
UNIVERSITÀ DEGLI STUDI DI SIENA
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Chapter

1
Introduction

Abstract

Clustering is a widely used technique to partition a set of heterogeneous data to
homogeneous and well separated groups. Its main characteristic is that it does not
require a-priori knowledge about the nature and the hidden structure of the data
domain. Even if this fact makes clustering a hard task, from the other hand it
makes clustering s highly flexible data processing tool. In this thesis we investi-
gate clustering techniques and their applications to Web text and video information
retrieval. In particular we focus on: web snippets clustering, video summarization
and similarity searching. For web snippets, clustering is used to organize the re-
sults returned by one or more search engines in response to a user query on the fly.
The main difficulties concern: the poor informative strength of snippets, the strict
time constraints and the cluster labelling. Video summarization is used to give an
idea of the content of a video without downloading it. Also inthis case processing
time is important, moreover the amount of involved data is much higher. For this
task we designed an approximate clustering procedure much faster than the state
of the art algorithms and comparable in quality. In documentsimilarity searching,
clustering is used off-line in the preprocessing phase. Here the problem of scalabil-
ity is raised by the huge size of document corpora. A further complication is that
users can weight each field of the query. Allowing this feature has negative effects
on preprocessing. For this task we designed: a novel clustering strategy to improve
results quality and a weighting scheme that does not influence preprocessing.
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Introduction

1.1 Introduction
Since the early 90’s the World Wide Web is growing fast. In thelast decade, due
to the bandwidth constraints, web sites were in essence interconnected texts col-
lections. These text corpora have nowadays become huge. Thus the organization
and retrieval of information on the Web has become one of the hottest topic in the
information retrieval research community.

In the recent years Internet and, in particular, the Web, haschanged. An in-
creasing number of users has now access to broad band connections, thus web sites
had the opportunity to enrich their contents with images andalso with videos. This
situation caused the need to design information retrieval systems able to manage
also multimedia data.

The last in the time line but not least important way in which the Web has
modified its interface is the so called Web 2.0. Thanks to technologies like AJAX
(Asincronous Javascript And XML), a modern web site is no longer a “static”
collections of texts, images and videos, but it has become much more similar to a
classical interactive stand-alone application. This mutation of the web scenario had
also deep implications in the information retrieval community. In fact, to be able to
deal with huge data corpora and multimedia data in not enough, algorithms should
work on-line. Moreover also the users have changed their requirements. Therefore,
the success of a web information retrieval system does not depend only on the
quality of the returned results, but also the response time must be considered.

For example, everybody lovesGoogleandYahoo!search engines. Their pre-
cision is widely appreciated, but also the response time is part of their success. If
tomorrow one implements a new search engine much more precise than Google
but with an expected response time of two seconds, it is probable that it will used
only in those few cases in which Google fails.

As the reader can expect, large corpora coming from the Web are highly hetero-
geneous. Clustering is a widely used technique to partitiona set of heterogeneous
objects into small groups of objects related among them. Clustering has many prop-
erties that make it largely used and appreciated. Its most important feature is that
clustering algorithms do not need any a-priori knowledge ofthe input data and
domain. The only requirement is to provide a notion of distance (or similarity)
between pairs of input objects. This property of clusteringmade it suitable for es-
sentially any data domain. For example clustering is widelyused for a preliminary
exploration of a large amounts of data. The lack of any information about the data
domain is at the same time the of success key and the drawback of clustering. In
fact, clustering algorithms tend to produce results of worse quality with respect to,
for example, classification algorithms where for each possible category to which
data can be assigned to, a set of positive and negative examples must be available.
Moreover a not enough well pondered choice of the distance function is likely to
produce a complete failure.
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1.2 Thesis goals and results
The main goal of this thesis is to propose clustering algorithms able to produce
high quality results, but fast enough to be suitable for on-line web applications. We
applied our results to three main different contexts: web snippets, video summa-
rization and document similarity searching. These three problems are very different
among them and require to work under different constraints.To be competitive in
all these tasks, a clustering algorithm must be enough flexible. Moreover these
problems are interesting also because they raise a series ofrelated issues we faced
in this thesis finding novel solutions.

Snippets clustering has become popular since it was widely used by cluster-
ing web search engines likeVivisimo. When a user issues a query to the system,
the query is redirected to some auxiliary search engines, the returned snippets are
clustered and each cluster is labelled with a short sentenceto allow users to predict
the cluster content. In this particular case, the prediction strength of the labelling
algorithm is not less important than the clustering quality. Clustering and labelling
are strictly related. In fact, a good cluster with no predictive label is likely to be
ignored by the user. Instead clusters that are not well formed are likely to have
a poor label. What makes clustering of web snippets a hard problem is the fact
that snippets are essentially very small pieces of text and thus the amount of in-
formation contained in each of them is poor. This causes a phenomenon in which
the distance between two related snippets is no far from the distance between two
unrelated ones. Despite the fact that the number of snippetsto be clustered is rela-
tively small (typically about 200 items), clustering efficiency still remains an issue
because a not negligible part of time is spent querying the auxiliary search engines.
Studying this problem we designed the M-FPF algorithm described in chapter 2
which exploit the triangular inequality to speed up the FPF heuristic by Gonzalez
[Gonzalez, 1985]. Moreover we improved also the clustering quality providing a
novel definition of the concept ofmedoid. Therefore we modified the FPF cluster-
ing schema to handle medoids (M-FPF-MD). We also designed a novel labelling
algorithm that works following three main steps. Firstly itselects a certain number
of representative keywords for each cluster (signatures);then it uses a modified
version of the information gain measure to univocally retain keywords that appear
more than once only in the most appropriate signature and removes them from the
others. Finally, for each cluster, it extracts a short sentence based on its signature.
The goal of the first step is to “locally” detect informative keywords for each clus-
ter. The second step has a “global” overview of the clusters and it is necessary to
avoid that clusters about different aspects of the same topic have a too similar label.
The last step is only used to produce a more charming output for users. With the
aim of validating our results, we set upArmil a full featured clustering meta search
engine.

Video summarization has become an important application since the popular-
ity of video portals in the web likeYou tubebegan to grow. At the present time
an user who wants to decide whether a video is of interest or not, is required to
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download it entirely and to inspect some random snippets. This situation hinders
the video browsing experience of users causing a waste of network resources and
time. Video streaming systems can drastically reduce the use of network resources,
but the problem to watch completely the video in order to establish if it is of in-
terest still remains. The task of video summarization is completely different from
the previous one. First of all because the input objects are video frames (or scenes)
instead of texts. Secondly there exist an evident relationship among consecutive
frames. Moreover the amount of data involved in the clustering procedure is much
higher in consideration of the fact that a typical video has arate of at least 25
frames per second. This means that a video of just five minutescontains at least
7500 frames. For this particular problem only cluster centers are of interest, the
rest is discarded. In fact a summary is obtained concatenating the frame (or scene)
associated to each cluster center. The intuition beyond this approach is that, if a
cluster is homogeneous, its center should be enough representative of the content
the whole cluster. This also means that the error due to the insertion of a point in
the wrong cluster has completely no effect on the final results if it does not affect
the cluster center. As a direct consequence a faster approximate clustering can be
considered as a possible alternative. In this sense we designed some approximation
techniques devoted to noticeably speed up the execution of the clustering algo-
rithm attempting to avoid a loss in the result quality. We based our approximated
clustering on M-FPF-MD. We observed that the two most time consuming steps in
this algorithm are: the update of medoids and the procedure of searching, for each
new inserted point, of its closest center. Once the initial medoid is computed, our
approximated procedure requires only two distance computations to perform the
update. We also approximated the procedure of insertion of anew point into the
clusters taking explicitly advantage of the distribution of distances between pairs
of consecutive points. We also used this distribution of distances for a procedure
that suggests an appropriate size for the storyboard that corresponds to the number
of clusters to make. As a final result we designedViStoa completely working Web
2.0 application for static video summary.

Similarity searching is a feature often provided by search engines. Well known
examples are: the link “related pages” present in many snippets returned by Google
or the “active bibliography” in Citeseer1. In these examples the document for which
is requested to find the related documents is one of the documents present in the
collection, but this requirement is not necessarily a constraint of the problem. The
supplied query can be also an external document or a sequenceof keywords. The
naive solution to similarity searching consists in a linearscan of all the dataset,
comparing each document with the query and returning the fewclosest ones. Even
for relatively small document corpora this solution is impractical for on-line com-
putations, therefore efficient algorithms were developed for this purpose. The so-
lution provided by similarity searching algorithms can be either exact or approxi-
mate. In the specific case of the retrieval of related pages orarticles, an approximate

1http://citeseer.ist.psu.edu
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solution can be preferable especially if it is fast. We concentrate on approximate
similarity searching with in mind the goal of providing a high quality solution re-
turned in an a-priori bounded time. We followed the cluster pruning approach, that
performs a preprocessing step in which the document corpus is clustered. Then a
query consists in the scan of all the documents contained in acertain predefined
number of clusters whose centers are the nearest with respect to the query point.
Following the cluster pruning approach we observed that thefinal result quality
is strictly related to the distance between the query point and its closest center.
This means that, when the query document is also part of the collection (like in
the above examples), more compact clusters are likely to produce better quality.
In other words, from this observation, we derived that a clustering algorithm for
the k-center problem, which minimizes the maximum cluster diameter, is likely
to produce high quality results. We also observed that, after just the visit of three
or four clusters, the probability to find more related documents examining a new
cluster decays drastically. This suggests that it is probably better to examine fewer
clusters in some independent clusterings of the collectionthan more clusters of the
same clustering. We tested our approach over two datasets ofsemi-structured bib-
liographic records (title, authors, abstract) fromCiteSeer. In this case, each data
object is much bigger and more representative than in the case of web snippets.
Moreover, the number of involved data objects is of three order of magnitude big-
ger than in the case of snippets. Clearly, for the similaritysearching problem clus-
tering does not require to be made on-line, but it is part of a preprocessing phase.
Despite the fact that the main goal is to attain the highest possible result quality, if
one considers the size of the involved datasets and the growth trend of data avail-
able in the Internet scalability still remains an importantissue. In fact a clustering
algorithm able to preprocesses the entire corpus in one day is much better than
an algorithm that requires a month. Finally we investigatedthe more complicated
setting ofdynamic vector score aggregationin which again data objects are semi-
structured texts and for each field (title, authors, abstract) there is an independent
vector space. Each data object is then represented by the linear combination of its
vectors and the user is allowed to assign a weight to each field. Weights are known
only at query time. We propose a novel method to embed weightssuch that it is no
longer needed to know/manage them during the preprocessingof data.

1.3 Thesis outline
This thesis is organized as follows:

• Chapter 2 introduces the problem of clustering in general. In the firstpart of
this chapter we survey the most important clustering approaches, algorithms
and distance functions, then we briefly introduce and describe the most used
techniques and strategies for the clustering validation problem. In the second
part of this chapter we provide details of the FPF heuristic for thek-center
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problem, our clustering strategies and optimizations and our definition of
medoids.

• Chapter 3surveys the most common strategies for text clustering. In the first
part we introduce the well known vector space model for text retrieval and
some variants. Then we discuss how to remedy to some limits ofthis model
due to the intrinsic characteristics of the human language.Then we provide a
comparison among distance functions for text and a comparison between our
clustering algorithm against the classicalk-means. We conclude the chapter
with the description of our algorithm for labelling text clusters.

• Chapter 4 introducesArmil a clustering meta search engine for web snip-
pets. Armil is a completely working system whose design was aimed at ex-
perimentally testing our findings and at showing that from results of our
research it is possible to produce a software prototype not worse in quality
and performance with respect to a successful commercial software.

• Chapter 5 copes with the problem of video summarization. In this chapter
we provide a solution to produce both static storyboards anddynamic video
abstracts. In the first part of the chapter we discuss our approximation and
optimization strategies for the static case. Together withthe clustering algo-
rithm, a novel method to suggest a possible appropriate storyboard size is
introduced. We compare our results with other state of the art methods. Also
in this case we decided to implement a fully featured system to demonstrate
the validity of our approach. In the second part we focus on indynamic video
abstracts. Here the main contribution is the definition of the scene’s bound-
aries and our investigation about the use of frames or scenesas input for
clustering.

• Chapter 6 copes with the similarity searching problem. In the first part of the
chapter we survey the most common problems related to similarity search-
ing and well known solutions for both the exact and the approximate version
of this problem. Then, we derive a relationship between similarity searching
and thek-center target function for clustering. Thus we exploit this rela-
tionship to improve the cluster pruning approach for approximate similarity
searching. Moreover, we introduce a novel method to manage user defined
weights in the more complex problem of vector score aggregation. Then we
show how to use this scheme to speed up noticeably the clustering phase.

• Chapter 7 draws some conclusions and summarizes the results described in
this thesis. Finally we describe briefly the future directions for our research.

INTRODUCTION 6
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2
Clustering

Abstract

Clustering is a widely used technique to partition data in homogeneous groups.
It finds applications in many fields from information retrieval to bio-informatics.
The main goal of clustering algorithms is to discover the hidden structure of data
and group them without any a-priori knowledge of the data domain. Clustering is
often used for exploratory tasks.

The intuition behind partitioning data is that if two objects are closely related
and the former is also related to a third object, then more likely also the latter has
a similar relation. This idea is known as thecluster hypothesis.

In the first part of this chapter we survey the principal strategies for clustering,
the main clustering objective functions and related algorithms, the main definitions
for similarity and the clustering validation techniques. We conclude the chapter
giving some results about how we improved the Furthest-point-first algorithm in
terms of speed and quality.
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2.1 Introduction to clustering
Clustering is a technique to split a set of objects in groups such thatsimilar objects
are grouped together, while objects that are not similar fall in different clusters.
The choice of the notion of similarity (or distance) among objects that are needed
to be clustered is of crucial importance for the final result.

Clustering algorithms have no a-priori knowledge about thedata domain, its
hidden structure and also the number of hidden classes in which data are divided
is unknown. For this characteristic, clustering is often referred as un-supervised
learning in contrast to classification (or supervised learning) in which the number
of classes is known and for each class a certain number of examples are given.

The independence of clustering algorithms from the data domain is at the same
time the secret of its success and its main drawback. In fact since clustering does
not need any a-priori knowledge of the data domain, it can be applied to a wide
range of problems in different application areas. In contrast, general purpose pro-
cedures do not allow to apply (even trivial) problem dependent optimizations and
consequently they typically perform worse then ad-hoc solutions.

2.1.1 Metric space for clustering

The choice of how to represent the data objects one wants to cluster, together with
the choice of the clustering strategy, is critical for the clustering result. The repre-
sentation schema depends from the type of data we are workingon. In some fields
de-facto standards are widely used.

In text retrievalthe vector space model is the most commonly used. Documents
in this model are represented as vectors of weighted terms called bag of words.
For weighting, many approaches are used: binary schema (in which the weight of
a term is 0 if the term does not appear in the document, 1 otherwise), the tf-idf
scoring and so on. Invideo retrievalframes are represented as vectors in the HSV
color space. Inbio-informatics, DNA microarrays are matrices in which each gene
is stored in a row and each column corresponds to a probe.

In all the above cited cases, a set of objectsO = {o1, . . . , on} are represented
with m-dimensional vectors which are stored in a matrixM of n rows andm
columns, wheren is the number of objects in the corpus whilem is the number
of features of the objects. These vector spaces endowed witha distance function
define a metric space. The most widely used distance functions are:

• Cosine similarity: it is defined as the cosine of the angle betweenoa andob.
More formally

s(oa, ob) =
oa · ob

‖oa‖ · ‖ob‖
A distance can be easily derived from cosine similarity by:

d(oa, ob) =
√

1 − s2(oa, ob)

CLUSTERING 8
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The most important property of cosine similarity is that it does not depend
on the length of the vectors:s(oa, ob) = s(αoa, ob) for α > 0. This property
makes the cosine similarity widely used in text informationretrieval.

• Jaccard coefficient:in its basic form it is defined as:

J(oa, ob) =
#(oa ∩ ob)

#(oa ∪ ob)

whereoa∩ob is the set of features in common betweenoa andob andoa∪ob

is the total set of features (this approach assumes binary features). Many
variants of the Jaccard coefficient were proposed in the literature. The most
interesting is theGeneralized Jaccard Coefficient(GJC) that takes into ac-
count also the weight of each term. It is defined as

GJC(oa, ob) =
minm

i=1(oa,i, ob,i)

maxm
i=1(oa,i, ob,i)

GJC is proven to be a metric[Charikar, 2002]. The Generalized Jaccard Co-
efficient defines a very flexible distance that works well withboth text and
video data.

