover, under certain hypothesis on the observation power of the enforcing controllers, we are able to enforc
some non-interference properties (for finite-state systems) that were not intentionally addressed in [14], due to th
specific assumptions they had on the enforcing mechanisms.

Our logical approach is also able to cope with composition problems, that have been considered as an interestir
issue in [2], however, not addressed in the journal version [5].

This paper is organized as follows. Section 2 recalls the basic theory about the analysis of security properties
especially non-interference as properties of open systems. Section 3 explains our approach and Section 4 exten
it to manage several kind of enforcement mechanisms. Section 5 illustrates an example. Section 6 presents
discussion on related work and eventually Section 7 concludes the paper.

*Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by a CREATE-NET grant for the project
“Quality of Protection (QoP)".

2 Background

In this section we briefly recall some technical machinery used in our approach and also a logical approach fol
dealing with information flow properties.

2.1 Alanguage for describing concurrent and distributed systems

We now describe the syntax for tBecurity process algeb(& P A) [3] used to describe concurrent and distributed
systems that is derived from CCS process algebra of R. Milner [12]:

E:=0|a.E|E +Ey | E\|Ey | E\L | Z

whereq is an action inAct, L C £ andZ is a process constant that must be associated with a defiditionk.
As usual, we assume that constantsgararded[12], i.e. they must be in the scope of some prefix operatdr .
The set ofS P A processed.e., of terms with guarded constants, is denoted @jttanged over by, F, P, @
We will often use some usual syntactic simplifications, e.g., omission of tralgas well as omission of brackets
on restriction on a single action. We uSert(E) to denote the set of actions that occurs in the t&rm

We give an informal overview a$ P A operators:

e 0is a process that does nothing.
e «.F is a process that can perform araction and then behaves &S
e [y + FE5 (choice represents the nondeterministic choice between the two procBssesl £

e FE1||E; (parallel) is the parallel composition of processes that can proceed in an asynchronous way but they
must synchronize on complementary actions to make a communication, represented by an interral action

e E\L (restriction) is the proces# when actions inl, U L are prevented.
The operational semantics of SPA terms is given in terms of Labeled transitions Systems (LTS).

Definition 2.1 A labeled transition systerf€,7) (LT'S) of concurrent processes ovéict has the process ex-
pressions as its states, and its transitioris are exactly which can be inferred from the transition rules for
processes.

In the appendix the interested reader may find the formal definition of the semantics.

2.2 Strong and weak bisimulations

Often it is necessary to compare processes that are expressed using different terms but have the same behavior.
thus recall some useful relations on processes.

Definition 2.2 Let (£,7) be an LTS of concurrent processes, andRebe a binary relation ove€. ThenR is
calledstrong simulatior{denoted by<) over (&, 7) if and only if, whenevefE, F') € R we have:

if E-% E'thenthere exist§” € £s.t. F % F'and(E',F') € R
Now, we can definstrong bisimulation

Definition 2.3 A binary relationR over¢ is said astrong bisimulatiorfdenoted by~) over the LTS of concurrent
processes$E, 7) if both R and its converse are strong simulation.

We define another kind of bisimulatioweak bisimulation This relation is used when there is the necessity
to understand if systems with different internal structure, and hence different internal behavior, have the same
external behavior and thus may be considered observationally equivalent.

Before, we give the notion afbservational relationsE = E' (or E = E')if E =" E' (where> is the
reflexive and transitive closure of the relation); fora # 7, E = E' if E 5% E/.

We, now, give the definition of weak simulation. This definition is very similar to the definition of strong
simulation, but reference to experimerisinstead of arbitrary actions:.

Definition 2.4 Let R be a binary relation over a set of proce§s ThenR is said to be aveak— simulation
(denoted byx) if, whenevel(E, F) € R,

if E 5 E'thenthere exist§” ¢ £s.t.F = F'and(E',F') € R.

We, now, give a definition similar to the 2.3 for the weak bisimulation.

Definition 2.5 A binary relationR over€ is said aweak bisimulatiorover the LTS of concurrent procesgés7)
if both 'R and its converse are weak simulation.

Every strong simulation is also a weak one (see [12])

2.3 Equational y-calculus

Modal p-calculus is a process logic well suited for specification and verification of systems whose behavior is
naturally described by state changes by means of actions. It is a normal moddtlagigmented with recursion
operators. It permits us to express a lot of interesting propertiesdilatyproperties as well dé’enesgproperties,
as well as allowing us to express equivalence conditions over LTS.

Equationalu-calculus is based on fixpoint equations that substitute recursion operators, so it permits to define
recursively the properties of a given systems.

We use the equational-calculus instead of modai-calculus because the first one is very suitable for partial
model checking (see [1]). Letbe in Act and X be a variable ranging over a finite set of variables-s.