• Minkowski distance: it is defined as:

Lp(oa, ob) = (
m∑

i=1

|oa,i − ob,i|p)1/p

It is the standard family of distances for geometrical problems. Varying the
value of the parameterp, we obtain different well known distance functions.
Whenp = 1 the Minkowski distance reduces to the Manhattan distance. For
p = 2 we have the well known Euclidean distance

L2(oa, ob) =

√
√
√
√

m∑

i=1

(oa,i − ob,i)2

Whenp = ∞ this distance becomes the infinity norm defined as:

L∞(oa, ob) =
m

max
i=1

(oa,i, ob,i)

• Pearson correlation: it is defined as follows:

P (oa, ob) =

∑m
k=1(oa,k − µa)(ob,k − µb)

√∑m
k=1(oa,k − µa)2 ·

√∑m
k=1(ob,k − µb)2

,

whereµa andµb are the means ofoa andob, respectively. Pearson coeffi-
cient is a measure of similarity. In particular it computes the similarity of
the shapes between the two profiles of the vectors (it is not robust against
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outliers - potentially leading to false positive, assigning high similarity to a
pair of dissimilar patterns -, it is sensible to the shape butnot to the mag-
nitude). To compute a distance, we definedoa,ob

= 1 − P (oa, ob). Since
−1 ≤ P (oa, bb) ≤ 1, for all oa, ob, we have0 ≤ doa,ob

≤ 2. This distance
is not a metric since both the triangular inequality and small self-distance
(doa,ob

= 0) do not hold. However, the square root of1−P (oa, ob) is propor-
tional to the Euclidean distance betweenoa andob [Clarkson, 2006], hence
only the small self-distance condition fails for this variant, and metric space
methods can be used.

2.2 Clustering strategy
Clustering algorithms can be classified according with manydifferent characteris-
tics. One of the most important is the strategy used by the algorithm to partition the
space:

• Partitional clustering : given a setO = {o1, . . . , on} of n data objects, the
goal is to create a partitionC = {c1, . . . , ck} such that:

– ∀i ∈ [1, k] ci 6= ∅
–

⋃k
i=1 ci = O

– ∀i, j ∈ [1, k] ∧ i 6= j ci ∩ cj = ∅

• Hierarchical clustering: given a setO = {o1, . . . , on} of n data objects, the
goal is to build a tree-like structure (calleddendrogram) H = {h1, . . . , hq}
with q ≤ n, such that: given two clustersci ∈ hm and cj ∈ hl with hl

ancestor ofhm, one of the following conditions hold:ci ⊂ cj or ci ∩ cj = ∅
for all i, j 6= i,m, l ∈ [1, q].

Partitional clustering is saidhard if a data object is assigned uniquely to one
cluster,soft or fuzzy when a data object belongs to each cluster with a degree of
membership.

2.2.1 Partitional clustering

When the data representation and the distance functiond have been chosen, parti-
tional clustering reduces to a problem of minimization of a given target function.
The most widely used are:

• K-center minimizes the maximum cluster radius

min max
j

max
x∈cj

d(x,Cj)
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• K-mediansminimizes the sum of all the point-center distances

min
∑

j

∑

x∈cj

d(x, µj)

• K-meansminimizes the sum of squares of inter-cluster point-centerdis-
tances

min
∑

j

∑

x∈cj

(d(x, µj))
2

whereC = {c1, . . . , ck} arek clusters such thatCj is the center of thej-th
cluster andµj is its centroid.

For all these functions it is known that finding the global minimum is NP-hard.
Thus, heuristics are always employed to find a local minimum.

2.2.1.1 FPF algorithm for the k-center problem

As said in 2.2.1 one of the possible goal for partitional clustering is the minimiza-
tion of the largest cluster diameter solving thek-center problem. More formally
the problem is defined as:

Definition 1. The k-centers problem: Given a setO of points in a metric space
endowed with a metric distance functiond, and given a desired numberk of result-
ing clusters, partitionO into non-overlapping clustersC1, . . . , Ck and determine
their “centers”c1, . . . , ck ∈ O so thatmaxj maxx∈Cj

d(x, cj) (i.e. the radius of
the widest cluster) is minimized.

In [Feder and Greene, 1988] it was shown that thek-center problem is NP-
hard unlessP = NP . In [Gonzalez, 1985; Hochbaum and Shmoys, 1985] two-
approximated algorithms are given.

We first describe the originalFurthest Point First(FPF) algorithm proposed by
Gonzalez[Gonzalez, 1985] that represents the basic algorithm we adopted in this
thesis. Then, in section 2.4 we will give details about the improvements we made
to reduce the running time and obtain a better clustering quality.

Basic algorithm Given a setO of n points, FPF increasingly computes the set of
centersc1 ⊂ . . . ⊂ ck ⊆ O, whereCk is the solution to thek-center problem and
C1 = {c1} is the starting set, built by randomly choosingc1 in O. At a generic
iteration1 < i ≤ k, the algorithm knows the set of centersCi−1 (computed at the
previous iteration) and a mappingµ that associates, to each pointp ∈ O, its closest
centerµ(p) ∈ Ci−1. Iterationi consists of the following two steps:

1. Find the pointp ∈ O for which the distance to its closest center,d(p, µ(p)),
is maximum; makep a new centerci and letCi = Ci−1 ∪ {ci}.
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2. Compute the distance ofci to all points inO \ Ci−1 to update the mapping
µ of points to their closest center.

After k iterations, the set of centersCk = {c1, . . . , ck} and the mappingµ
define the clustering. ClusterCi is the set of points{p ∈ O \ Ck such thatµ(p) =
ci}, for i ∈ [1, k]. Each iteration can be done in timeO(n), hence the overall cost
of the algorithm isO(kn). Experiments have shown that the random choice ofc1

to initialize C1 does not affect neither the effectiveness nor the efficiencyof the
algorithm.

FPF:
Data: Let O be the input set,k the number of clusters
Result: C, k-partition ofO
C = x such thatx is an arbitrary element ofO;
for i = 0; i < k; i + + do

Pick the elementx of O \ C furthest from the closest element inC;
Ci = Ci = x;

end
forall x ∈ O \ C do

Let i such thatd(ci, x) < d(cj , x),∀j 6= i Ci.append (x);
end
Algorithm 1 : The furthest point first algorithm for thek-center problem.

2.2.1.2 K-means

The k-means algorithm[Lloyd, 1957] is probably the most widely used in the
literature. Its success comes from the fact it is simple to implement, enough fast
for relatively small datasets and it achieves a good quality. Thek-means algorithm
can be seen as an iterative cluster quality booster.

It takes as input a roughk-clustering (or, more precisely,k candidate centroids)
and produces as output anotherk-clustering, hopefully of better quality.

K-means, as objective function, attempts to minimize the sumof the squares of
the inter-cluster point-to-center distances. More precisely, this corresponds to par-
tition, at every iteration, the input points into non-overlapping clustersC1, . . . , Ck

and determining their centroidsµ1, . . . , µk so that

k∑

j=1

∑

x∈Cj

(d(x, µj))
2

is minimized.
It has been shown[Selim and Ismail, 1984] that by using the sum of squared

Euclidean distances as objective function, the procedure converges to a local min-
imum for the objective function within a finite number of iterations.

The main building blocks ofk-means are:
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• the generation of the initial k candidate centroids: In this phase an initial
choice of candidate centroids must be done. This choice in critic because
both the final clustering quality and the number of iterations needed to con-
verge are strongly related to this choice. In the next section we will survey the
most important initialization strategies. A more completesurvey and com-
parison can be found in[Bradley and Fayyad, 1998; Peñaet al., 1999].

• the main iteration loop: In the main iteration loop, given a set ofk cen-
troids, each input point is associated to its closest centroid, and the collec-
tion of points associated to a centroid is considered as a cluster. For each
cluster, a new centroid that is a (weighted) linear combination of the points
belonging to the cluster is recomputed, and a new iteration starts1.

• the termination condition: Several termination conditions are possible; e.g.
the loop can be terminated after a predetermined number of iterations, or
when the variation that the centroids have undergone in the last iteration is
below a predetermined threshold.

The use ofk-means has the advantage that the clustering quality is steadily
enough good in different settings and with different data. This makesk-means the
most used clustering algorithm. Due its importance, there is a vast literature that
discusses its shortcomings and possible improvements to the basic framework.

A lot of efforts was spent to reduce thek-means computational time that de-
pends on the size of the dataset, the number of desired clusters and the number
of iterations to reach convergence. Some methods attempt touse clever data struc-
tures to cache distances[Elkan, 2003; Smellie, 2004], others exploit the triangular
inequality for avoiding distance computations[Phillips, 2002]. For small datasets
or when only few iterations are enough to achieve the desiredoutput quality, the
performance ofk-means is acceptable, but for nowadays needs clustering time has
become a shortcoming (i.e. in chapter 6 we will see that for 100 thousand of docu-
ments and 1000 clusters,k-means running time is of the order of a week).

Another well-known shortcoming is that some clusters may become empty dur-
ing the computation. To overcome this problem, the “ISODATA” [Tou and Gonza-
lez, 1977] technique was proposed. Essentially when a cluster becomesempty,
ISODATA splits one of the “largest” clusters so as to keep thenumber of clusters
unchanged.

Initialize k-means Essentiallyk-means accepts as input an initial clustering that
can be made with any clustering algorithm. It is well-known that the quality of
the initialization (i.e. the choice of the initialk centroids) has a deep impact on
the resulting accuracy. Several methods for initializingk-means are compared in
[Bradley and Fayyad, 1998; Peñaet al., 1999]. The three most common initializa-
tions are:

1Note thatk-means is defined on vector spaces but not in general on metricspaces, since in metric
spaces linear combinations of points are not points themselves.
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RC The simplest (and widely used) initialization fork-means is the one in which
the initial centroids are Randomly Chosen among the input points and the
remaining points are assigned to the closest centroid. The resulting clustering
is often referred asrandom clustering.

RP In the Random Perturbation, for each dimensiondj of the space, the distri-
bution of the projections ondj of the data points is computed, along with its
meanµj and its standard deviationσj ; the k initial centroids are obtained
throughk perturbations, driven by theµj ’s andσj ’s, of the centroid of all
data points[Peñaet al., 1999].

MQ MacQueen’s[MacQueen, 1967] proposed a variant ofk-means: the initial
centroids are randomly chosen among the input points, and the remaining
points are assigned one at a time to the nearest centroid, andeach such as-
signment causes the immediate recomputation of the centroid involved. Then
k-means is initialized with the resulting clustering. Sinceit was experimen-
tally shown that this initialization achieves generally a good quality in con-
siderably less time thank-means, this initialization is often used in place of
the standardk-means and it is often referred asone-passk-means.

2.2.1.3 PAM: partition around medoids

Partition around medoids[Kaufman and Rousseeuw, 1990] was introduced by
Kaufman and Rousseeuw. PAM introduces the concept ofmedoid. A medoid is
a point of the input, it means that PAM is particularly suitable in all those cases
in which the concept of centroid in not well defined. Moreover, in many cases, the
more the number of objects increase, the less centroids tendto be representative;
instead medoids are not affected by this problem.

PAM builds ak-clustering and it can be described as follows[Ng and Han,
1994]:

1. Select a set ofk random input objectsO = {o1, . . . ok},

2. for each input objectx /∈ O compute the cost functionTC(x, oi),

3. select the pair of objectsx andoi that minimizeTC,

4. if TC(x, oi) < 0 replaceoi with x and restart from step 2.

The final clustering is obtained using the objectsoi as cluster centers and as-
signing the input points to the cluster with the nearest center.

PAM is computationally expensive, in fact there are(n − k) different pairs of
object for each of thk medoids. It means that for each iterationTC is computed
k(n − k) times. Due to its computational cost, many variations and performance
improvements were proposed in the literature[Zhang and Couloigner, 2005].
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2.2.1.4 SOM: self organizing maps

Self organizing Maps[Kohonen, 2001] were introduced by Teuvo Kohonen as sub-
type of artificial neural networks used to produce low dimensional representation
of the training samples while preserving the topological properties of the input
space.
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Figure 2.1. A simple 3 × 3 self organizing map.

A self-organizing map is a single layer feed-forward network, that is a network
without direct cyclic paths. Neurons are arranged in a low dimensional grid (typ-
ically two-dimensional or tridimensional). Each neuron has associated a vector of
weightswi = {wi,1, . . . , wi,m} of the same size of input vectors. There are two
main ways to initialize the weights vectors:

• using small random values,

• using a random perturbation from the subspace spanned by thetwo largest
principal component eigenvectors. This initialization was shown to speed up
the training phase of the SOM because they are already a good approxima-
tion of the SOM weights.

Self-organizing maps work in two phases:

• training : the training phase can be seen as the process in which the self-
organizing map attempts to adapt the weight vectors of its nodes to the train-
ing data. For this purpose a large number of examples must be fed in input.
If a training set is not available the input data are often used to train the net-
work. The training algorithm is based on acompetitive learningapproach:
when a new samplex(t) is presented to the network it is compared with all
the weights vectors and the neuron with closest weight vector (called Best
Matching Unit) is selected (i. e. the neuroni such thatmini d(x(t), wi)). The
weight vector of the BMU and its neighbors, are modified according with the
sample. More formally leti the BMU ande a generic neuron of the SOM.
Let h(e, i) be a proximity function between the two neurons andwe(t) be
the value ofwe at the epocht. The weight vector of the generic neurone is
updated according with the following:
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we(t + 1) = we(t) + α(t) ∗ h(e, i) ∗ (x(t) − we(t))

whereα(t) is a monotonically decreasing learning coefficient.

• mapping: in this phase the input vectors are simply assigned to the closest
neuron. Borrowing the terminology ofk-means the nodes of the network
in this phase play the same role of centroids. It is interesting to note that
the number of clusters in output depends on the number of neurons in the
network. This means that the structure of the SOM drastically influences the
clustering results.

Learning:
Data: the SOMM = {mj∀j ≤ TOTNodes}, α(t), h(−,−),

X = {x(t)∀t ≤ TOTSample}
Result: the trained SOMM
forall m ∈ M do

initialize (m);
end
for t = 1; t ≤ TOTSample; t + + do

i = arg minj d(x(t),mj);
forall me ∈ M do

me(t + 1) = me(t) + α(t) ∗ h(e, i) ∗ (x(t) − me(t))
end

end
return M;

Mapping:
Data: the SOMM = {mj∀j ≤ TOTNodes}, X = {x(t)∀t ≤ TOTSample}
Result: The clusteringC
for i = 1; t ≤ TOTNodes; t + + do

Ci = ∅;
end
for t = 1; t ≤ TOTSample; t + + do

i = arg minj d(x(t),mj);
Ci = Ci ∪ x(t)

end
return C;

Algorithm 2 : The self-organizing map algorithm.

In the case in which the size of input vectors is higher than the number of
nodes in the output grid, SOM becomes a powerful tool to make dimensionality
reduction[Tanet al., 2005] (Feature selection).
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2.2.2 Hierarchical clustering

The main difference between partitional clustering and hierarchical clustering con-
sists in the fact the latter does not limit only in grouping the data objects in a flat
partition, but it also arranges the data into a tree like structure. This structure is
known asdendrogram. Each data object is assigned to a leaf of the tree, while
internal nodes represent groups of objects such that for each pair of elements in
such group, their distance is within a certain threshold. The root of the dendro-
gram contains all the objects. A flat clustering can be easilyobtained by cutting the
dendrogram at a certain level.

An important characteristic of hierarchical clustering isthat it requires the com-
putation of theproximity matrixthat is the squared matrix of the distances between
all the pairs of points in the data set. This makes the time andspace complexity of
this family of algorithms at least quadratic in the number ofdata objects. In recent
years, a lot of effort was done to improve the hierarchical clustering algorithms
performances and make them suitable for large scale datasets. Typical example
are: BIRCH[Zhanget al., 1996] and CUTE[Guhaet al., 1998].

The two main strategies for hierarchical clustering are:

• Divisive: in this case the dendrogram is built from the root to the leafs. Ini-
tially all the n objects are in the same cluster. A series of split operations
is made until all clusters contains just a single element. The splitting opera-
tion is made by computing all the distances between the pairsof objects in
the same cluster and selecting the two diametral points as seeds, then all the
points in the group are assigned to the closest seed.

• Agglomerative: the dendrogram is built from the leaves to the root. At the
beginning each object is inserted in a cluster (that represent a leaf of the
dendrogram), than a series of merge operations is made untilall the points
belong to the same cluster. Since the data objects aren and each merge oper-
ation reduces the number of objects of one unit,n − 1 merge operations are
needed. It is important to note that the operations of merge are made between
the two closest entities (either objects or clusters). A notion of cluster-cluster
distance and cluster-object distance must to be defined.

2.2.2.1 Divisive clustering

As mentioned in section 2.2.2, hierarchical divisive clustering algorithms start with
considering the whole input set as a single cluster that is the root of the dendrogram.
Before to start the procedure, a threshold distance must be chosen. Once this is
done, hierarchical divisive clustering proceeds as follows:

• the proximity matrixM is calculated and for each cluster and the furthest
pair of objects is selected,
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• if the cluster satisfies the algorithm splitting criterion,(i.e. the distance be-
tween the diametral pair is higher than a certain threshold)the cluster is
divided into two clusters by using the pair selected in the previous step as
seeds,

• when no more clusters must to be splitted, the algorithm stops.