We give the grammar:

A:=X|T|F| XiANXe | X1V Xe| ()X |[a]X

D:=X=,AD|X =,AD |¢

X =, Ais aminimal fixpoint equation, wheré is an assertion, i.e. a simple modal formula without recursion
operator, and =, A is a maximal fixpoint equation. Roughly, the semafifif of the list of equations is the
solution of the system of equations corresponding’toAccording to this notation]D](X) is the value of the
variableX, and we writeE' = D | X as a notation foF € [D](X).

The following result can be proved by putting together standard results for decision procedyresfoulus
(see [15)).

Theorem 2.1 Given a formulay it is possible to decide in deterministic exponential time in the lengthifdhere
exists a structure which is a modelpfind it is also possible to give an example of it.

2.4 Characteristic formulae

A characteristic formula is a formula in equatiopatalculus that completely characterizes the behavior of a (state
in a) state-transition graph modulo a chosen notion of behavioral relation. It is possible to define the notion of
characteristic formula for a given finite state procgsw.r.t. weak bisimulation as follows (see [13]).

Definition 2.6 Given a finite state proceds, its characteristic formula (w.r.t. weak bisimulatioh); | Xg is
defined by the following equations for evdiy € Der(E), a € Act:

Xp=(N UaXe) AN Xen)
aE":E' 5B a E'"E'Z B
where((a)) of the modality(a) which can be introduce as abbreviation (see [13]):

def

()¢ = pX.ov(nX

def

{({a))¢ = (())(a){{e))¢

We have the following lemma that characterize the power of these formulas.
Lemma 2.1 Let E; and E» be two different finite-state processesy i, is characteristic forEs then:
1. If Fi ~ FEy thenE1 }: ¢E2

2. If By = ¢g, and E; is finite-state the®; ~ E.

2.5 Partial model checking

We use partial model checking technique that was developed for compositional analysis of concurrent system
(processes) (see [1]). The idea is the following: we consider a system which is the parallel composition of two
processE| F. We want to study if this system verifies a given formdlar not. In formula:

E|F ¢ 6y
With partial model checking we can reduce the previous property to:
FE¢E 2

Lemma 2.2 Given a proces¥ || F' and a formulap we have:

E|FE¢ift Fl=¢//p

In this way, we can notice that the reduced formgjaz only depends on the formutaand the procesg&’. No
information is required on the proceBs We assume that represents a possible enemies. Thus, given a certain
systemFE, we can find the property that the enemies must satisfy in order to make a successful attack on the systen
It is worth noticing that partial model checking functions may be automatically derived from the semantics rules
used to define a language semantics (Structured Operational Semantics). Thus the proposed technique is ve
flexible.

In the appendix there is the partial evaluation function for parallel operator.

2.6 Alogical approach for specifying and analyzing information flow properties

Information flowis a main topic in the theoretical study of computer security. We can find several formal definitions
in the literature (see [6]). To describe this problem, we can consider two #BghsandLow interacting with the
same computer system. We ask if there is any flow of information tiogh to Low. The central property is the
itshape Non Deducibility on compositioNDC, see [3]): the low level users cannot infer the behavior of the high
level user from the system because for the the low level users the system is always the same. This idea can |
represented as follow:

VII € High usersE | II = E w.r.t. Low users

We study this property in term @&PAparallel composition operator atisimulationequivalence.
We denote withBN DC' a security property calleBisimulation Non Deducibility on Compositians

Definition 2.7 Let £y = {II | Sort(H) C H U {7}} be the set of High userst € BN DC if and only if
VII € £y we have E||IT)\H ~ E\H.

By using the characteristic formulae of a process we may express this information flow property in a logical way.
E € BNDCIiff VI € S: (E|ID\H = ¢ mpr

By using partial model checking we have a method for reducing the verification of the previous property to a
validity checking problem inu-calculus (see [7]). (We must remember that this is true only if we consider finite-
state processes.)

Proposition 2.1 BN DC' is decidable for all finite state processEs

Our logical approach has been extended to cope with several security properties. Thus the approach we al
going to introduce is applicable to a wide set of security properties.

3 Our approach for enforcing security properties

We wish to provide a framework where we are able to enforce specific security properties. We assume to have
systems' that will cooperate with another high componént(S||.X'), possibly not known a priori. We would like
that the visible low behavior of this system is always the same regardless of the high component behavior.
By using the theory in [8], one can study whether a potential enemy could exists. In particular, we know the
necessary and sufficient conditions that an enemy should satisfy in order to alter the visible behavior of the systern
In order to protect the system we may simply check each process before executing it or, if we do not have this
possibility we may define a controller that in any case force it to behave correctly.
We consider three levels of observability on the procgss

1. we cannot inspect its code; if X performs an action we may detect and intercept it;
2. we know which are the possible next steps and whethektleannot perform a given action;
3. we are able to access its whole code.

Depending on these three scenarios, different techniques may be applied to enforce security properties.

In particular, in this last case, we can applied partial model checking to the s{Stext), so we obtainX = ¢’
from S||X |= ¢ where¢’ = ¢, /5. In order to investigate iX satisfies the formula’ or not, we can applied model
checking technigue. We can notice that, in this case, a controller is not necessary. Clearly this technique works &
far as decidability issues are solved.

In the other two cases, the introduction of a controller operator helps us to guarantee a correct behavior of th
entire system. The remaining two cases are similar but not equal. In fact, in the second case we can analyze tt
set of possible next step in order to understand if the following actionXhiatgoing to perform is correct or not
and eventually we can modify the behavior of the system and force it to be correct. Again, the inspection of the
next step could not be a decidable problem. We assume it is in the following.

We assume to have an operator, §ag* X, that can permit to control the behavior of the compongnt
given the behavior of a control prograrh Note that differently from other approaches the control target and the
controller are expressed in a similar formalism.

Example 3.1 Let £ and F' be two different process, and letc Act be an action. We define a new operator
(controller operator) by this two rules:
ESE FSF
Ex'F % E' v/ F/
ESFE
a (4)
ExF — E>F
This controller operator can be helpful in the first scenario that we have illustrated before. In fact with this

operator we force the system to make always the right action also if we don’t know what Actogoing to
perform. A more clever controller may be defined if we are permitted to observe the possible next5steps of

®3)

3.1 Enforcing security properties

Let S be a system, and Iéf one of its components (e.g., a downloaded mobile agent). We say that the new system
S|| X enjoys a security property expressed iff for every behavior of the componethie behavior of the system
S enjoys that security property:

VX (S|X)\H F ¢ (5)

whereH = Sort(X) and¢ expresses the correct behavior of the system. We want to prove that exists aii agent
such that:

YX(S|Y 5 X\H | ¢ ®)
After one step of partial model checking, we obtain the equivalent property:
VX (Yo" X) ¢ (7)

Whereqﬁ’ = ¢//(S\H)
While the equation 7 should be the property to manage, it might not be easy. However, we note that if the
controller operator satisfies the following additional property

Assumption 3.1 For everyX andY’, we have:
Yo" X ~Y

then the property is equivalent to:
WY ¢ (8)

As a matter of fact, the previous assumption permits us to conclud&thatX andY” are strongly equivalent on
so they satisfy the same formulas. The formulation 8 is easier to be managed.
We note that the operatof defined in the Example 3.1 enjoys Assumption 3.1.

Proposition 3.1 The operator- enjoys Assumption 3.1.

While designing such a processcould not be difficult in principle, we can take advantage of our logical approach
and obtain an automated procedure as follows.

3.2 Automated synthesis of controllers

We may exploit the satisfiability procedure of theorem 2.1 for achieving the automated synthesis of suitable con-
trollers that enforce specific security properties, i.e. find a suitébfer 8. Unfortunately, the satisfiability
procedure has a complexity that is, in the worst case, exponential in the size of the formula. Eventually, this
provide us with an automated mechanism to enforce security properties.

3.3 Composition of properties

Our logical approach is able to struggle successfully with composition problems. If we should force many different
security policies, we have only to force the conjunction of this policies. In formulagj Jet - , ¢,, ben different
security policiesS be our system an& be an external agent, we have:

VX(SIXNE ¢ ... YX(SIXN E 6,

The following step to solve is reduce thigoroposition to one in the following way:

VX(SIXN\H E N\ ¢ (9)

i=1,-,n
If we assume’\i:L__n ¢; = ¢, we have the same situation that we have described by the formula 7.

4 Other controllers

We can define other controller operators as follows.
The controllers” have two rules:

ELEFYE 0
Ex'F % B/ FY (10)
a
ESEFAF
~ B P (11)

Ev'F % B F
This controller is the most complete: if does not have a correct behavior, the prodés®rrect the action of
F, so the system maintains a honest behavior, Elggake its action.
The following result holds.

Proposition 4.1 The preposition 3.1 holds also for two operatof:andr".
Another interesting operator is described by the following rule:
ESEFSF
Ed" F % B F
However, it is useful to note that for this operator a weaker proposition holds.

(12)

Proposition 4.2 Betweert” >/ X andY holds the following relations:
Yo' X <Y

i.e. Y " X andY are strong similar but not bisimilar.

As a matter of fact, for this operator we can ensure that the systems is secure only w.r.t. security properties the
are safety properties. Such properties are preserved under weak simulation (e.g. see [4]). Thus, we can enfor
safety properties through this controller.

4.1 Implementability issues for our controllers

We discuss in this section, how and also if, these controliérs’(and>"") can be effectively implemented.

For the first controller operatar,, we can note that this operator may in any moment neglect the agent behavior
because the behavior of the system may simply follow the behavior of the controller process. In particular, the
controller may always choose to perform its correct action, rather than waiting for an action by the target.

Thus, it would be easily implementable in all the three scenarios.