One of the most important issues in divisive hierarchical clustering is the choice
of the splitting criterion[Savaresiet al., 2002]. The following strategies are typi-
cally used[Karypiset al., 1999]:

• each cluster is recursively splitted until each subclustercontains exactly one
element. In this case a complete tree is obtained. The main advantage of this
method is that a complete tree is obtained. The main disadvantage is that the
final clustering quality is not taken into account by this schema.

• The cluster with the largest number of elements is splitted.Using this ap-
proach a balanced tree is obtained.

• The cluster with the highest variance with respect to its “centroid” is splitted.
This is a widely used method to choose the cluster to split because it is related
to the distribution of the elements inside the cluster.

2.2.2.2 Agglomerative clustering

As mentioned in section 2.2.2, hierarchical agglomerativeclustering attempts to
cluster a set ofn objects providing also a tree like structure built from the leafs to
the root.

In the merging operation the two closest entities of the dendrogram (leafs or
internal nodes) are joined into a single entity. Considering leafs as clusters contain-
ing only an element, the notion of inter-cluster distance must be defined. There are
many different possibilities for this choice. The most common ones are based on
a linkage criterion (i. e. the distance between two clustersis the distance between
two points that are associated to them in such a way). Given two clustersCi and
Cj we have:

• Single linkage: d(Ci, Cj) = minp∈Ciq∈Cj
d(p, q) is the distance between

the closest pair of objects from different clusters. This method has the draw-
back that it tends to force clusters together due to a single pair of close ob-
jects regardless of the positions of the other elements in the clusters. This is
known aschaining phenomenon.
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Figure 2.2. Single linkage criterion.

• Complete linkage: d(Ci, Cj) = maxp∈Ciq∈Cj
d(p, q) is the distance be-

tween the farthest pair of objects from different clusters.This method tends
to make more compact clusters, but it is not tolerant to noisydata.

Figure 2.3. Complete linkage criterion.

• Average linkage: d(Ci, Cj) = 1
|Ci||Cj |

∑

p∈Ci

∑

q∈Cj
d(p, q) is the mean of

the distance among all the pairs of objects coming from different clusters.
This method is more robust with respect to the previous ones,in fact the
impact of outliers is minimized by the mean and the chaining phenomenon
is typically not observed.

Figure 2.4. Average linkage criterion.

Single linkage and complete linkage can be generalized as suggested by Lance
and Williams in[Lance and Williams, 1967] using the following formula:

d(Cl, (Ci, Cj)) = αid(Cl, Ci) + αjd(Cl, Cj) + βd(Ci, Cj) +

+γ | d(Cl, Ci) − d(Cl, Cj) | (2.1)
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whered is the distance between two entities,(Ci, Cj) is the cluster coming
from the union ofCi andCj and the four parametersαi, αj , β, γ, depend on the
specific strategy used. Note that whenαi = αj = 1/2, β = 0 andγ = −1/2,
formula (2.1) becomes

d(Cl, (Ci, Cj)) = min(d(Cl, Ci), d(Cl, Cj))

that is the single linkage formula. Instead, the choice ofαi = αj = γ = 1/2 and
β = 0 makes (2.1) be

d(Cl, (Ci, Cj)) = max(d(Cl, Ci), d(Cl, Cj))

that is the formula of complete linkage.
The hierarchical agglomerative clustering algorithm can be summarized by the

following procedure:

1. Initialize the proximity matrixM such thatMi,j is the distance between the
i-th and thej-th entity

2. Findi andj such thati 6= j and∀h, k: h 6= k, Mi,j ≤ Mh,k

3. JoinCi andCj and updateM accordingly

4. Repeat from step 2 until all the clusters are merged

2.2.3 The choice of the number k of clusters

All the algorithms we considered in this chapter are not ableto discover the number
of groups in which the hidden structure of the input set should be divided. For all
the described algorithms, the number of clusters is part of the input. In some cases,
like SOMs, the choice ofk is subjugated to the algorithm constraints. It is clear
that the final clustering quality is strongly dependent fromthis choice. In fact, a too
large number of clusters can have the effect to complicate the analysis of results,
while too few clusters can lead to information loss or inaccurate modeling.

Many different techniques were proposed in the literature to find the “right”
value fork; the most common approaches are based on: the construction of indices
that take into account properties like homogeneity, separation and silhouette (a
survey of some of them and an evaluation of their performances can be found in
[Milligan and Cooper, 1985]); the optimization of some probabilistic functions and
heuristics.

It is also important to note that all those methods, based on the computation
of indices or on the optimization of probabilistic functions, must be applied to
many choices ofk. This makes desirable to have clustering algorithms able tomake
clusters incrementally without the need to knowk in advance and to backtrack if
needed. To this aim divisive hierarchical clustering and FPF are more flexible with
respect tok-means and SOMs.
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2.2.3.1 Stability based techniques

We describe here in more details the stability based technique based on the pre-
diction strength method (developed by Tibshirani et al[Tibshirani et al., 2005])
to estimate the numberk of clusters. Then we describe an efficient variant of this
schema applied to the FPF algorithm as we adopted in[Geraciet al., 2007]. This
approach can be used efficiently for all the incremental cluster algorithms such as
the divisive hierarchical clustering.

To obtain the estimate of a good value ofk, the method proceeds as follows.
Given the setO of n objects, randomly choose a sampleOr of cardinalityµ. Then,
for increasing values oft (t = 1, 2, . . . ) repeat the following steps:

1. using the clustering algorithm, cluster bothOds = O \ Or andOr into t
clusters, obtaining the partitionsCt(ds) andCt(r), respectively;

2. measure how well thet-clustering ofOr predicts co-memberships of mates
in Ods (i.e. count how many pairs of elements that are mates inCt(ds) are
also mates according to the centers ofCt(r)).

Formally, the measure computed in step 2 is obtained as follows. Givent, clus-
teringsCt(ds) andCt(r), and objectsoi andoj belonging toOds, let D[i, j] = 1 if
oi andoj are mates according to bothCt(ds) andCt(r), otherwiseD[i, j] = 0. Let
Ct(ds) = {Ct,1(ds), . . . , Ct,t(ds)} , then the prediction strengthPS(t) of Ct(ds)
is defined as:

PS(t) = min
1≤l≤t

1

#pairs ∈ Ct,l(ds)

∑

i,j∈Ct,l(ds),i<j

D[i, j] (2.2)

where the number of pairs inCt,l(ds) is given by its binomial coefficient over
2. In other words,PS(t) is the minimum fraction of pairs, among all clusters in
Ct(ds), that are mates according to both clusterings, hencePS(t) is a worst case
measure. The above outlined procedure terminates at the largest value oft such
thatPS(t) is above a given threshold, settingk equal to sucht.

We now describe the modified version of the stability based technique we ap-
plied to FPF in[Geraciet al., 2007]. Note that this modified procedure depends
only on the ability of the clustering algorithm to create clusters one by one. We
first run the clustering algorithm onOr up tot = µ, storing all the computed cen-
tersc1, . . . , cµ. In a certain sense, the order in which centers are selected by FPF,
is used as a sort of ranking of the points ofOr. In the case of using FPF this step
costsO(µ|Or|) = O(µ2).

We then cluster the input setOds. Suppose at stept we have computed the
clustersCt,1(ds), . . . , Ct,t(ds) and suppose, for eacho ∈ Ods, we keep the index
i(o, t) of its closest center amongc1, . . . , ct. Such index can be updated in constant
time by comparingd(o, ci(o,t−1)) with d(o, ct), i.e., the distance ofo from the “cur-
rent” center and that to the new centerct. Now, for eachCt,l(ds), l ∈ [1, . . . , t] we
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can easily count in timeO(|Ct,l(ds)|) the number of elements that are closest to
the same centercj, j ∈ [1, . . . , t], and finally compute the summations in formula
2.2 in timeO(|Ods|).

After the last iteration, we obtain the clustering ofO by simply associating the
pointsc1, . . . , cµ to their closest centers inCk(ds). The overall cost of the modified
procedure using FPF as clustering algorithm isO(µ2 + k(n − µ) + kµ) = O(kn)
for µ = O(n1/2). Note that, differently from the original technique, we stop this
procedure at the first value oft such thatPS(t) < PS(t − 1) and setk = t − 1.
In [Geraciet al., 2007] we have empirically demonstrated that this choice of the
termination condition gives good results.

2.3 Clustering validation
Since the clustering task has an ambiguous definition, the assessment of the quality
of results is also not well defined. There are two main philosophies for evaluating
the clustering quality:

• internal criterion : is based on the evaluation of how the output clustering
approximates a certain objective function,

• external criterion : is based on the comparison between the output clustering
and a predefined handmade classification of the data calledground truth.

When a ground truth is available, it is usually preferable touse an external
criterion to assess the clustering effectiveness, becauseit deals with real data while
an internal criterion measures how well founded the clustering is according with
such mathematical definition.

2.3.1 Internal measures

There is a wide number of indexes used to measure the overall quality of a cluster-
ing. Some of them (i.e. the mean squared error) are also used as goal functions for
the clustering algorithms.

2.3.1.1 Homogeneity and separation

According with the intuition, the more a cluster contains homogeneous objects the
more it is a good cluster. Nevertheless the more two clustersare well separated the
more they are considered good clusters. Following the intuition, homogeneity and
separation[Shamir and Sharan, 2002] attempt to measure how compact and well
distanciated clusters are among them.

More formally given a set of objectsO = {o1, . . . , on}, we denote withS(oi, oj)
the similarity of the objectsoi andoj according to a given similarity function. We
say thatoi andoj are mates if they belong to the same cluster. We define:
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Homogeneity of a clustering: the average similarity between mates. LetM be
the number of mate pairs:

Have =
1

M
∑

oi,oj mates,i<j

S(oi, oj)

Separation of a clustering: the average similarity between non-mates.As M is
the number of mate pairs, the number of non-mates pairs is given byn(n −
1)/2 −M.

Save =
2

n(n − 1) − 2M
∑

oi,oj non−mates,i<j

S(oi, oj)

Observe that the higher homogeneity is, the better the clustering is. Analo-
gously, the lower separation is, the better the clustering is.

Alternative definition can be given using distances insteadof similarities. In
this case a better solution is given with a higher separationand a lower homogene-
ity.

Finally, homogeneity and separation can be approximated sothat they can be
calculated in linear time with the numbern of objects (instead of quadratic). Given
a clusteringC = {C1, . . . , Ck}, let cr(t) be the center (or centroid) of clusterCt:

Happrox =
1

n

k∑

t=1

∑

oi∈Ct

S(oi, cr(t)),

Sapprox =
1

∑

t<z |Ct||Cz |
∑

t<z

|Ct||Cz |S(cr(t), cr(z)).

Again, these measures can be expressed in terms of distancesinstead of simi-
larities.

These two measures are inherently conflicting, because typically an improve-
ment on one will correspond to a worsening of the other.

2.3.1.2 Average silhouette

Another measure that is worth calculate for a given clustering is theaverage silhou-
ette[Rousseeuw, 1987]: for each element we compute a quantity, called silhouette,
that gives an indication of how well the element fits into the cluster it is assigned to.
The silhouette is based on homogeneity and separation; in particular we compute
the homogeneity of the element with the elements in its cluster and the separation
of the element with the closest cluster (among the others). In this way we can see if
the element is well placed or if it is better placed in anothercluster. The silhouette
of objectoi that belongs to clusterc ∈ C is given by:
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sil(oi) =
bi − ai

max{ai, bi}
,

whereai is the average distance ofoi to the elements in its cluster, whilebi is
the average distance ofoi to the elements of the closest cluster. In formulas:

ai =
1

|c|
∑

oj∈c

d(oi, oj)

bi = min
c′∈C,c′ 6=c







1

|c′|
∑

oj∈c′

d(oi, oj)






.

(The valuesai andbi can be approximated using the centers (or centroid) of
clusters, in the same way as for homogeneity and separation).

Observe that for each elementoi we have−1 < sil(oi) < 1 and that whenever
oi fits in its cluster, thenbi > ai andsil(oi) > 0, while if oi fits better in another
cluster, then we havebi < ai andsil(oi) < 0.

To measure the quality of the whole clustering we use theaverage silhouette:

sil(C) =
1

n

∑

i∈n

sil(oi).

The higher this value is, the better the clustering is.

1. A singleton{oi} has silhouette equal to one becauseai = 0 andbi > 0 (each
element fits well in a cluster by its own).

2. If there is only one big cluster then for eachoi ∈ n we havesil(oi) = −1,
becausebi = 0 andai > 0 (no element fits well in a cluster with all other
elements).

The silhouette is not only used for assessing the clusteringquality but can be
helpful to guide the clustering task in many ways:

1. Given a cluster, the elements with lower silhouette mightbe excluded from
the cluster to have more homogeneous clusters.

2. Given two clusterings of the same set of objects, done withthe same cluster-
ing algorithm, but with different number of clusters, the one with higher av-
erage silhouette is preferable to the one with lower averagesilhouette. Thus,
it can be used to decidek, the number of clusters in the clustering[Lamrous
and Tailerb, 2006]. Experiments show that silhouette index is not very useful
for this purpose.
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2.3.2 External measures

In the following, we denote withGT (S) = {GT1, . . . , GTk} the ground truth
partition formed by a collection ofclasses; and withC = {c1, . . . , ck} the outcome
of the clustering algorithm that is a collection ofclusters.

2.3.2.1 F-measure

The F-measure was introduced in[Larsen and Aone, 1999] and is based on the
precisionandrecall that are concepts well known in the information retrieval liter-
ature[Kowalski, 1997], [Van Rijsbergen, 1979]. Given a clustercj and a classGTi

we have:

precision(GTi, cj) =
|GTi ∩ cj |

|cj |
recall(GTi, cj) =

|GTi ∩ cj |
|GTi|

,

Note that precision and recall are real numbers in the range[0, 1]. Intuitively
precision measures the probability that an element of the classGTi falls in the
clustercj while recall is the probability that an element of the cluster cj is also an
element of the classGTi. The F-measureF (GTi, cj) of a clustercj and a classGTi

is the harmonic mean of precision and recall:

F (GTi, cj) = 2
precision(iGT,cj)recall(GTi, cj)

precision(GTi, cj) + recall(GTi, cj)

The F-measure of an entire clustering is computed by the following formula:

F =
∑

i

|GTi|
n

max
j

(F (GTi, cj)),

wheren is the sum of the cardinality of all the classes. The value ofF is in the
range[0, 1] and a higher value indicates better quality.

2.3.2.2 Entropy

Entropy is a widely used measure in information theory. In a nutshell we can use
the relative entropy to measure the amount of uncertainty that we have about the
ground truth provided the available information is the computed clustering. Given
a clustercj and a classGTi, we can define

pi,j =
|GTi ∩ cj |
|GTi|

,

Ej =
∑

i

pi,j log pi,j,

E =
∑

j

|cj |
n

Ej ,
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wheren is the number of elements of the whole clustering. The value of E is in the
range[0, log n] and a lower value indicates better quality.

2.3.2.3 Accuracy

While the entropy of a clustering is an average of the entropyof single clusters, a
notion of accuracy is obtained using simply the maximum operator:

Aj = max
i

pi,j

A =
∑

j

|cj |
n

Aj .

The accuracyA is in the range[0, 1] and a higher value indicates better quality.

2.3.2.4 Normalized mutual information

Thenormalized mutual information(see e.g.[Strehl, 2002, page 110]), comes from
information theory and is defined as follows:

NMI(C,GT ) =
2

log |C||GT |
∑

c∈C

∑

c′∈GT

P (c, c′) · log P (c, c′)
P (c) · P (c′)

whereP (c) represents the probability that a randomly selected objectoj be-
longs toc, andP (c, c′) represents the probability that a randomly selected object
oj belongs to bothc andc′. The normalization, achieved by the 2

log |C||GT | factor, is
necessary in order to account for the fact that the cardinalities ofC andGT are in
general different[Cover and Thomas, 1991].

Higher values ofNMI mean better clustering quality.NMI is designed for
hard clustering.