The operator” cannot be implemented in the scenario 1: if we cannot decide a priori which are possible next
steps that the external agent is able and not able to perform and so we cannot implement the second rule (11
In the scenario 2) such an operator would be implementable. It would be also possible in the scenario 2) to give
priority to the first rule in order to allow always the correct actions of the target. Thus, contfolhesuld be our
favorite, if we could consider scenario 2).

The last controller operator, as we will say after, can be implemented in any scenarios. As a matter of fact, it
coincides with the monitors defined in [14]. Below we discuss more deeply this point.

5 A simple example

Consider the proceds = 1.0 + h.h.1.0. The system E where no high level activity is present is weakly bisimilar
tol.0.
Consider the following equational definition (please note ¥héd a variable here):

F =, ([7]F) AT A ()T

It asserts that a process may and must perform the visible dction
As for the study ofBN DC-like properties we can apply the partial evaluation for the parallel operator we
obtain after some simplifications:

Fg =, ([71Fg) A [R((h)T

which, roughly, expresses that after performing a visiblction, the system reaches a configuration s.t. it must
perform another visiblé action.

The information obtained through partial model checking can be used to enforce a security policy which pre-
vents a system from having certain information leaks. In particular, if we use the definition of the contrefler as
we simply need to find a process that is a model for the previous formuld; say..h.0.

Then, for any component, we have(E||(Y »” X)) \ {h} satisfiesF'.

For instance, consideY = h.0. The system

(EI(Y " X))\ {h} — (h.LO[|(R>" 0))\ {h}
Thus, using the second rule the controller may force to issue anotie thus we eventually get
(h.1.0||(h>" 0)) \ {R} — (1.0]|(0" 0)) \ {h} =~ 1.0

and so the system still preserve its security since the actions performed by the comYdrevat been prevented
from being visible outside. On the contrary, if the controller would not be there there there would be a deadlock
after the first internal action.

6 Discussion on related work

In [9], we presented preliminary work based on different techniques for automatically synthesizing systems en-
joying a very strong security property, i.e. SBSNNI (e.g., see [3]). That work did not deal with controllers.

Much of prior work is about the study of enforceable properties and related mechanisms.

In [14], Schneider deals with enforceable security properties in a systematic way. He discusses whether a give
property is enforceable and at what cost. To study those questions, Schneider uses the class of enforceable me
anisms (EM) that work by monitoring execution steps of some system, herein calletghe and terminating
the target's execution if it is about to violate the security property being enforced. The author asserts there isn’
any EM (Execution Monitoring) that can enforce information flow because it can't be formalized like a safety
property. The security automata defined in [14] have the follow behavior:

¢ If the automaton can make a transition on given input symbol, then the target is allowed to perform that step.
The state of the automaton changes according to the transition rules.

e otherwise the target is terminated and we can deduce that security property can be violated.

He explicitly assumes to be in the scenario that we call 1).

We can note that our controller operatgf,, have the same behavior of the security automata for enforcement
that Schneider defines in his article.

The operator”’ have only the following rule:

ESEFSF
Ev" F % B N A
Roughly speaking, if proces8 does the correct action theii>"" F' does a correct transaction else the system
stops.

This fact is very important because, as we say in the propositioir4:2, X andY are strongly similar but not
bisimilar. So this two processes are not strongly equivalent and they don’t satisfy all the same formulas. So, als
with our formalism, we can not enforce information flow with this operator.

We can however define an operator in scenario 1) that enforces information flow property. The cost of this
operation is that the behavior of the controller component may be completely neglected. Thus, from a practica
point of view, our operator is not very useful in practice.

However, we may notice that our work is a contribution w.r.t. the work of Schneider since it allows the automatic
construction of the correct monitor.

Also in [5, 2] there is the idea that information flow can not be forced by an automaton. The reasoning is
the same that is given by Schneider in [14]: information flow can only be specified as a condition on the set of
possible execution of a program instead a property is defined exclusively in term of individual execution and may
not specify a relationship between different executions of the program.

In both of these articles, many types of automata are illustrated. All of them are in the scenario 1). The automats
waits for an action of the target. In particular, in [5] there are four different automata:

truncation automata it can recognize bad sequences of actions and halt program execution before the security
property is violated, but cannot otherwise modify program behavior. These automata are similar to Schnei-
der’s original security monitor;

suppression automatain addition to being able to halt program execution, it has the ability to suppress individual
program actions without terminating the program outright;

insertion automata it is able to insert a sequence of actions into the program action stream as well as terminate
the program;

edit automata it combines the powers of suppression and insertion automata. It is able to truncate action se-
guences and insert or suppress security-relevant actions at will.

Now we should give a definition of these automata by our formalism. Since that truncation automata is the same
automata is described in [14], we already define a controller operator which have the same outputs.

Now we should prove the same properties for the other automata. For this reason, we introduce the following
controller operatorssg, >y ande .