2.3.2.5 Normalized complementary entropy

In order to evaluate soft clustering, thenormalized complementary entropy[Strehl,
2002, page 108] is often used. Here we describe a version of normalized comple-
mentary entropy in which we have changed the normalization factor so as to take
overlapping clusters into account. The entropy of a clustercj ∈ C is

Ej =

|GT |
∑

k=1

−|GTk ∩ cj |
|GTk|

log
|GTk ∩ cj|
|GTk|

The normalized complementary entropy ofcj is

NCE(cj , GT ) = 1 − Ej

log |GT |
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NCE ranges in the interval[0, 1], and a greater value implies better quality of
cj . The complementary normalized entropy ofC is the weighted average of the

contributions of the single clusters inC. Let n′ =
∑|C|

j∈1 |cj | be the sum of the
cardinalities of the clusters ofC. Note that when clusters may overlap it holds that
n′ ≥ n. Thus

NCE(C,GT ) =

|C|
∑

j∈1

|cj |
n′ NCE(cj , GT )

2.4 Improving the FPF algorithm for the k-center
problem

One of the mayor effort we did in this thesis was devoted to improve the Furthest
Point First algorithm from both the computational cost point of view and the output
clustering quality. Since theoretically the FPF algorithmas proposed by Gonzalez
[Gonzalez, 1985] is optimal (unlessP = NP ), only heuristics can be used to
obtain better results and, in the worst case, it is not possible to go behind the the-
oretical bounds. We profiled FPF and analyzed the most computational expensive
parts of the algorithm. We found that most of the distance computation are devoted
to find the next furthest point. We observed that there are cases such that some dis-
tance computations can be avoided without changing the finalclustering algorithm.
In section 2.4.1 we describe our results in this sense. FPF clustering quality can be
improved modifying part of the clustering schema. In section 2.4.2 we describe
an approach that use the random sampling technique to improve clustering output
quality, we call this algorithm M-FPF. Another crucial shortcomings of FPF is that
it selects a set of centers not representative of the clusters. This phenomenon must
be imputed to the fact that, when FPF creates a new center, it selects the furthest
point from the previous selected centers and thus the new center can likely be close
to a boundary of the subspace containing the data set. To overcame this problem in
section 2.4.3 we modify M-FPF to usemedoidsinstead of centers. Other domain
specific modifications to FPF will be presented in chapters 5 and6.

2.4.1 Exploiting the triangular inequality to improve the FPF
speed

We observed that most of the running time of the FPF algorithmis devoted to
compute distances for finding the closest center to each point. More precisely at
a generic iteration1 < i ≤ k, after finding the centerµk, n − k distances must
be computed to decide whether or not to assign a point to the new center. If this
is done in a straightforward manner it takesO(n) time per iteration, thus the total
computational cost of the algorithm isO(nk).
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Exploiting the triangular inequality, in certain conditions we can avoid to com-
pute the distances among all the points in a cluster and the new center being sure
that they are closer to their center. Unfortunately the worst case time complexity
still remainO(nk) because the number of saved distance computations depends
on data distribution and thus, it can not be predicted in advance. The modifications
discussed here do not change the FPF output, they only speed up the algorithm. In
chapter 5 we will discuss some approximations to speed up thealgorithm which
are data driven and thus not widely applicable. We modified the algorithm as fol-
lows: consider, in the FPF algorithm, any centerci and its associated set of closest
pointsCi. StoreCi as a ranked list, in order of decreasing distance toci. When a
new centercj is selected, scanCi in decreasing order of distance, and stop scanning
when, for a pointp ∈ Ci, it is the case thatd(p, ci) ≤ 1

2d(cj , ci). By the triangular
inequality, any pointp that satisfies this condition cannot be closer tocj than to
ci. This rule filters out from the scan points whose neighbor cannot possibly be
cj , thus significantly speeding up the identification of neighbors. Note that all dis-
tances between pairs of centers must be available; this implies an addedO(k2) cost
for computing and maintaining these distances. Note that this modified algorithm
works in any metric space, hence in any vector space2.

In the remainder of this thesis, when we will refer to FPF, we mean this version
of the algorithm since the final output is identical to that ofthe original one.

2.4.2 Using a random sample

The efficiency of the algorithm is further improved by applying FPF algorithm not
to the whole data set but only to a random sample of sizen′ =

√
nk of the input

points (sample size suggested in[Indyk, 1999]). Note that given thatk ≤ n, it is
always true thatn′ ≤ n. Then we add the remaining(n − n′) points to the cluster
of their closest center, one by one.

C1 C2

C2C1d(      ,       )

C2C1d(      ,       )1/2

C1 Pd(      ,       )
P

Figure 2.5. Exploiting the triangular inequality.

Also in the operation of insertion of the(n − n′) remaining points, the bot-
tleneck is the time spent computing distances to the point tothe closest center.

2We recall that any vector space is also a metric space, but notvice-versa.
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According with [Phillips, 2002] this operation can be made more efficiently ex-
ploiting the triangular inequality (see figure 2.5), even ifthe worst case running
time does not change.

Consider to have available the distances between all the pairs of centers of the
clustering. Letp be the new point to be inserted in the clustering, by the triangu-
lar inequality if 1

2d(ci, cj) > d(ci, p) thend(ci, p) < d(cj , p). It means that the
computation of the distanced(cj , p) can be safely avoided. Note that the distances
between each pair of centers is available in this phase because they were already
computed for the optimization described in section 2.4.1. We will refer to this al-
gorithm as M-FPF.

M-FPF:
Data: Let O be the input set,k the number of desired clusters
Result: C: ak-partition ofO
Initialize R with a random sample of size

√

|O|k elements ofO;
C = FPF(R, k);
forall Ci ∈ C do

µi = getCenter (Ci);
end
forall p in O \ R do

assignp to clusterCi such thatd(p, µi) < d(p, µj),∀j 6= i;
end

Algorithm 3 : M-FPF.

2.4.3 Using medoids as centers

The concept of medoid was introduced by Kaufman and Rousseeuw in [Kaufman
and Rousseeuw, 1990]. Medoids have two main advantages with respect to cen-
troids: first of all, they are elements of the input and not “artificial” objects. This
make medoids available also in those environments in which the concept of cen-
troid is not well defined or results artificious. Nevertheless, in many environments
(i.e texts) centroids tends to become dense objects with a high number of features
more of which of poor meaning. This makes centroids to lose representativeness
and compute distances with them becomes more expensive withrespect to dis-
tances between “normal” objects.

The main drawback of the original definition is that the clustering algorithm
(Partition Around Medoids) and the computation of medoids is expensive. As illus-
trated in section 2.2.1.3 to overcome this disadvantage many different re-definitions
of medoids were introduced in the literature.

In the context of the Furthest Point First heuristic where some input points are
elected as cluster centers and are used to determinate whichinput points belong
to the cluster, the restrictions of the use of centroids are not present. However,
we observed that, although the objects selected from FPF as centers determine the
points belonging to the cluster, they are not “centers” in the sense suggested by the
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human intuition.

C2

C3

C1

Figure 2.6. An example of clustering made using FPF.

Figure 2.6 shows a clustering with three clusters. The first centerc1 is central
also in the human sense.c2 is the furthest point fromc1. It can be easily observed
that according to the human feeling it is not in the center of the cluster it defines.
The same holds forc3.

This fact can impact negatively on the final clustering quality. Moreover we
will see in chapter 5 that there are applications in which we want to use the center
as a representative point of the cluster. In that casec2 andc3 are not a good choice.

To understand how centers as defined in the original FPF algorithm can not be
representative, consider the example in figure 2.7:

C1
C2

Figure 2.7. An example with two clusters made by FPF, in gray the ground
truth.

In the figure there are two clusters. The two gray filled circles represent the
expected correct clustering. Due to the choice ofc2 as the furthest point fromc1,
the obtained clustering is the one formed from the two balls with centersc1 and
c2 respectively. This has as side effect that some points (three in this example) are
assigned to the wrong cluster. The error is due to the choice of c2 that is not a good
candidate to be a center. Starting from this observation, weused medoids instead
of centers in our evolution of the FPF heuristic.
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Our definition of medoid is quite different from those present in the literature.
In fact we want to make the computation of medoids the more efficient as possible,
and in certain cases quickly approximable.

Given a set ofn pointsO = {o1, . . . , on} endowed with a distance function
d(), let (a, b) = arg maxx,y∈O2 d(x, y) two diametral points forO. We say that the
point m ∈ O such that

m = arg min
oi∈O

|d(oi, a) − d(oi, b)| + |d(oi, a) + d(oi, b) − d(a, b)|

is the medoid ofo.
This formula is composed by two main components:|d(oi, a) − d(oi, b)| con-

straints the medoid to be as equidistant as possible from thediametral points, while
|d(oi, a) + d(oi, b)− d(a, b)| attempts to select the closest possible point to the di-
ametral pair.

The medoid formulae can be generalized via weighting the twocomponents

m = arg min
oi∈O

α|d(oi, a) − d(oi, b)| + β|d(oi, a) + d(oi, b) − d(a, b)| (2.3)

whereα andβ are real numbers andα + β = 1.
According with this definition, the computation of the medoid is quadratic in

the number of points ofO. In fact, one should compute the distance between all the
possible pairs of objects of the input in order to find the diametral points. Following
[Ömer Egeciolu and Kalantari, 1989] it is possible to find a good approximationa
andb in linear time using the following search schema:

1. select a random pointp ∈ O

2. in O(n) find the furthest point fromp and call ita

3. in O(n) find the furthest point froma and call itb

Note that then distances computed in the step 3 can be stored and used for the
computation of formula (2.3).

According with the clustering strategy described in section 2.4.2, every time
a new pointp is inserted in a cluster, the medoid should be updated. This can be
unacceptable for its computational cost. If the new point isnot diametral, update
can be done just computingd(p, a) andd(p, b). Otherwise all the distances must
be recomputed. This effort can be reduced using another approximation: if for ex-
ampled(p, a) > d(a, b) andd(p, a) > d(p, b), one can consider as new diametral
pair the couple(a, p). This allow us to avoid the re-computation of the diametral
points and, by keeping updated a cache of all the distances between each diametral
point and all the other points, also the distances computation betweena and the
other points of the input set can be saved. Using this approximation it is possible
to update a medoid at the cost ofn distance function invocations instead of3n. We
will refer to this algorithm as M-FPF-MD.
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A further approximation of the medoid computation is still possible. Although
it reduces drastically the cost during the update procedure, it is quite rough and
should be used only in those online contexts where computational time makes the
difference, or in those environments where there is a huge amount of redundant
data. After the first time in which we finda, b and the medoidm, when a new
point p is inserted in the cluster, the update of the medoid can be done using the
following procedure:

• if d(p, a) > d(a, b) ∧ d(p, a) > d(p, b) discardb and replace it withp

• if d(p, b) > d(a, b) ∧ d(p, b) > d(p, a) discarda and replace it withp

• if d(a, b) > d(p, a) ∧ d(a, b) > d(p, b):

– if |d(p, a) − d(p, b)| + |d(p, a) + d(p, b) − d(a, b)| < |d(m,a) −
d(m, b)| + |d(m,a) + d(m, b) − d(a, b)| discardm andp become the
new medoid

– otherwise discardp

After the first initialization, this procedure requires only the computation of
two distances. In chapter 5 we will use successfully this approximation for the
generation of static storyboards from HSV vectors.

M-FPF-MD :
Data: Let O be the input set,k the number of desired clusters
Result: C: ak-partition ofO
Initialize R with a random sample of size

√

|O|k elements ofO;
C = FPF(R, k);
forall Ci ∈ C do

ti = getRandomPoint (Ci);
ai = ci such thatmax d(ci, ti) for eachci ∈ Ci;
bi = ci such thatmax d(ci, ai) for eachci ∈ Ci;
mi = ci such that
min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|;

end
forall p in O \ R do

assignp to clusterCi such thatd(p,mi) < d(p,mj),∀j 6= i;
if d(p, bi) > d(ai, bi) then ai = p ;
if d(p, ai) > d(ai, bi) then bi = p ;
if d(p, bi) > d(ai, bi) or d(p, ai) > d(ai, bi) then

mi = ci such that
min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|;

end
end

Algorithm 4 : M-FPF-MD.
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Chapter

3
Text document clustering

Abstract

Dealing with text documents is one of the foremost issues in information re-
trieval. In this context, clustering plays a strategic role. Large text document cor-
pora have become popular with the growth of the Internet and the decrease of price
of disk storage space and connection band-width.

Dealing with text documents is a hard task. This is due to someintrinsic char-
acteristics of human languages. For example, the same word can have different
meanings according with the context in which it is referred.Moreover the prefix or
suffix of a word can vary in different contexts. All the peculiarities of human lan-
guages motivate the effort of researchers in the field of textinformation retrieval.

In this chapter we survey the most important problems and techniques related
to text information retrieval: document pre-processing and filtering, word sense dis-
ambiguation, vector space modeling, term weighing and distance functions. In the
second part of the chapter we present two text clustering problems (on-line cluster-
ing of small semi-structured text corpora and off-line clustering of a large corpus)
and report a comparison of our clustering algorithms against k-means, which is
the most used algorithm in the text clustering context. Later in the chapter we in-
troduce the problem of cluster labelling: in a nutshell oncea certain corpus was
clustered into groups of homogeneous documents, in some cases, one would want
to synthesize a short label to deduce the cluster topic. In the final part of the chapter
we show our solution to this problem.
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3.1 Introduction
The termInformation retrieval(IR) was firstly introduced by Calvin Mooers at the
end of 40’s. Then information retrieval has become a very broad field of computer
science. It can be intuitively defined as the task of finding interesting and typically
unstructured “objects” for the user information needs in a wide collection.

Conceptually, IR systems can be designed to manage almost everything (texts,
images, videos), but the data type which has concentrated most of the studies is
text. The growth of the Internet has stressed even more the interest in this sense.
A lot of efforts have been spent to design general models for text information re-
trieval. Of course, the question about how similar are two documents has still not
found a univocally accepted answer. There are many reasons that make it difficult
deal with texts. First of all, the same concept can be expressed in many different
ways by different writers. Moreover, the use of synonyms candrastically reduce
the number of words shared by two related documents. On the contrary, the same
word can assume very different meanings according with the context in which it is
used. Nevertheless texts have the intrinsic characteristic that a not negligible part
of words are due to grammar rules and do not provide additional information.

Despite text documents do not have a clear structure in general, this can not
be considered always true. In fact, text documents are usually divided in sections,
begin with a title and, in many standard document file formats, their structure is
precisely marked using tags (HTML, XML and RTF just to give some examples).
Another example is constituted by semi-structured texts that are documents with
a poor structure (i.e. web snippets). Semi-structured texts will be the most used
documents in the applications described in this thesis. In chapter 4 we will deal with
snippets coming from web search engines with the goal of arranging them in an
automatically generated hierarchy. In chapter 6 we will test approximate similarity
searching techniques dealing with bibliographic records from Citeseer1.

In this chapter we survey the major techniques designed to manage text docu-
ments and some considerations for applying clustering algorithms to these data.

3.2 Text representation
A text document is, in its most simplistic representation, asequence of words.
With the purpose of indexing it or computing its similarity with other documents
(or equivalently with a text query), it must be preprocessedto remove the noise
due to “syntactic sugar” and make it more treatable by computers. Preprocessing
typically consists of many steps:

• Text normalization: in a document the same word can appear in different
forms. For example the beginning of a sentence begins with capital letter.
Naturally, these little variations do not affect the semantics of the term. To

1http://citeseer.ist.psu.edu/
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make it easier for IR systems to manege texts, terms must be normalized
by converting them to lower case, remove dashes in multi-words terms, etc.
Numbers, dates and punctuation are removed from texts. In thebag of words
model, where the context of the words is not used, terms are often sorted
lexicographically.

• Stemming: one of the major differences between human languages and pro-
gramming languages is that, in the first case, words have a fixed root and a
suffix (often also a prefix) that can vary depending on the context, while, in
the last case, keywords are invariable. However, the large part of the words
semantics is contained in their root, thus terms with the same root should be
considered as the same term. The goal of stemming algorithmsis to reduce
a word to its root. To complicate this task there is the fact that the rules for
extracting the root of a word depend from two aspects: the type of word (i.
e. verbs, conjugations) and the language (i. e. English, Italian). Moreover
human languages admit a lot of exceptions (i. e. the plural form of the word
child is children instead of childs as suggested by the standard rule). Mar-
tin Porter[Porter, 1980] in 1979 introduced a rule based algorithm that has
become the most famous stemmer algorithm for English still in use. Simi-
lar word stemmer algorithms are now available in almost all languages. The
major perplexity in using stemming is that it can cause misunderstanding
and change the meaning of the words. For example a too aggressive stem-
ming can reduce the word “organization” to “organ” or “policy” to “police”.
On the other hand, also a mild stemming can modify the original sense of a
word.

• Stop words removal: to the contrary of computer languages, human lan-
guages are rich of words. Most of them have not a meaning by themselves
but are used as grammar bricks to build complex sentences (for example ar-
ticles or prepositions). All these words can be safely removed from the text
without any loss of information. There are also words which have a very
general meaning or are too popular to be really helpful in theunderstanding
of the semantics of a text or its topic (i. e. above or below). Their removal
cause only a marginal loss of information, but has the benefitof reducing
the size of the representation of the text (in sections 3.2.1we will explain
the reasons that make this reduction a desirable property).The set of all the
terms, removable with a negligible semantics loss, is called stop words list.

• Vocabulary building : the growth of the computational power, memory size
and bandwidth was followed by an increase of the available textual informa-
tion. Low hardware costs had the effect that, even small enterprises want to
be able to process their internal knowledge base. Vocabularies do not change
the models for storing and querying texts, they are only usedto produce a
more compact representation of texts with the goal of maintain much more
documents in main memory. To each distinct term of the corpusan univocal
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identifier is assigned and it is stored in a tableV called vocabulary. Thus,
each document can be represented in a more compact form as a list of term
identifiers with a consequent reduction of the required storage.

Before to discuss a model for dealing with texts, it is important to understand
how words are distributed in documents and what are the implications of this dis-
tribution. Words in a corpus are not evenly distributed. A quite small set of words
appear very frequently. Some of them like articles and prepositions are connected
to grammar and can be removed as stop words, some others are instead topic de-
pendent. A medium size set of words appear with intermediatefrequency and a
broad set of words appear rarely. This last set is made wider for example by words
containing typos or by very specific words. This distribution, known aspower law,
was observed in all the human languages and is widely accepted as an intrinsic
human characteristic. Clearly, words that appear with highfrequency are useless
because they do not exploit differences among documents (their presence in two
documents does not means that those document are similar). Also rare words can
be useless (the reason will be more clear in section 3.2.1).

3.2.1 The vector space model

With the termmodelin information retrieval we refer to a representation for docu-
ments and queries equipped with a notion of distance/similarity among them. The
vector space modelis a well known model, widely accepted and used, for organiz-
ing texts. After preprocessing, described in the previous section, a text document
is reduced to a flat list of terms. Moreover, after preprocessing a vocabulary of all
the terms in the document becomes available. Thus a documentcan be stored in a
vector that has as many components as vocabulary words. Eachcomponent of the
vector represents a score for the corresponding word (depending from the chosen
weighting schema) or it is0 if the word is not present in the document. All the
documents of the corpus can be arranged in a matrix calleddocument matrixsuch
that rows correspond to documents and columns refer to terms.

Let D = {d1, . . . , dn} be a corpus ofn documents such thatV is the vocabu-
lary of all the words inD. ThusD can be arranged in a matrixM such thatmi,j

corresponds to the termvi ∈ V in documentdj ∈ D. There are many possible
different weighting schemes proposed in the literature. The most advanced IR sys-
tems weight terms according to their importance and characteristics (i.e. frequency
in the document and in the corpus). The most used weighting schemas are:

• Boolean (binary) model: if vi is present indj , thenmi,j = 1 otherwise
mi,j = 0.

• Term frequency (TF): let tfi,j be the number of occurrences of termvi in
documentdj . In the term frequency model we havemi,j = tfi,j. It could
be more convenient to normalize the weights to be independent from the
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document length. LetWCj =
∑|V |

i=1 tfi,j be the total number of words in
dj , then:

mi,j =
tfi,j

WCj

According to this normalization,mi,j is in the range[0, 1] and can be inter-
preted as the probability that wordvi appears in documentdj .

• Term frequency - Inverse document frequency (TF-IDF): let wi the num-
ber of documents in whichvi appears. We defineidfi = log n/wi. According
to the TF-IDF schemami,j = idfi ∗ tfi,j. To normalize the TF-IDF score in
the range[0, 1] the following formula is often preferred:

mi,j =
tfi,j ∗ idfi

√
∑|V |

k=1(tf
2
k,j ∗ idf2

i

.

This scheme assigns high score to those words that appear frequently in a
document, but are rare in the corpus. Instead, words that appear in a large
portion of the document corpus are not too helpful to exploitdifferences
among documents and thus are considered not important.

The vector space model has two main drawbacks. Since documents are vectors
with |V | components, even in the case of small corpora the dimensionality of the
resulting vector space is usually high. Moreover, documents are very sparse vec-
tors. A side effect of these two phenomena is that distances among documents tend
to become high. In addition, the distance between a pair of similar documents is
not so far from the distance between two unrelated ones. The standard technique to
reduce vector space dimensionality and make document vectors more dense is the
feature selection that will be discussed later in this section.

Another important issue is that the bag of words model does not considerate
the context of words. Context is clearly important to extract the sense of a term
because the same word could change its meaning in different contexts. This fact
became more evident for multi word terms. For example phrasal verbs in English
or people names. The problem of assigning the correct meaning to a word, called
word sense disambiguation, is well studied and many techniques have been pro-
posed in the literature, but they are typically more complexor computationally
expensive or their performance depends from a knowledge base and thus are topic
dependent. Moreover, none of them has at the moment exploited sufficiently higher
performances with respect to the bag of words model to be considered as a valuable
alternative.

3.2.1.1 Metric spaces and distance

A natural way to see documents (and queries) in the previously described model
is thinking to them as vectors (or points) in a high dimensional Euclidean space.
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When a normalized weighting schema is applied, documents lay in the positive
part of the surface of a iper-sphere of radius1.

The most natural way to compute distances among documents isusing the clas-
sical Euclidean distance. This distance is a special case oftheMinkowski distance
in which the parameterp is set to2. Given two documentsd1 andd2 and the related
rows of the matrixM , The Minkowski distance is defined as

Lp(d1, d2) = (

|V |
∑

i=1

|mi,1 − mi,2|p)1/p

.
Given two vectors the measure of the angle formed by them can be used as

distance between the two represented documents. If the two documents contain
exactly the same words, they give raise to the same vector andthus their angle is
0. In case the two documents do not have words in common they produce two or-
thogonal vectors and thus their distance is maximum. Based on this idea thecosine
similarity is defined as the cosine of the angle formed by two vector documents.
More formally letd1, d2 be two documents:

s(d1, d2) =
d1 · d2

‖d1‖ · ‖d2‖

Note that denominator is used only to normalize the cosine similarity to be in the
range[0, 1] independently from the length of the involved vectors. Thismeasure is
a similarity score. Similarity is the dual concept with respect to distance. The more
two objects are similar (similarity value is high) the more their distance tends to0
and vice versa. Cosine similarity and all algorithms designed to employ similarity
measures can be converted to use distances and vice versa. Asnoted in[Clarkson,
2006] the inner product of two vectorsd1 andd2 of length1 (in norm 2), that is
the standard cosine similarity of two normalized vectors, is turned into a distance
by D(d1, d2) = 1 − s(d1, d2). This distance function is not a metric in a strict
sense since the triangular inequality does not hold, however the following deriva-
tion ‖d1 − d2‖2

2 = d1 · d1 + d2 · d2 − 2d1 · d2 = 2(1 − d1 · d2) = 2D(d1, d2)
shows that the square root of the distance is indeed a metric.Equivalently one can
say that it satisfies the extended triangular inequalityD(d1, d2)

α + D(d2, d3)
α ≥

D(d1, d3)
α with parameterα = 1/2. Moreover a linear combination of distance

functions with positive weights defined on the same space is still a metric space
D(d1, d2) =

∑

i wiDi(d1, d2) for wi ≥ 0. Thus cosine similarity although not
giving rise to a metric in a strict sense is nonetheless closely related to a metric
space.

Another commonly used coefficient to measure distance between pairs of doc-
uments is theJaccard coefficient. In its original form this measure does not take
into account weights and reduces a weighted scheme to a binary one. Letd1 ∩ d2

be the set of terms thatd1 andd2 have in common andd1 ∪ d2 the set of terms
present in at least one of the two documents. The Jaccard coefficient is defined as:
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J(d1, d2) =
#(d1 ∩ d2)

#(d1 ∪ d2)

Many variants of Jaccard coefficient were proposed in the literature. The most
interesting is theGeneralized Jaccard Coefficientthat takes into account also the
weight of each term. It is defined as

GJC(d1, d2) =

∑|V |
i=1 min(mi,1,mi,2)

∑|V |
i=1 max(mi,1,mi,2)

GJC is proven to be a metric[Charikar, 2002].

3.2.1.2 Word sense disambiguation

All these distance measures have the drawback that, in different ways, the more
documents share terms, the more they are considered related. This is not always
true for many reasons. Firstly, the same word can have different meanings in dif-
ferent contexts (lexical ambiguity), thus having a word in common does not neces-
sarily imply similarity. Secondly, all human languages allow the use of synonyms
to express the same concept with different words, thereforetwo documents can
deal with the same topic sharing only few words. Moreover similar concepts can
involve the use of complex semantic relationships among thewords. For exam-
ple, after removing stop words, the two sentences: “the apple is on the table” and
“there is an orange on my desktop” have no words in common, butboth say some-
thing about a “fruit on a board”, thus they are not completelyunrelated. The above
example shows two important notions of similarity:

• paradigmatic, or substitutional, similarity when two words may be mutu-
ally replaced in a particular context without change the semantics of the text
(i. e. the words table and desktop in the previous example),

• syntagmatic similarity when two words significantly co-occur in the same
context. (i. e apple, orange and fruit in the previous example).

To take into account these similarities among words many techniques have
been proposed. The most common approaches are based on the attempt to generate
(manually or automatically) an ontology of words. The advantage of ontologies is
that they can be used to define a degree of similarity between couples of words,
and thus to find relationships among them. In the previous example both the words
“orange” and “apple” have as ancestor the term “fruit” and thus they are related.
A lot of effort was done to design indexes to measure the degree of similarity
between two words in the ontology graph. Many of them take into account the
length of the path between two words. In[Agirre and Rigau, 1996] Agirre and
Rigau propose theconceptual densitythat also takes into account the depth of the
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nodes in the hierarchy (deeper are closer) and the density ofnodes in the sub-
hierarchies involved (denser subhierarchies are closer)

The most important project for ontologies of words isWordNet[Miller, 1990].
Originally proposed by the Cognitive Science Laboratory atPrinceton University
only for the English language, WordNet has become a reference for all the infor-
mation retrieval community and similar projects are now available in many other
languages. WordNet is a handmade semantic lexicon that groups words into sets of
synonyms calledsynsets. Intuitively one can replace a word in a text with another
from the same synset without changing its semantics. A word can appear in more
than one synset if it has more than one meaning. Moreover synsets are arranged
as nodes in a graph such that there is an edge to connect two nodes if there is a
relation between the two synsets. There are different typesof possible relations, an
exhaustive list of them can be found in the WordNet web site[Miller et al., 2006].
Given two synsets X and Y, the most common types of relations in WordNet are:
hypernymif every X is a “kind of” Y, hyponymif Y is a “kind of” X, holonymif X
is a part of Y andmeronymif Y is a part of X. Thus, in our example WordNet has a
link between orange and fruit and also between apple and fruit hence it is possible
to infer a relation between orange and apple.

Clustering is often used also for grouping words into semantically homoge-
neous sets. This technique is known asword clustering [Dhillon et al., 2002;
Li and Abe, 1998]. In this case the set of objects to be clustered are not documents
like in the previous case, but only words. Thus, the main issues in this context
are the features associated to each word and the definition ofthe distance among
words. In fact the distance should be designed in a manner to take into account all
the considerations we made before. There are two main philosophies available in
the literature. One is to define a distance over an ontology like [Agirre and Rigau,
1996] and thus the issue of how to create the ontology still remainsopen. Another
opportunity is to use adistributionally-based semantic similarityapproach. In this
last case the key idea is that the semantic content of a word can be predicted study-
ing how the word occurs with other words in a corpus. Two wordsare considered
semantically related if they co-occur in a certain number ofdocuments. In[Brown
et al., 1991], a vector containing all the immediately succeeding words in the doc-
ument, is assigned to each term. For each of these words it is reported the number
of times they occur after the considered term in the whole corpus. Then a notion
of distance between two terms is defined as the average mutualinformation among
all the pairs of words in the context of the two terms.

The other problem we addressed in this section is that the same word can dras-
tically change its meaning in different contexts, thus it should be disambiguated
to avoid misapprehensions. There are two main approaches tosolve this problem.
In theory, one should attempt exploit a sort ofworld knowledgethat makes it pos-
sible to determine in which sense a word is used. Moreover, this method must be
endowed with an inference mechanism that would make use of the base of knowl-
edge to infer the intended sense of words. Clearly, this approach is not suitable in
practice because a computer readable general purpose knowledge base for this task
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does not exist. Some effort was spent to design knowledge-bases and inference sys-
tems, but they are usually very limited since they are essentially handmade. What
disambiguation systems do in practice is not to try to understand the meaning of
text at all, but simply trying to guess the correct meaning ofa word looking at the
context in which it appears. The key idea of this approach is that, after observ-
ing several contexts in which a word is used, it can be possible to disambiguate a
word only considering its own context. Many different methods were proposed in
the literature; a good survey of the most important ones and related problems can
be found in[Ide and Veronis, 1998], [Sanderson, 2000], [Stokoeet al., 2003] and
[Linden, 2005]. Here we limit to mention two of the most important results.

Despite the fact that many important ideas and algorithms for word sense dis-
ambiguation have been proposed in the literature since the 50’s, the first working
disambiguator was written by Lesk[Lesk, 1986] in 1986. It was the first software
that, for its characteristics, could be used for large text corpora. It was based on the
use of an on-line dictionary. In order to disambiguate a termin a certain context,
all its possible definitions were looked up in the dictionary. Then all the definitions
were treated as a document corpus. The context of the term to disambiguate was,
instead used as a query. Thus the problem of word sense disambiguation reduced to
a ranking problem (or alternatively to a similarity searching problem). Dictionary
clues are too small pieces of text and this negatively affects the disambiguator pre-
cision. Since large text corpora became available to researcher, they were employed
to overcome this problem.

In [Gale et al., 2004], a hybrid approach that uses both a dictionary and a
document corpus is proposed. The only requirement is that each document in the
corpus must be available in at least two different languages. To this purpose they
use for example the Canadian Hansards which are available inEnglish and French.
The dictionary is used to translate a tern from a language to the other. Note that an
ambiguous word has typically at least one different translation for each meaning.
For example the wordduty is often translated asdroit when used with the sense of
tax and asdevoirwhen mean obligation. In this way it is possible to automatically
extract a certain number of instances for each meaning of theword. Moreover, all
the meanings of a word can be ranked by collecting statisticsof their frequencies
in the corpus. These data are then arranged in a training set and a test set. Thus,
statistical models can be used for word sense disambiguation.

3.2.1.3 Feature selection

Documents in the vector space model are represented by very large and sparse vec-
tors. Using the standard TF-IDF weighting scheme one can seethem as points in
the surface of the positive region of a iper-sphere. As explained before, the high
dimensionality of documents in this representation has theside effect that the dis-
tances among documents become high and distances between pairs of similar doc-
uments tend to be close to the distance between pairs of unrelated ones. This is
due to the summation of the contributes in the distance computation given by unin-
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formative words. The goal of feature selection is to remove (or at least drastically
reduce) the dimensionality of the vectors by removing the not informative words.
There are two main strategies for feature selection: one dependent from the content
of the corpus, the other independent. Stemming and stop wordremoval go in the
latter direction. Despite the fact that these strategies achieve a good filtering, they
are unable to remove those words that are uninformative in a particular context.
For this reason a lot of effort was spent to design algorithmsthat are able to take
into account also the corpus content. Some of these methods like Latent Semantic
Indexing (LSI) [Deerwesteret al., 1990] and Random Projection[Bingham and
Mannila, 2001] employ structural properties of the document corpus. Othermeth-
ods use information theoretic indexes to measure the informativeness of a word
and filter those terms out of a certain range.

information theoretic indexes for feature selection Different indexes were pro-
posed in the literature to measure the informative strengthof a word, the great
majority of them are suitable only for classification. The key idea in this case is to
measure the degree of informativeness of the word for each class and then discard
those terms with a poor informative power for all classes. Few indexes are suitable
for unsupervised learning, in essence they are based on the document frequency.
The most common of these measures used for feature selectionare:

• Document Frequency (DF): is the number of distinct documents in which a
certain word appears in. This number is often normalized to be in the range
[0, 1] by dividing it by the total number of documents in the corpus.Accord-
ing to section 3.2, words that appear with high frequency areuseless because
they do not exploit differences among documents, rare wordsare also use-
less because their contribution in the distance computations is negligible.
Thus words with document frequency above or below certain thresholds can
be discarded.

• Term Strength: was originally proposed in[Wilbur and Sirotkin, 1992] for
vocabulary reduction in text retrieval. As the document frequency, this index
is not task-dependent, thus can be applied also to clustering. Moreover some
variants were proposed in the literature specific for the text categorization
problem[Yang and Wilbur, 1996]. We describe here its original definition.
Term strength collects statistics about the presence of a word in pairs of
related documents in a training set, then it uses these statistics to assign a
score to the word. A pair of documents is considered to be related if their
distance (usually the cosine distance) is under a certain threshold. Letd1 and
d2 be two related documents andw a word, term strength is defined as:

TS(w, d1, d2) = P (w ∈ d1|w ∈ d2)

In other words, given two related documents, term strength is the condi-
tional probability that a word occurs in a document given that it occurs in the
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other. Let(di, dj) be a pair of related documents in the training set, the term
strength is:

TS(w) =
#(di, dj) : w ∈ di ∧ w ∈ dj

#(di, dj) : w ∈ di ∨ w ∈ dj

• Gain: let n the number of documents in the corpus anddfw the number
of documents in which the wordw appears in, theGain [Papineni, 2001]
function is defined as:

Gain(w) =
dfw

n
∗

(
dfw

n
− 1 − log

dfw

n

)

In this case the gain function assigns a low score both to rareand to common
words. On the contrary of DF which requires a range of admissible values,
in this case all the words with gain under a certain thresholdare discarded.
An important difference between Gain and DF is that in the former case the
connection between rare and common filtered words is explicit. Figure 3.1
shows the Gain function.
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Figure 3.1. The gain function.