To be able to compare these automata with controllers definable in our framework, it is crucial to have a rigorous
definition of semantic rules that describe the behavior of each operator:

>s
ELEFPSF
— _ — (13)
E >g F = B >g F’
ELE ESE F%F
7 — — (14)
EvgF 5 E'sg F/
where—a is an action not irAct, so it doesn’t admit a complementary action, which is made by the process
E in order to verify that the procesB performs the actiom and 7 is an internal action that permit to
suppress the actianwhich is made by
>r
ELFE F3SF
— _ — (15)
EviFF— E'vp F!
ELE" ETWhE p&p
RE L E Po as)
Ev F'5S" B F
where+a is an action not inAct, so it doesn’t admit a complementary action, which is perform by the
processE in order to verify if the proces$’ is going to perform the action. In this case the controller
process insert a sequence of actign- - b, and the entire system performs this sequence of aétions
>E
ESE FSF
— _ — (17)
E >E F - FE >E F'
ELE ESE FLF
id — — (18)
FE >E F— FE >E F’
ELE BTWhE o

Evg FU Brop
These three rules derive from the union of the two previous controller operators.

We should prove the following general result:

Proposition 6.1 Let K be a set of different kind of automatl, = {suppression,insertion,edit}. If an K-
automata outputs a sequence of actionthen the controller operatasi is able to infer the same sequence of
actions. Also vice-versa holds.

The proofs are given in the appendix.

Here, we consider a multiple step relation in this rule; it could be possible to define a one step rule by inserting additional control
actions. A more precise correspondence is thus worth of investigation but out of the scope of this paper.

10

7

Conclusion and future work

We illustrated some preliminary results towards a uniform theory for enforcing security properties based on a
process calculi and logical formalization of security properties. With respect to prior work in the area we also
add the possibility to automatically build enforcing mechanisms. Much work need to be done in order to make
our approach more feasible in practice. We argue that there are many security properties whose correspondir
controller may be built more efficiently. Moreover, the comparison among our framework and others should be
better developed.

With this work, we contribute to extend a framework based on process calculi that have been shown to be very
suitable to model and verify security properties. We argue that extending our approach to consider timed securit
properties should be possible and worth of investigation.

References

(1]

(2]

3]

[4]

[5]

[6]
[7]

(8]

9]

(10]
(11]

[12]
(13]

(14]

H. R. Andersen. Partial model checking. LICS "95: Proceedings of the 10th Annual IEEE Symposium on Logic in
Computer Scien¢@age 398. IEEE Computer Society, 1995.

L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In |. Cervesato, €ditodations of Computer
Security: proceedings of the FLoC’02 workshop on Foundations of Computer Sepaiys 95-104, Copenhagen,
Denmark, 25-26 July 2002. DIKU Technical Report.

R. Focardi and R.Gorrieri. A classification of security propertisirnal of Computer Securiti3(1):5-33, 1997.

S. Gnesi, G. Lenzini, and F. Martinelli. Logical specification and analysis of fault tolerant systems through partial
model checkinglnternational Workshop on Software Verification and Validation (SVV), ENTZ084.

J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms for run-time security pdfitsesa-
tional Journal of Information Securityl(1-2):2—16, Feb. 2005.

G. Lowe. Semantic models for information flowheor. Comput. Sgi315(1):209-256, 2004.

F. Martinelli. Formal Methods for the Analysis of Open Systems with Applications to Security PropPtiBghesis,
University of Siena, Dec. 1998.

F. Martinelli. Partial model checking and theorem proving for ensuring security properti€SHW '98: Proceedings
of the 11th IEEE Computer Security Foundations Workspage 44. IEEE Computer Society, 1998.

F. Martinelli. Towards automatic synthesis of systems without informations leak®rolteedings of Workshop in
Issues in Theory of Security (WIT3P00.

F. Martinelli. Analysis of security protocols apensystemsTheoretical Computer Scienc290(1):1057-1106, 2003.

F. Martinelli. A uniform approach for the analysis of security protocols and access control systsi@©DS 2005
LNCS, 2005.

R. Milner. Communicating and mobile systems: thealculus Cambridge University Press, 1999.

M. Mller-Olm. Derivation of characteristic formulae.Mi~CS’98 Workshop on Concurrenasyolume 18 ofElectronic
Notes in Theoretical Computer Science (ENTE&Hevier Science B.V., August 1998. 12 pages, MFCS’98 Workshop
on Concurrency.

F. B. Schneider. Enforceable security policig®CM Transactions on Information and System Secu8(g):30-50,
2000.

11

[15] R. S. Street and E. A. Emerson. An automata theoretic procedure for the propogiticaiaulus. Information and
Computation81(3):249-264, 1989.