• Information Gain : is only suitable in the context of classification. The infor-
mation gain function[Cover and Thomas, 1991; Yang and Pedersen, 1997]
measures the contribution in terms of informativeness thatthe presence or
absence of a word gives to a certain class. Letd be a document taken uni-
formly at random in the set of documentsD. P (vi) is the probability thatd
contains termvi, P (cj) is the probability thatd is in categorycj . The com-
plementary events are denotedP (v̄i) = 1 − P (vi) andP (c̄j) = 1 − P (cj).
P (vi, cj) is the probability thatd is in categorycj and contains termvi,
P (v̄i, c̄j) is the probabilityd does not containvi and is not in category
cj . P (vi, c̄j) is the probability thatd containsvi but is not in categorycj

P (v̄i, cj) is the probability thatd does not containvi and is in categorycj .
Clearly being these mutually disjoint events it holds:P (vi, cj)+P (v̄i, c̄j)+
P (vi, c̄j) + P (v̄i, cj) = 1. The information gain is the contribution of the
four terms:
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IG(vi, cj) =
∑

v∈{vi,v̄i}

∑

c∈{cj ,c̄j}
P (v, c) log

P (v, c)

P (v)P (c)

Note that information gain assigns a score tovi only for a category. In order
to have a global score for the termvi different choices are possible. The most
common is:

IGmax(vi, cj) = max
cj∈C

IG(vi, cj)

In this case the key idea is that, ifvi is highly informative for at least one
class, its presence helps to classify documents of that class.

• Gain Ratio: attempts to overcome some drawbacks of information gain. In
fact the value of the information gain formula does not only depends onwi

andcj , but also from the entropy of the class. Thus normalizing this factor
we obtain the gain ratio formula:

GR(vi, cj) =
IG(vi, cj)

−∑

c∈{cj ,c̄j} P (c) log P (c)

• Mutual Information : is a measure of the degree of dependence between a
documentd and a classc. Like in the case of information gain, this index is
only suitable in the context of classification. More formally mutual informa-
tion is defined as:

MI(w, c) = log P (w|c) − log P (w)

wherew is a word andc is a class. The main drawback of mutual information
is that it is highly influenced by the termP (w). Thus for an equal value of the
conditional probability rare terms are highlighted. Similarly to information
gain a global score for a termw can be computed by one of the following
formulas:

MIavrg(w, c) =
m∑

i=1

P (ci)MI(w, ci)

MImax(w, c) =
m

max
i=1

MI(w, ci)

A comparison of many of the above described measures can be find in [Yang
and Pedersen, 1997].
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Random projection One of the most simple and effective method to reduce the
dimensionality of the vector space is therandom projection[Kaski, 1998; Lin and
Gunopulos, 2003]. The idea behind random projection is to reduce the dimension-
ality of the document matrix by multiplying it for a random projection matrix.
More precisely: letM be the document matrix withn documents andm features.
Suppose we want to reduce the vector space to bek-dimensional, withk < m.
Let R a matrix formed bym randomk-dimensional vectors. We can project the
original document vectors onto a lower dimensional space by:

A[k×n] = R[k×m] · M[m×n]

Random projection is motivated by the Johnson-Lindenstrauss lemma[W.Johnson
and j. Lindenstrauss, 1984]:

Theorem 1. Letn an integer and0 < ǫ < 1 andk such that

k ≥ 4

(
ǫ2

2
− ǫ3

3

)−k

ln n

Then for any setM of n points inR
m there exist a mapf : R

m → R
k such that

∀u,w ∈ M (1 − ǫ)‖u − w‖ ≤ ‖f(u) − f(w)‖ ≤ (1 + ǫ)‖u − w‖

In simple words, according with the above lemma a set of points in a high-
dimensional Euclidean space can be mapped in a lower-dimensional space such
that distances between pairs of points are approximately preserved.

One of the mayor issues in the random projection method is thechoice of the
vectors ofR. In theory, if the random vectors are orthogonal the distances between
the original points are exactly preserved, thus an orthogonal matrix is desired. In
practice, orthogonalization is a very costly operation, thus a reasonable approxima-
tion is used. In the literature many methods were proposed toinitialize the elements
of R, in the most common case they are Gaussian distributed. In[Achlioptas, 2003]
two simple possible alternative initializations were proposed to reduce the compu-
tational time needed for the calculation forR × M :

• ri,j = 1 with probability1/2 otherwiseri,j = −1

• ri,j =
√

3 ·







−1 with prob.1/6
0 with prob.2/3
1 with prob.1/6

Latent semantic indexing The main idea behindlatent semantic indexing(LSI) is
to project documents into a low-dimensional space with “latent” semantic dimen-
sions. Even in the case in which two documents do not share terms in the original
vector space they can still have a high similarity score in the target space as long
as they share “semantically” similar words. Latent semantic indexing is based on
theSingular Value Decomposition(SVD) applied to the document matrixM .
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Latent semantic indexing takes the document matrixM and represents it as a
matrixM̂ in ak dimensional space (k << m) such that it minimizes the following:

∆ = ‖M − M̂‖2 (3.1)

Let M be the document matrix withn documents andm features. Using SVD,
latent semantic indexing decomposesM into three matrices such that:

M[m×n] = T[m×r]Σ[r×r](D[n×r])
T

whereT andD are orthogonal matrices that contain respectively the leftand
the right singular vectors ofM and represent the terms and documents in the target
space.Σ is a diagonal matrix that contains the singular the values ofM andr is
the rank ofM . If values onΣ are sorted in decreasing order, SVD can be seen as a
method to rotate the axes of the target space such that to thei-th axis is associated
to the direction with thei-th largest variation. Thus singular values inΣ can be
used to rank the “importance” of each dimension in the targetspace. As a direct
consequence latent semantic indexing attempts to reduce the dimensionality in a
way such that the dimensions of the target space correspond to the axes of greatest
variation.

By restricting the matricesT , Σ andD to their firstk < r columns we obtain:

M̂[m×k] = T[m×k]Σ[k×k](D[n×k])
T

which is the best approximation for equation 3.1. At this point, to move from
them-dimensional space of words to thek-dimensional space of concepts, docu-
ments can be represented as the rows of the following matrix:

Z[k×n] = Σ[k×k](D[n×k])
T

Despite the high computational cost, latent semantic indexing is one of the
most powerful techniques for dimensionality reduction. The choice of the value
of k is arbitrary and it is still one of the mayor issues for LSI. A too aggressive
dimensionality reduction can negatively affect the quality of results while a too
mild reduction can leave noise in the vector space. Typical choices fork are in the
range of 100 - 150 features.

3.3 Text clustering
In section 2.2.1.1 and 2.4 we described our family of clustering algorithms based on
the Furthest Point First heuristic by Gonzalez[Gonzalez, 1985]. In this section we
compare all these algorithms (FPF, M-FPF and M-FPF-MD) in the setting of text
clustering. We compared them using two different metric spaces: the well known
Cosine Similarity (CS) and the Generalized Jaccard Coefficient (GJC). Moreover
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we are interested also in comparing our family of algorithmsagainstk-means (de-
scribed in section 2.2.1.2) which is the most used algorithmfor text clustering. As
known,k-means performances are strictly dependent from the initialization crite-
rion. Thus to have a better evaluation of thek-means behavior we tested it using
three popular initializations described in section 2.2.1.2 (MQ, RC and RP). In order
to compare clustering algorithms we used two different datasets:

• Reuters: is one of the most used data sets in information retrieval[NIST,
2005]. After an initial cleaning to remove multi-labelled documents, we ob-
tain a corpus of 8538 documents of various lengths organizedin 65 mutually
exclusive classes. We further remove 10 classes each containing only a single
document.

• Snippets: is a collection of 30 small corpora of 200 web snippets returned by
theOpen Directory Project (ODP) search engine in correspondence of the
30 most popular queries according with Google statistics. Amore complete
description of this dataset and how we established the ground truth can be
found in section 4.4.1.1.

The two considered datasets present many differences: Reuters contains much
more documents that are much longer than those in Snippets. Documents in Reuters
can have a large size variability and are completely flat. Instead, Snippets contains
semi-structured documents (a field with the snippet title and one with the snippet
body).

Since both the datasets we used are endowed with a manual classification, it
was possible to establish a ground truth. We used four measures to validate the
clustering correspondence with the ground truth: theNormalized Mutual Informa-
tion (NMI), the Normalized Complementary Entropy(NCE), the F-measure and
the Accuracy. All these measures are in the range[0, 1] where higher values mean
better quality and are described in section 2.3.2.

3.3.1 FPF evaluation

In table 3.1 we show a comparison of the three clustering algorithms for thek-
center problem. Each clustering was run using two differentdistance functions
with the goal of comparing also the metrics for text clustering.

As shown in table 3.1, when clustering Reuters data, all the algorithms have
a very different behavior depending on the used distance. Inall the cases cosine
similarity performs better than GJC. Instead, when clustering Snippets, the final
clustering quality is always comparable.

Routers data put in evidence also some differences among theclustering algo-
rithms. In fact FPF seems to achieve a worse quality with respect to the others.
When clustering Snippets, these differences become much less evident. In fact, the
F-measure and accuracy are always comparable; NMI, in the case FPF, is quite
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Dataset Measure
FPF M-FPF M-FPF-MD

CS GJC CS GJC CS GJC

Reuters

NMI 0.180 0.071 0.219 0.077 0.231 0.078
NCE 0.650 0.542 0.690 0.548 0.701 0.548
F-mea 0.340 0.286 0.441 0.241 0.389 0.168
Acc. 0.594 0.488 0.650 0.488 0.646 0.466

Snippets

NMI 0.697 0.683 0.414 0.411 0.422 0.408
NCE 0.428 0.407 0.678 0.687 0.688 0.684
F-mea 0.360 0.395 0.338 0.350 0.336 0.356
Acc. 0.568 0.565 0.542 0.560 0.552 0.563

Table 3.1. Comparison of FPF, M-FPF and M-FPF-MD on the Reuters and
Snippets datasets with Generalized Jaccard Coefficient and Cosine Simi-
larity.

higher than that of M-FPF and M-FPF-MD. In contrast NCE of FPFis lower than
that of the other algorithms.

3.3.2 k-means evaluation

Table 3.2 reports a comparison ofk-means algorithm initialized with three common
methods: RC in which the initial centroids are Randomly Chosen, RP[Peñaet al.,
1999] in which initial centroids are obtained through Random Perturbations and
MacQueen’s[MacQueen, 1967] in which the initial centroids are randomly chosen,
the remaining points are assigned one at time to the nearest centroid and each such
assignment causes the immediate recomputation of the involved centroid.

Algorithm NMI NCE F-mea Acc.

Reuters
k-means MQ 0.287 0.757 0.332 0.683
k-means RC 0.305 0.775 0.299 0.743
k-means RP 0.304 0.775 0.299 0.728

Snippets
k-means MQ 0.721 0.446 0.346 0.585
k-means RC 0.697 0.422 0.311 0.554
k-means RP 0.656 0.389 0.239 0.472

Table 3.2. Comparison of k-means with three different initializations on the
Reuters and Snippets datasets.

In table 3.2 we observe that when clustering the Reuters data, either RC and
RP converge to the same solution. MQ, instead finds a slightlyworse solution. In
the clustering of Snippets the situation is opposite. In fact, in this casek-means
initialized with MQ consistently obtains a better result than using the other initial-
izations.
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3.3.3 Clustering running time

In table 3.3 we show running time for all the considered algorithms and variants
using both datasets. Note that thek-means running time is strictly dependent from
the number of iterations the algorithm performs. There is not a general rule to
decide the “right” number of iterations. For the Reuters dataset we constrained
k-means to stop when one of the following conditions became true: clustering is
stable (i. e. centroids are close to those of the previous iteration), 10 iterations
were made. In the case of Snippets we also constrainedk-means to stop after a
certain time threshold is exceeded. We set this threshold to5 seconds. This last
requirement was introduced to study thek-means behavior in on-line applications.

Table 3.3 has two columns for each dataset. In the first columnwe report the
overall clustering time and in the last column we report the initialization time for
k-means (our algorithms do not require an initialization).

Reuters Snippets
Algorithm Clustering Initialization Clustering Initialization
FPF - CS 70.76 - 0.291 -
FPF - GJC 4.90 - 0.116 -
M-FPF - CS 70.54 - 0.331 -
M-FPF - GJC 5.41 - 0.127 -
M-FPF-MD - CS 88.20 - 0.342 -
M-FPF-MD - GJC 14.55 - 0.151 -
k-means MQ 8663.08 768.30 5.565 0.462
k-means RC 8081.20 74.07 5.584 0.261
k-means RP 25413.29 17301.92 12.416 12.390

Table 3.3. Running time in seconds of all Algorithms, variants and metrics.

A first important observation we can make looking at table 3.3is that GJC
is much faster than cosine similarity. The larger are the documents, the more this
difference is evident.

We observed also thatk-means initialization running time is a not negligible
part of the overall running time. The random perturbation isthe slowest initializa-
tion, its running time dominates that of the rest of the computation. Not surprisingly
the selection of random centers is the fastest initialization.

In the comparison among the algorithms it is evident that thefamily of FPF
based methods is much faster thank-means. Moreover, we observed that the choice
of thek-center set (that is the set of points in the solution of thek-center problem
2.2.1.1) runs in comparable time with respect to the choice of random points.

3.3.4 Conclusions

To give a global overview, in table 3.4 and 3.5 we report all performances and
running time results for respectively the Reuters and Snippets datasets.
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Algorithm NMI NCE F-mea Acc. Run Time Init. Time
FPF - CS 0.180 0.650 0.340 0.594 70.76 -
FPF - GJC 0.071 0.542 0.286 0.488 4.90 -
M-FPF - CS 0.219 0.690 0.441 0.650 70.54 -
M-FPF - GJC 0.077 0.548 0.241 0.488 5.41 -
M-FPF-MD - CS 0.231 0.701 0.389 0.646 88.20 -
M-FPF-MD - GJC 0.078 0.548 0.168 0.466 14.55 -
k-means MQ 0.287 0.757 0.332 0.683 8663.08 768.30
k-means RC 0.305 0.775 0.299 0.743 8081.20 74.07
k-means RP 0.304 0.775 0.299 0.728 25413.29 17301.92

Table 3.4. Performance and running time (in seconds) for the Reuters
dataset.

After analyzing the data, it is clear that the perfect clustering algorithm still
does not exist and this motivates the effort of researchers.Hence some observa-
tions should be done. First of all, the on Reuters data,k-means outperforms al-
gorithms fork-center by a factor of roughly 10% but requires at least two orders
of magnitude more time. Using GJC, time and performance differences become
more evident. Clearly the best clustering/metric scheme isstrictly dependent on
the problem requirements and data size. In off-line applications probably compu-
tational efficency should be sacrificed in favor of quality, but this is not always
true. For example, as we will see in chapter 6, if we must manage a large corpus
of data (about 100k documents), the preprocessing time can vary from the order of
hours to weeks. When the corpus becomes huge the use ofk-means can become
impractical.

Algorithm NMI NCE F-mea Acc. Run Time Init. Time
FPF - CS 0.697 0.428 0.360 0.568 0.291 -
FPF - GJC 0.683 0.407 0.395 0.565 0.116 -
M-FPF - CS 0.414 0.678 0.338 0.542 0.331 -
M-FPF - GJC 0.411 0.687 0.350 0.560 0.127 -
M-FPF-MD - CS 0.422 0.688 0.336 0.552 0.342 -
M-FPF-MD - GJC 0.408 0.684 0.356 0.563 0.151 -
k-means MQ 0.721 0.446 0.346 0.585 5.565 0.462
k-means RC 0.697 0.422 0.311 0.554 5.584 0.261
k-means RP 0.656 0.389 0.239 0.472 12.416 12.390

Table 3.5. Performance and running time (in seconds) for the Snippets
dataset.

The analysis of Snippets, in proportion, shows essentiallyno difference in
terms of running time with respect to Reuters. Clearly in an on-line setting the
use ofk-means can result infeasible and FPF must be preferred. Looking at quality
performances, there is not a dominating algorithm. NMI and MCE are always in
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contrast: a high value of NMI corresponds to a poor result forNCE. F-measure and
Accuracy are in all the cases stable. We observe also that, interms of quality per-
formance, the choice of the metric is not influent. Cosine similarity slightly gains
in terms of NMI and NCE, while GJC is a bit better in terms of F-measure and
accuracy. In terms of running time, instead GJC saves up to the 60% of the time
required by cosine similarity.

3.4 Cluster labelling
Once a certain corpus of documents has been clustered, in some applications it is
important to have a short (textual) description of its content. For example, in the
web snippets clustering we will discuss in chapter 4 a perfect cluster without a good
description of its content is not useful. The case of similarity searching, discussed
in chapter 6, is instead different since clustering is only a“hidden” tool for the sim-
ilarity search engine. A cluster label should have at least three desired properties:
shortness, syntactically correctness and predictivenessof the cluster content.

In this section we describe in detail our novel approach to cluster labelling. This
algorithm, designed for web snippets, is used inArmil a web meta search engine
described in chapter 4. Our proposed method requires as input the vector space of
documents and the clustering; thus it is independent from: the chosen weighting
scheme, the feature selection method and the clustering algorithm. The algorithm
works in three phases: in the first step it extracts a list of topic representative key-
words for each cluster; then it removes some duplicate keywords according with a
global criterion; to finish it extracts the best possible sentence from the cluster such
that it matches the cluster keywords.

3.4.1 Extracting cluster keywords

In the first phase of the cluster labelling algorithm, we select a certain number of
descriptive keywords for the considered cluster. We assumehere that documents
are represented as bag of words such that each term has a scoredepending on
previous chosen weighting scheme. Moreover, it is also reasonable to assume that
feature selection was already done before clustering, thusall not discarded terms
should be semantically relevant. Under the above assumptions the more a word is
relevant for a document the higher is its score. Thus, the cluster content can be
synthesized by the set of words with highest score. We will refer to the words in
this set as thecandidatewords. Note that the selection algorithm has scope limited
to the considered cluster and does not take into account the content of the other
clusters. We will refer to this aslocal candidate selection. While from a certain
point of view this means that candidates can be extracted in parallel for each cluster,
on the other hand it means that many clusters can have some keywords in common
and therefore similar labels. For example this is the case ofweb snippets in which
the query terms are likely to be present in all clusters with high score.
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3.4.2 Candidate words selection

The second step overcomes the drawback of the previous step which has only a
local scope. The goal here is to decide for which cluster a shared keyword is more
appropriate. We can see this as a problem of classification inwhich each set of
candidate words is a category and the keywords that appear inmore than set of
candidate words must be classified. At the end for each keyword we have an asso-
ciated set, thus we can remove the word from the other sets.

To classify candidate words we used a modified version of theinformation gain
function[Cover and Thomas, 1991; Yang and Pedersen, 1997].

Let x be a document taken uniformly at random in the corpus.P (t) is the
probability thatx contains termt, P (c) is the probability thatx is in categoryc.
The complementary events are denotedP (t̄) = 1 − P (t) andP (c̄) = 1 − P (c).
P (t, c) is the probability thatx is in categoryc and contains termt, P (t̄, c̄) is the
probabilityx does not containt and is not in categoryc. P (t, c̄) is the probability
thatx containst but is not in categoryc, P (t̄, c) is the probability thatx does not
containt and is in categoryc. Clearly being these mutually disjoint events it holds:
P (t, c) + P (t̄, c̄) + P (t, c̄) + P (t̄, c) = 1. The information gain is:

IG(t, c) =
∑

a∈{t,t̄}

∑

b∈{c,c̄}
P (a, b) log

P (a, b)

P (a)P (b)

Intuitively, IG measures the amount of information that each argument con-
tains about the other; whent andc are independent,IG(t, c) = 0. As explained
in section 3.2.1.3 this function is often used for feature selection in text classifica-
tion, where, ifIG(t, c) is high, the presence or absence of a termt is deemed to
be highly indicative of the membership or non-membership ina categoryc of the
document containing it.

Examining the information gain formula it is easy to note that it is the summa-
tion of four contributions: the presence of the term in the class (P (t, c) log P (t,c)

P (t)P (c) ),

the absence of the term in the other classes (P (t̄, c̄) log P (t̄,c̄)
P (t̄)P (c̄)

), the presence of

the term in the other classes (P (t, c̄) log P (t,c̄)
P (t)P (c̄) ) and the absence of the term in the

class (P (t̄, c) log P (t̄,c)
P (t̄)P (c) ). The first two contributions represent the “positive cor-

relation” between the arguments while the last two factors represent their “negative
correlation”.

In the text classification context, the rationale of including both positive and
negative correlations is that, the contribution due to the presence or absence of a
term is equally indicative of the membership (resp. non-membership) of the docu-
ment in the category. That is, the term is useful anyway, although in a “negative”
sense.

However, in our context we are not interested in the fact thatthe absence of
a keyword in the label increases its information power. We want to measure the
contribution of the presence of a keyword in a candidate set to the detriment of
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the others and hence we are interested to those terms in information gain formula
that positively describethe contents of a cluster. We modified information gain
according with the above consideration:

IGm(t, c) = P (t, c) log
P (t, c)

P (t)P (c)
+ P (t̄, c̄) log

P (t̄, c̄)

P (t̄)P (c̄)

3.4.3 Label generation

Once completed second step, for each cluster we have associated a set of candi-
date words. The goal of this step is to extract from each cluster the most possible
descriptive short sentence based on the candidate words. Thus we can consider all
the sentences contained in the documents of the considered cluster as a text corpus,
arrange them in a inverted index and use candidate words as query to retrieve re-
lated sentences. Clearly in this case we are interested in just a phrase, thus we rank
results and extract the label from the sentence on top. Sincewe want to extract a
short sentence of few words, it makes sense to remove from theset of candidate
words (query) the terms with low score. In our experiments wereduced these sets
to contain only three items and refer to them as the clustersignature. Note that we
need to make just a query for each cluster, thus in practice wemake a linear scan
of all the sentences and do not set up the inverted index.

The ranking function should assign a score that takes into account three pa-
rameters: the weight of the candidate words present in the phrase, the number of
different candidate words retrieved and their inter-distance. Moreover the ranking
function should penalize repeated words because they do notadd new information
to the final user, but make the label longer. In the case of the web snippets we were
interested in labels no longer than five words, thus we evaluated the score of all the
five word windows in the sentence and return as sentence scorethe highest value.
Let q = {q1, . . . qh} be the words of the query that produces the snippets corpus,
C = {c1, . . . , ck} the candidate keywords for the clusterW = {w1, . . . , wn} the
words in the considered window (in our casen = 5 andk = 3) such thatwi has
scores(wi), the ranking ofW is:

R(W ) =
∑

wi∈W

R(wi)

whereR(wi) is defined as:

R(wi) =







s(wi) if wi ∈ C ∧ ∀j < i wj 6= wi

0 if wi ∈ Q ∧ ∀j < i wj 6= wi

−1/2 if ∃j < i wj = wi

−1 otherwise

The window with highest value ofR is the candidate label. Clearly the choice
of extracting the cluster label from a phrase of the documentcorpus assures us that
the selected sentence is syntactically well written. On theother hand the constraint
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on the length of the label forced us to use a window with the collateral result of
truncating the sentence. To smooth this effect we applied tothe candidate label a
filter based on the following rules:

• in case of consecutive copies of a word or a pair of words an instance is
removed;

• similarly to what is made for stop words, a list of inadmissible “last word” is
used to filter out, among the other: prepositions, conjunctions and articles;

• in the case in which the query is formed by a pair of wordsQ = {q1, q2}, if
the label hasq2 as first word,q1 is inserted before, instead, ifq1 is the last
word of the labelq2 is appended;

• in case the same word is the initial and final word of the label an instance is
removed (more precisely we remove the last instance if it is not preceded by
an inadmissible last word, otherwise we remove the first instance),

• web URLs and e-mail addresses are removed.

All the filter rules are recursively applied until the label reaches a stable form.
The output of the filter is the final label. The quality of the resulting labels depends
strictly from the quality of the sentences in the corpus and the clustering algorithm.
Moreover a mathematical evaluation of the label quality is probably infeasible. For
this reasons we do not provide here an evaluation of the labelling algorithm but we
delay it to chapter 4 where the clustering and labeling are combined together and a
complete system is presented.
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Chapter

4
Showcase Armil a clustering

based meta-search engine

Abstract

This chapter describesArmil a completely working meta-search engine that groups
the Web snippets returned by auxiliary search engines into disjoint labelled clus-
ters. The cluster labels generated byArmil provide the user with a compact guide
to assessing the relevance of each cluster to his/her information need. Striking the
right balance between running time and cluster well-formedness was a key point in
the design of this system. Both the clustering and the labelling tasks are performed
on the fly by processing only the snippets provided by the auxiliary search engines,
and use no external sources of knowledge. Clustering is performed by means of
a fast version of the furthest-point-first algorithm for metric k-center clustering.
Cluster labelling is achieved by combining intra-cluster and inter-cluster term ex-
traction based on a variant of the information gain measure.We have tested the
clustering effectiveness ofArmil againstVivisimo, thede factoindustrial standard
in Web snippets clustering, using as benchmark a comprehensive set of snippets
obtained from theOpen Directory Project hierarchy. According to two widely ac-
cepted “external” metrics of clustering quality,Armil achieves better performance
levels by 10%. We also report the results of a thorough user evaluation of both the
clustering and the cluster labelling algorithms.
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4.1 Introduction
An effective search interface is a fundamental component ina Web search engine.
In particular, the quality of presentation of the search results often represents one
of the main keys to the success of such systems. Most search engines present the
results of an user query as a ranked list of Web snippets. Ranking algorithms play a
crucial role in this approach, since users usually browse atmost the 10 top-ranked
items. Snippet quality is also an important issue, since good-quality snippets allow
the user to determine whether the referred pages match or nothis/her information
need. In order to provide an useful hint about the real content of the page, a Web
snippet includes both the page title and a short text fragment, that often displays
the query terms in that context.Meta-search engines(MSEs) integrate the items
obtained from multiple “auxiliary” search engines, with the purpose of increasing
the coverage of the results. However, without an accurate design, MSEs might in
principle even worsen the quality of the information accessexperience, since the
user is typically confronted with an even larger set of results (see[Meng et al.,
2002] for a recent survey of challenges and techniques related to building meta-
search engines). Thus, key issues to be faced by MSEs concernthe exploitation of
effective algorithms for merging the ranked lists of results retrieved by the different
auxiliary search engines (while at the same time removing the duplicates), and the
design of advanced user interfaces based on a structured organization of the results,
so as to help the user to focus on the most relevant subset of results. This latter
aspect is usually implemented by grouping the results into homogeneous groups
by means of clustering or categorization algorithms.

In the context of the the World Wide Web, clustering is not only useful for
meta-searching. For example, regular search engines use clustering to some extent
to avoid showing the user too many semantically-equivalentdocuments in the first
page of results. This activity is close to the classicalduplicateor near-duplicate
detection in information retrieval, and one can take advantage of the fact that du-
plicates and near duplicates are easy to detect via multiplehashing or shingling
techniques, and these tasks can be carried out, at least in part, in an off-line setting
(see e.g.[Haveliwalaet al., 2000]). Moreover, in the duplicate detection activity
labelling is not an issue.

This chapter describes theArmil system1, a meta-search engine that organizes
the Web snippets retrieved from auxiliary search engines into disjoint clusters and
automatically constructs a title label for each cluster by using only the text excerpts
available in the snippets. Our design efforts were directedtowards devising a fast
clustering algorithm able to yield good-quality homogeneous groups, and a dis-

1An armillary sphere (also known as a spherical astrolabe, armilla, or armil) is a
navigation tool in the form of a model of the celestial sphere, invented by Eratos-
thenes in 255 BC. Renaissance scientists and public figures were often portrayed with
one hand on an armil, since it represented the height of wisdom and knowledge (see
http://en.wikipedia.org/wiki/Armillary sphere). TheArmil query interface can
be freely accessed and used at the urlhttp://armil.iit.cnr.it/.
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tillation technique for selecting appropriate and useful labels for the clusters. The
speed of the two algorithms was a key issue in our design, since the system must
organize the results on the fly, thus minimizing the latency between the issuing of
the query and the presentation of the results. InArmil, an equally important role
is played by the clustering component and by the labelling component. Cluster-
ing is accomplished by means of M-FPF-MD, the improved version of the FPF
algorithm described in section 2.4.3. The generation of thecluster labels is in-
stead accomplished by means of a combination of intra-cluster and inter-cluster
term extraction, based on a modified version of the information gain measure. This
approach tries to capture the most significant and discriminative words for each
cluster.

One key design feature ofArmil is that it relies almost only on the snippets
returned by the auxiliary search engines. This means that nosubstantial external
source of information, such as ontologies or morphologicaland syntactic linguistic
resources, is used. We use just stop word lists, stemmers anda very simple lan-
guage recognition tools. We thus demonstrate that such a lightweight approach,
together with carefully crafted algorithms, is sufficient to provide a useful and suc-
cessful clustering-plus-labelling service. Obviously, this assumption relies on the
hypothesis that the quality of the snippets returned by the auxiliary search engines
is satisfactory.

We have tested the clustering effectiveness ofArmil againstVivisimo the de
facto industrial standard in Web snippet clustering , using as benchmark a com-
prehensive set of snippets obtained from theOpen Directory Project hierarchy.
According to two metrics of clustering quality that are normalized variants of the
Entropy and the Mutual Information[Cover and Thomas, 1991], Armil achieves
better performance thanVivisimo.

We also report the results of a thorough user evaluation of both the clustering
and the cluster labelling algorithms.

4.2 Clustering and labelling of web snippets
Clustering and labelling are both essential operations fora Web snippet clustering
system. However, each previously proposed such system strikes a different balance
between these two aspects. Some systems (e.g.[Ferragina and Gulli, 2005; Lawrie
and Croft, 2003]) view label extraction as the primary goal, and clustering as a
by-product of the label extraction procedure. Other systems (e.g.[Kummamuruet
al., 2004; Zamiret al., 1997]) view instead the formation of clusters as the most
important step, and the labelling phase is considered as strictly dependent on the
clusters found.
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4.2.1 Related work

Tools for clustering Web snippets have received attention in the research commu-
nity. In the past, this approach has had both critics[Kural et al., 1999; 1993] and
supporters[Tombroset al., 2002], but the proliferation of commercial Web services
such asCopernic, Dogpile, Groxis, iBoogie, Kartoo, Mooter, and Vivisimo
seems to confirm the potential validity of the approach. Academic research pro-
totypes are also available, such asGrouper [Zamir and Etzioni, 1998; Zamiret
al., 1997], EigenCluster [Chenget al., 2003], Shoc [Zhang and Dong, 2004], and
SnakeT [Ferragina and Gulli, 2005]. Generally, details of the algorithms underly-
ing commercial Web services are not in the public domain.

Maarek et al.[Maareket al., 2000] give a precise characterization of the chal-
lenges inherent in Web snippet clustering, and propose an algorithm based on
complete-link hierarchical agglomerative clustering that is quadratic in the num-
bern of snippets. They introduce a technique called “lexical affinity” whereby the
co-occurrence of words influences the similarity metric.

Zeng et al.[Zeng et al., 2004] tackle the problem of detecting good cluster
names as preliminary to the formation of the clusters, usinga supervised learning
approach. Note that the methods considered in our approach are instead all unsu-
pervised, thus requiring no labelled data.

TheEigenCluster [Chenget al., 2003], Lingo [Osinski and Weiss, 2004], and
Shoc [Zhang and Dong, 2004] systems all tackle Web snippet clustering by per-
forming a singular value decomposition of the term-document incidence matrix.
The problem with this approach is that SVD is extremely time-consuming, hence
problematic when applied to a large number of snippets. By testing a number of
queries onEigencluster we have observed that, when operating on many snippets
(roughly 400), a reasonable response time (under 1 second) is attained by limiting
the number of generated clusters to a number between 5 and 10,and avoiding a
clustering decision for over 50% of the data.

Zamir and Etzioni[Zamir and Etzioni, 1998; Zamiret al., 1997] propose a
Web snippet clustering mechanism (Suffix Tree Clustering – STC) based on suf-
fix arrays, and experimentally compare STC with algorithms such ask-means,
single-passk-means[MacQueen, 1967], Backshot and Fractionation[Cutting et
al., 1992], and Group Average Hierarchical Agglomerative Clustering(GAHAC).
They test the systems on a benchmark obtained by issuing a setof 10 queries to the
Metacrawler meta-search engine, retaining the top-ranked 200 snippetsfor each
query, and manually tagging the snippets by relevance to thequeries. They then
compute the quality of the clustering obtained by the testedsystems by ordering
the generated clusters according to precision, and by equating the effectiveness of
the system with the average precision of the highest-precision clusters that collec-
tively contain 10% of the input documents. This methodologyhad been advocated
in [Hearst and Pedersen, 1996], and is based on the assumption that the users will
anyway be able to spot the clusters most relevant to their query. Average precision
as computed with this method ranges from 0.2 to 0.4 for all thealgorithms tested
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(STC coming out on top in terms of both effectiveness and efficiency). Interest-
ingly, the authors show that very similar results are attained when full documents
are used instead of their snippets, thus validating the snippet-based clustering ap-
proach.