A Partial evaluation function for parallel operator

In this section we give some rules for partial evaluation function for parallel operator given by Andersen in [1]:

(DlX)//t = (D//t)lXt
€ = €
(X =0 AD);p = ((Xs =0 Ay/s)seper)) (D)t
Xip = X
[l Ayys = [al(A AN o Ay if atr
M1 Ay = AN = Ape AN o a4)
(A1NA2) s = ((A1)y7s)N((A2))/5)
T, = T

B Semantics of equational:-calculus

We give the formal semantics of equatiopatalculus (see [1]). It is assumed that variables appear only once on
the left-hand sides of the equations of the list. We denote the set of this variablBwjfth. Let (S, A, {5} aca)

be an LTS extended withan enviroment that assigns subset$ @b the variables that appear in the assertions of
D, but which are notimDef (D). The semantic§A]’, of an assertio is the following:

[T], = S
[F], = 0
[X], = p(X)

[A1 A Ao, = [Ad], N [A2],

[A1v Ao, = [Ai], U[A:],
[(@)A]l, = {s|3s':s % s’ ands’ € [AT,}
[la]A]l, = {s|Vs':s s impliess’ € [A]]}

The semantics of a list of equatiofil [D], is an enviroment that assigns subsets$ @b variables inDe f (D).
A list of equations is closed if every variable that appears in the assertions of the lisbisfiiD). We useL!
to represent union of disjoint environments. bebe in{u, v}, thenoU.f(U) represents the fixpoint of the
function f in one variabldJ.

[el, = 1
[X = AD'] = [D'Tgupr/xp UIU'/X]

where
U - O—U[[A]]/(pu[U/X}LlpI(U)) andpl(U) = [[D,]](PU[U/X])

12

It informally says thathe solution to(X =, A)D is theo fixpointsolutionU’ of [A] where the solution to the
rest of the lists of equation® is used as environment

C Operational Semantics of SPA

Prefixing:

aFE - E
Choice:

B, % E] By % E)
By + By, E, E\+E, - FE}
Parallel: .
B -5 E By % E) B LS E BLE,
Ei||E; = Ej[|E2 Ei|E; = E1|Ey Ei||Ey 5 E||Ey
Constant:
Z=E E-S F

Z % F

Restriction: .
Ev—E _ eruT)

E\L % E)\L

Figure 1: Operational semantics {8P A.

D Technical proofs
Proposition 3.1For everyX exists any” such that:
Yo X~Y
Proof: We show that the following relation is a strong bisimulation:
R={(E>F,E)|E € Proc(Y),F € Proc(X)}
whereProc(Y') is the set of process th&it can do,Proc(X) is the same forX.

(E>F,E)cR : Assume thatE > F,E) € Rand(Ew> F,E) % (E > F,E). According to given semantic
rules,(E > f)’ can beE’ > F or E' > F’. For both of this cases, we have that existss.t. E % E'. We
have alsdE’> F, E') € Ror (E'>F', E') € R. It's depend on which rule we have applied.

(E,E>F) € R : Assume that is true the converse of the relafiband we haveZ — E’. Using one of the two
rules that we have for the monitoring operatome can have two different options f0F > F')’. In both
cases existéE > F)' s.t.(Ev> F) % (Ev F) and(E', (E> F)) e R

13

Proposition 4.1 The preposition 3.1 holds also for two operatgrand>".
Proof. With the same argument of the previous demonstration, we can prodf tfiat ~ Y andY > X ~ Y.

O
Proposition 4.2Betweeny > X andY holds the following relation:
Yo" X <Y

i.e. Y »"” X andY are strong similar but not bisimilar.
Proof. We have only the following rule:

ESEFSF
Ep" F N E/ o FY
We can notice behavior of > F' depend on behavior of and on behavior of. This two processes is not

a
bisimilar because we can ha#e-% E’ andF 4 F’. In this case we can not conclude>” F % E' " F.
Ev” F andE are strongly similar: we assume that"”’ F % E'" F’ andF % F’ then, by the rule 12 we
have that? % E’ and, obviously(E't" F', E') € R. With a similar reasoning we prove also thas” X < X.

|

E Technical proofs about related work

In order to prove the theorem 6.1, we note that a security automata is a deterministic finite-state or countably
infinite-state machine that is defined with respect to some system with actietrisand in our approach, we
consider only finite state processes. We also have to note that in both of case we must consider only one action ft
single step. With this additional hypothesis we are able to effectively prove theorem 6.1.

We now report all the definition of automata that are given in [2]. We start giving some notations with
denote a sequences of actionis the empty sequencé,is a partial functiory : Act x Q@ — Q, it specifies the
transition function for the automata and indicates that the automata should accept the current input and move in
new state.

truncation automata The operational semantic of truncation automata is:

(0,9) =1 (o', q) (T-Step)
if o =a;0’
andd(a, q) = ¢
(07 Q) L}T ('7 q) (T'Stop)
otherwise

suppression automatalt is define ag Q, qo, §, w) Wherew : Act x Q — {—, +} indicates whethere or not the
action in question is to be suppressed (-) or emitted (+).

(0,9) s (0',q) (S-StepA)
if o =a;o’
ands(a.q) = ¢
andw(a,q) = +

(0,9) —s (0',q) (S-StepS)

14

if o =a;0
ando(a,q) = ¢
andw(a,q) = —
(0,9) =5 (-9) (S-Stop)

otherwise

isertion automata It is define ag Q, qo, d,y) where~y : Act x Q — Act x Q that specifies the insertion of a
finite sequence of actions into the program’s action sequence.

(0,9) =1 (0',d) (I-Step)
if o0 = a;o0’
ands(a, q) = ¢
(07 Q) bﬂ)n[(07 q/) (|'|nS)
if o =a;o0’
andv(a, Q) = bl e bn7 q/
(07 Q) LI ('a Q) (|-St0p)

otherwise

edit automata It is define ag Q, qo, 9,7, w) wherey : 4 x Q — A x Q that specifies the insertion of a finite
sequence of actions into the program'’s action sequenceand x Q — {—,+} indicates wheter or not
the action i question is to be suppressed (-) or emitted (+).

(0,9) = (0,4) (E-StepA)
if o =a;0
andé(a,q) = ¢’
andw(a,q) = +

(0,9) = (0',4) (E-StepS)
if o0 =a;0’
ando(a,q) = ¢
andw(a,q) = —

(0,9) "%, (0,4) (E-Ins)
if o =a;o0’
andf}/(aa Q) = bl e bn7 q/

(Ua Q) L’e ('a q) (E'Stop)

otherwise

In order to guarantee homogeneity of notation, we assume to work with an LTS, since that both automata anc
sequential process are LTS ([12]). We should give a proof of theorem 6.1 proving that a bisimulation exists
between automata and controller operator. First of all, we prove the following lemmas. From these results come
immediately the prove of the previous theorem.

Lemma E.1 Every sequence of actions that is an output efippression automat&, qo, J, w) is also derivable
fromrg and vice-versa.

15

Proof: To simplify the notation, we chose to denote with the forng) a generic state of automata and with
E >g F a generic state of the process. In order to define a relation of strong bisimul&tignwve underline that
every coupléo, q) of the suppression automata depend@ndw. Since that the proceds is a constant, also it
can depend on these two function. So we dehbwdth £4“. This process has the following definition:

/

EOw — a. BT if w(a,q) = +andd(a,q) =q
— —aq.E9 if w(a,q) = —andd(a,q) = q

/

Now we can defin® g in the following way:
RS = {((O’q)aEq’w >s F) : (O-v Q) € *’@ X QvKM >s F e PvF 'z)}

We have two cases:

e —Let((o,q),E" >g F) be inRg and (0,q) ——s (0’,q'). We should prove that exists & s.t.
Ew g F % Pland((0/,q¢), P') € Rs. We have, by rule (13) and by definition B, that if
Eow %, pdw andF - F' thenE9pgF % B9 “sgF'. NowF' %' So((o', ¢), BT “bg F') €

R s follows immediately.
— Let(E¥ g F, (0,q)) beinRg' and B9 pg F — E7 >4 F'. We should prove that existga, ¢)’
sit.(0,q) %5 (0,q) and (EY* bg F', (0,q)") € Rg". For the rule S-StepA we have that, ¢') is
the solution we search for a similar reasoning to that we have illustrated in the previous point.

e —Let((o,q),E" >g F) be inRg and (0,q) ——s (0’,q'). We should prove that exists & s.t.
E% g F s (E% g F) and((o',¢'), P') € Rs. We have, by rule (14) and by the definition of
E%¥ thatif B9« /A E?w Etv —% E7« where the action-a is made byE% in order to verify
that ' performs the actiom and then suppress it, ad —— F’ thenE%* >g F —— E7“ g F'. We

g

have alsaoF”’ '—>/.So((a’, ¢), E7¥ >g F') € Rg follows immediately.

— Let(E%bg F, (0,q)) beinRg' and B9 >g F - B9 g F'. We should prove that existda,)’
s.t. (0,9) ——s (0,9)" and (B9 g F', (0,q)") € Rg' For the rule S-StepS we have tiat, ¢') is
the solution we search for a similar reasoning to that we have illustrated in the previous point.

O

Lemma E.2 Every sequence of actions that is an output ofsertion automatéQ, qo, J,)is also derivable from
> and vice-versa.

Proof: To simplify the notation, we chose to denote with the forng) a generic state of automata and with
E >y F a generic state of the process. In order to define a relation of strong bisimul&jomve underline that
every coupléo, q) of the suppression automata dependd@and~. Since that the proceds is a constant, also it
can depend on these two function. So we dehbwdth £4”. This process has the following definition:

9 — a. BT if 5(a,q) = ¢
= ta.by by BT if v(a,q) =b1-bp,q

Now we can defin® ; in the following way:
Ri = {((0,q), B¥ 51 F) : (0,q) € Act x Q, E¥V o, F € P, F 15}

We have two cases:

16

— Let((0,q), E% >; F) be inRy and (o, q) 1 (¢/,¢'). We should prove that exists”{ s.t. E97 >
F % Pand((¢',¢),P") € R;. We have, by rule (15) and by definitionBf, that if £ %~
B andF % F' then B9 5y F —% B9 by F'. Now F' %, So((¢’,¢), BT 51 F') € Ry
follows immediately.

— Let(E >1 F, (0,q)) beinR;* and B9 »; F —%» E7+7»; F’. We should prove that existsa, ¢)’
s.t.(0,9) —i (0,9)" and(EY Vb1 F', (0,q)') € R} . For the rule I-Step we have thé&t’, ¢') is the
solution we search for a similar reasoning to that we have illustrated in the previous point.

1wby

— Let ((0,q), E?Y vy F) be inR; and (o, q) brobe, (0,q"). We should prove that exists & s.t.
E® s, F "t prand ((0,¢"),P") € R;. We have, by rule (16) and by to the definition/sf”,

thatif 47 /A ga"n, gay Tt pd'y whereta is an action made by the proceB$ to verify
that F' performs the actiom and then the procesg?” performs the sequence of actidns - - b,, and

F % F' thenE%Y »; F "% B9 5, F.So((0,¢'), B »; F) € Ry follows immediately.

— Let(E?Y>r F, (0,q)) be inRI‘1 andE?¢V pr F brbe 'y >y F. We should prove that exista, ¢)’
s.t. (o,q) b1 b (0,9) and (E?" o1 F, (0,q)") € R;". For the rule I-Ins we have thdw, ¢') is the
solution we search for a similar reasoning to that we have illustrated in the previous point.

O

Lemma E.3 Every sequence of actions that is an output oédit automatd Q, qo, J, v, w) is also derivable from
>g and vice-versa.

Proof: In order to prove this lemma, we give the relation of bisimulafi®f which exists between edit automata
and the controller operatas .

BT — a. B4 if 6(a,q) = ¢ andw(a,q) = +
- —a. BV if 6(a,q) = ¢ andw(a,q) = —
= Faby - by BT if v(a,q) = by b, ¢

We definéR i in the following way:

Re = {((0,0), E? 5 F) : (0,q) € Ack x Q, BV s F € P, F 15}

We have three cases:

— Let ((0,q), B9 g F) be inRg and (0,q) . (¢/,¢'). We should prove that exists® s.t.
Et7pp F % P and((0,¢'), P') € Rg. We have, by rule (17) and by definition Bf:",
that if B4 —%, BT and F % F' then B9 by F % B9 py I Now F” +%.. So
((o',¢), B9 >p F') € R follows immediately.

— Let(E%" >y F, (0,q)) be inR;" and B9 b F - E47% »p F'. We should prove that exists
a(o,q) st (a,9) % (0,9) and (B9 g F', (0,q)') € R'. For the rule E-StepA we have that
(¢’,4¢") is the solution we search for a similar reasoning to that we have illustrated in the previous
point.

— Let ((0,q), E% >g F) be inRg and (0,q) ——. (¢/,¢'). We should prove that exists & s.t.
Et7sp B Prand((o’,q'), P') € Rg. We have, by rule 18 and by the definitionsf"~, that

17

if B s piow perw Z% pdive where the action-a is made byE%7 in order to verify
that F' performs the actiom and then suppress it, and —— F’ thenE¥"“ »p F —— E47 by

Now F” %, So((¢',¢'), EY" g F') € R follows immediately.

Let (B4 b F, (0,q)) be inRg! and B9 g F -5 F97¢ > F'. We should prove that exists
a(o,q) st (0,9) —>. (0,9) and(E¥"* >y F',(0,q)') € R For the rule E-StepS we have that
(¢’,4¢") is the solution we search for a similar reasoning to that we have illustrated in the previous
point.

Let ((a,q), B9 b F) be iR and (0, q) "%, (0,¢'). We should prove that exists® s.t.
B9 g BP0 prand ((0,¢"), P") € Rg. We have, by rule 19 and by the definitionfsf?~

that if 27w /s g’ pare T pdyw \whereta is an action made by the proceB§7

to verify thatF' performs the actiom and then the procesg?”* performs the sequence of actions

by bn, andF -2 F' thenE® by F "0 pavwsp B So((o,¢), EY)% b5 F) € Ry follows

immediately.

Let(E¥"“ b F, (0,q)) be inR;' and B4 b F brobe pd' v B, We should prove that exists a

(0,q) s.t.(0,q) b1t (0,9) and(EY7 > F, (0,q)') € Rg'. For the rule E-Ins we have thét, ¢')
is the solution we search for a similar reasoning to that we have illustrated in the previous point.

O

18

	cover7.pdf
	Consiglio Nazionale delle Ricerche
	Partial model checking, process algebra operators and satisf
	procedures for (automatically) enforcing security properties
	F. Martinelli, I. Matteucci
	Iit