Strehl et al.[Strehlet al., 2000] experiment with four similarity measures (Co-
sine similarity, Euclidean distance, Pearson Correlation, extended Jaccard) in com-
bination with five algorithms (k-means, self-organizing maps, random clustering,
min-cut hyper-graph partitioning, min-cut weighted graphpartitioning). Two data
sets were used, one formed by 2340 documents pre-classified in 20 categories from
the news repository ofYahoo!, the second formed by 966 documents pre-classified
in 10 categories from the Business Directory ofYahoo!. Overall quality is mea-
sured in terms of normalized mutual information. For a specific clustering also the
quality of the single clusters in terms of single cluster purity, single cluster entropy
are given. The comparisons are made only in terms of output quality, computing
time not being considered relevant in this setting. The highest quality results are
obtained via cosine similarity and Jaccard distance combined with min-cut graph
partitioning. Our experiments have confirmed that for snippets better results are ob-
tained using variants of Jaccard distance, with respect to standard tf-idf and cosine
similarity.

Lawrie and Croft[Lawrie and Croft, 2003] view the clustering/labelling prob-
lem as that of generating multilevel summaries of the set of documents (in this
case the Web snippets returned by a search engine). The technique is based on
first building off-line a statistical model of the background language (e.g. the sta-
tistical distribution of words in a large corpus of the English language), and on
subsequently extracting “topical terms” from the documents, where “topicality” is
measured by the contribution of a term to the Kullback-Leibler divergence score
of the document collection relative to the background language. Intuitively, this
formula measures how important this term is in measuring thedistance of the
collection of documents from the distribution of the background language. Addi-
tionally, the “predictiveness” of each term is measured. Intuitively, predictiveness
measures how close a term appears (within a given window size) to other terms. In
the summaries, terms of high topicality and high predictiveness are preferred. The
proposed method is shown to be superior (by using the KL-divergence) to a naive
summarizer that just selects the terms with highesttf ∗ idf score in the document
set.

Kammamuru et al.[Kummamuruet al., 2004] propose a classification of Web
snippet clustering algorithms intomonothetic(in which the assignment of a snip-
pet to a cluster is based on a single dominant feature) andpolythetic (in which
several features concur in determining the assignment of a snippet to a cluster).
The rationale for proposing a monothetic algorithm is that the single discriminat-
ing feature is a natural label candidate. The authors propose such an algorithm (a
type of greedy cover) in which the snippets are seen as sets ofwords and the next
term is chosen so as to maximize the number of newly covered sets while minimiz-
ing the hits with already covered sets. The paper reports empirical evaluations and
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user studies over two classes of queries, “ambiguous” and “popular”. The users
were asked to compare 3 clustering algorithms over the set ofqueries and, for each
query, were asked to answer 6 questions of a rather general nature on the generated
hierarchy (not on the single clusters).

Ferragina and Gulli[Ferragina and Gulli, 2005] propose a method for hier-
archically clustering Web snippets, and produce a hierarchical labelling based on
constructing a sequence of labelled and weighted bipartitegraphs representing the
individual snippets on one side and a set of labels (and corresponding clusters)
on the other side. Data from theOpen Directory Project (ODP)2 is used in an
off-line and query-independent way to generate predefined weights that are associ-
ated on-line to the words of the snippets returned by the queries. Data is collected
from 16 search engines as a result of 77 queries chosen for their popularity among
Lycos andGoogle users in 2004. The snippets are then clustered and the labels
are manually tagged as relevant or not relevant to the cluster to which they have
been associated. The clusters are ordered in terms of their weight, and quality is
measured in terms of the number of relevant labels among the first n labels, for
n ∈ {3, 5, 7, 10}. Note that in this work the emphasis is on the quality of the labels
rather than on that of the clusters (although the two concepts are certainly related),
and that the ground truth is defined “a posteriori”, after thequeries are processed.

4.3 The Armil system
We discuss here in detail the architecture ofArmil. Overall the computation flow is
a pipeline consisting in:

1. data collection and cleaning,

2. first-level clustering,

3. candidate word extraction for labelling,

4. second-level clustering,

5. cluster labelling.

Let us review these steps in order.
(1) Querying one or more search engines:The user ofArmil issues a query

string that is re-directed byArmil to the selected search engines (at the moment the
user can selectGoogle and/orYahoo!). As a resultArmil obtains a list (or several
lists) of snippets describing Web pages that the search engines deem relevant to
the query. An important system design issue is deciding the type and number of
snippet sources to be used as auxiliary search engines. It iswell-known that the
probability of relevance of a snippet to the user information need quickly decays

2http://www.dmoz.org/
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Figure 4.1. The Armil meta-search pipeline.

with the rank of the snippet in the list returned by the searchengine. Therefore
the need of avoiding low-quality snippets suggests the use of many sources each
supplying a low number of high-quality snippets (here high-quality snippet implies
both relevance of the snippet to the query and representativeness of the snippet with
respect to the associated document). On the other hand, increasing the number of
snippet sources raises the pragmatic issue of handling several concurrent threads,
the need to detect and handle more duplicates, and the need for a more complex
handling of the composite ranking by merging several snippet lists (both globally
and within each cluster separately). Since we considerArmil a “proof-of-concept”
prototype rather than a full-blown service, we have chosen only two (high-quality)
sources,Google and Yahoo!. Since snippet quality decays quickly, we believe
that collect 200 snippets is enough reasonable for our purposes. More precisely
we queryGoogle asking for 120 results andYahoo! for 80. This unbalance is
only due to some constraints in the number of snippets one canask toYahoo!’s
interface to be returned in a single query. Thus these numbers optimize the total
waiting time. We produce the initial composite ranking of the merged snippet list
by a very simple method, i.e. by alternatively picking snippets from each source
list.

(2) Cleaning and filtering: Snippets that are too short or with little informa-
tive content (i.e. small number of well formed words) or in non-latin alphabets are
filtered out. The input is then filtered by removing non-alphabetic symbols, dig-
its, HTML tags, stop words, and the query terms. These latterare removed since
they are likely to be present in every snippet, and thus are going to be useless for
the purpose of discriminating different contexts. On the other hand query terms
are very significant for the user so they are re-introduced inthe label generation
phase described below. We then identify the prevalent language of each snippet,
which allows us to choose the appropriate stop word list and stemming algorithm.
Currently we use the ccTLD (Country Code Top Level Domain) ofthe url to de-
cide on the prevalent language of a snippet. For the purpose of the experiments
we only distinguish between English and Italian. For snippets of English Web
pages we use Porter’s stemming algorithm, while for Italianones we use a sim-
ple rule-based stemmer we developed in-house. Currently, no other languages are
supported. More advanced language discovery techniques are well-known in the
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literature, however it should be noticed that, given the on-line requirements, meth-
ods too expensive in terms of computational effort should beavoided.

(3) First-level clustering: We build a flatk-clustering representing the first
level of the cluster hierarchy, using the M-FPF-MD algorithm and the Generalized
Jaccard Distance as described in chapter 2. An important issue is deciding the
numberk of clusters to create. Currently, by default this number is fixed to 30, but
it is clear that the number of clusters should depend on the query and on the number
of snippets found. A general rule is difficult to find, also because the “optimal”
number of clusters to be displayed is a function of the goals and preferences of
the user. Moreover, while techniques for automatically determining such optimal
number do exist[G. W. Milligan, 1985; Geraciet al., 2007], their computational
cost is incompatible with the real-time nature of our application. Therefore, besides
providing a default value, we allow the user to increase or decrease the value ofk to
his/her liking. Clusters that contain one snippet only are probably outliers of some
sort, and we thus merge them under a single cluster labelled “Other topics”.

(4) Snippets re-ranking: A cluster small enough that the list of its snippets
fits in the screen does not require a sophisticated order of presentation. However,
in general users are greatly facilitated if the snippets of acluster are listed in order
of their estimated importance for the user. Our strategy is to identify an “inner
core” of each cluster and “outliers”. In order to achieve this aim we apply the FPF
algorithm within each cluster as follows. Since FPF is incremental in the parameter
k, we incrementk up to a value for which it happens that the largest obtained
cluster has less then half of the points of the input cluster.This specific group forms
the“inner core”, all other points are termed “outliers”. The points in the“core” are
shown in the listing before the “outliers”. Within core and outliers points we use a
relative ranking obtained by a linear combination of the native ranking generated
by the auxiliary search engines. Note that this computationis done only to decide
the order of presentation of the snippets at the first level. It should not be confused
with the second-level clustering described below.

(5) Candidate words selection:For each cluster we need to determine a set
of candidate words for appearing in its label; these will hereafter be referred to as
candidates. For this purpose, for each word that occurs in the cluster wesum the
weights of all its occurrences in the cluster and pre-selectthe 10 words with the
highest score in each cluster.

We refer to this aslocal candidate selection, since it is done independently for
each cluster. For each of the 10 selected terms we computeIGm, as explained in
Section 3.4.2. The three terms in each cluster with the highest score are chosen as
candidates. We refer to this asglobal candidate selection, because the computation
of IGm for a term in a cluster is dependent also on the contents of theother clusters.
Global selection has the purpose of obtaining different labels for different clusters.
At the end of this procedure, if two clusters have the same signature we merge
them, since this is an indication that the target number of clustersk may have been
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too high for this particular query3.
(6) Second-level clustering:Although the clustering algorithm could in prin-

ciple be iterated recursively in each cluster up to an arbitrary number of levels,
we limit our algorithm to only two levels, since this is likely to be the maximum
depth a user is willing to explore in searching for an answer to his/her informa-
tion needs4. Second-level clustering is applied to first-level clusters of size larger
than a predetermined threshold (at the moment this is fixed to10 snippets, exclud-
ing duplicates). For second-level clustering we adopt a different approach, since
metric-based clustering applied at the second level tends to detect a single large
“inner core” cluster and several small “outlier” clusters5. The second-level part of
the hierarchy is generated based on the candidate words found for each cluster dur-
ing the first-level candidate words selection. CallingK the set of three candidate
words of a generic cluster, we consider all its subsets as possible signatures for
second level clusters. A snippetx is assigned to a signatures if and only if all
the signature elements are inx and no candidate inK \ s is in x. If a signature is
assigned too few snippets (i.e. 1) it is considered as an outlier and it is not shown
to the user in the second level. Also, if most of the snippets at the first level end
up associated to a single signature, then the second-level clusters are not shown to
the user since the second-level subdivision would not be anymore useful than the
first-level subdivision6.

(7) Labelling: Many early clustering systems would use lists of keywords as
the output to show to the user. In order to offer a more syntactically pleasant label
we decided to give as output well formed phrases or parts of phrases as it is becom-
ing standard in more recent systems (e.g.[Ferragina and Gulli, 2005]). We use the
candidate keywords just as a basis for generating well-formed phrases that will be
shown to the user as real cluster labels. For example “meaning life”, and “meaning
of life” hold the same information but the latter must be grammatically preferred.
Given the title of the Web page contained in the snippet, considered as a sequence
of words (this time including stop words) we consider all itscontiguous subse-
quences and we give each subsequence a cumulative score as follows: candidates
are given a high positive score (itsIGm score), query words a low positive score
(set to 0.1), all other words have a negative score (set at -0.2). For labelling a clus-
ter, among all its snippets we select the shortest substringof a snippet title among
those having the highest score. This computation can be doneefficiently using a
dynamic programming approach. The choice of positive and negative weights is to
ensure balancing of two conflicting goals: include most of the candidates but few
of the non-candidate connecting words in a label. Once a short phrase is selected,

3More precisely, we consider the two original clusters with the same signature as second-level
clusters, and we produce for each a different second-level label based on the non-signature keywords
of those clusters.

4Vivisimo, for example, uses a two-levels hierarchy
5We exploited this phenomenon in the snippet re-ranking step(4).
6Since second-level clustering is based on first-level candidate words here we depart slightly from

the overall idea of separating clustering and labelling.
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a rule-based filter is applied to adjust possible grammatical imperfections due to
the fact that the selected phrase came from a title whose headand tail were cut and
thus the resulting label can appear broken. Filters are better described in section
3.4.3.

(8) Exploiting duplicates: SinceArmil collects data from several search en-
gines it is possible that the same URL (maybe with a differentsnippet fragment
of text) is present more than once. We consider this fact as anindication of the
importance of the URL. Therefore, duplicates are accountedfor in determining
weights and distances. Since clustering is based on title and text, it is possible that
the same URL ends up in different clusters, for which it is equally relevant. How-
ever, if duplicate snippets appear in the same cluster, theyare listed only once with
an indication of the two sources. Thus duplicate removal is done just before the
presentation to the user.

Figure 4.2. The Armil meta-search interface.

(9) User Interface: The user interface is important for the success of a Web-
based service. We have adopted a scheme common to many searchengines and
meta-search engines (e.g.Vivisimo), in which the data are shown in ranked list
format in the main frame while the list of cluster labels are presented on the left
frame as a navigation tree. The interface also allows the user to select the number
of clusters, by increasing or decreasing the default value of 30.

4.4 Armil evaluation
We have performed experiments aimed at assessing the performance ofArmil.
In our tests the behavior of the clustering algorithm, the labeling algorithm and
the whole system were compared against the state of the art commercial system
Vivisimo.

Vivisimo is considered an industrial standard in terms of clusteringquality and
user satisfaction, and in 2001 and 2002 it has won the “best meta-search-award”
assigned annually by the on-line magazineSearchEngineWatch.com. Vivisimo
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thus represents a particularly difficult baseline, and it isnot known if its clustering
quality only depends on an extremely good clustering algorithm, or rather on the
use of external knowledge or custom-developed resources.

Vivisimo’s advanced searching feature allows a restriction of the considered
auxiliary search engines to a subset of a range of possible auxiliary search engines.
In particular we restricted it to work over theOpen Directory Project (ODP) data.
The main advantage of this data is that they came from an handmade classification.
By the fact it means that it was possible to establish a groundtruth. Thus assessing
the quality of a clustering could be done using well-known testing methodologies
based on information-theoretic principles.

The problem of measuring the quality of labels and the quality of the whole
system is much more complicated. In fact there is not a rigorous method to state
how good is a label. To overcome this inconvenient we made an user evaluation
that is the standard testing methodology. We performed the study on 22 volunteer
master students, doctoral students and post-docs in computer science at our depart-
ments (the University of Siena, University of Pisa, and IIT-CNR). The volunteers
have all a working knowledge of the English language.

4.4.1 Evaluating clusterings

Following a consolidated practice, we measured the effectiveness of a clustering
system by the degree to which it is able to “correctly” re-classify a set of pre-
classified snippets into exactly the same categories without knowing the original
category assignment. In other words, given a setC = {c1, . . . , ck} of categories,
and a setΘ of n snippets pre-classified underC, the “ideal” term clustering algo-
rithm is the one that, when asked to clusterΘ into k groups, produces a grouping
C ′ = {c′1, . . . , c′k} such that, for each snippetsj ∈ Θ, sj ∈ ci if and only if
sj ∈ c′i. The original labelling is thus viewed as the latent, hiddenstructure that the
clustering system must discover.

The measures we used for evaluating clusterings are: thenormalized mutual in-
formation(NMI) and thenormalized complementary entropy(NCE) we discussed
in 2.3.2.

Higher values of NMI mean better clustering quality. The clustering produced
by Vivisimo has partially overlapping clusters (in our experimentsVivisimo as-
signed roughly 27% of the snippets to more than one cluster),but NMI is de-
signed for non-overlapping clustering. Therefore, in measuring NMI we eliminate
the snippets that are present in multiple copies from: the ground truth, the cluster-
ing produced byVivisimo, and that produced byArmil.

However, in order to also consider the ability of the two systems to “correctly”
duplicate snippets across overlapping clusters, we have also computed the NCE, in
which we have changed the normalization factor so as to take overlapping clusters
into account. NCE ranges in the interval[0, 1], and a greater value implies better
quality.
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4.4.1.1 Establishing the ground truth

The ephemeral nature of the Web is amplified by the fact that search engines have
at best a partial view of the available pages relevant to a given query. Moreover
search engines must produce a ranking of the retrieved relevant pages and display
only the pages of highest relevance. Thus establishing a “ground truth” in a context
of the full Web is problematic. Following[Haveliwalaet al., 2002], we have made
a series of experiments using as input the snippets resulting from queries issued to
theOpen Directory Project. The ODP is a searchable Web-based directory con-
sisting of a collection of a few million Web pages (as of today, ODP claims to index
5.1M Web pages) pre-classified into more than 590K categories by a group of 75k
volunteer human experts. The classification induced by the ODP labelling scheme
gives us an objective “ground truth” against which we can compare the clustering
quality of Vivisimo andArmil. In ODP, documents are organized according to a
hierarchical ontology. For any snippet we obtain a label forits class by considering
only the first two levels of the path on the ODP category tree. For example, if a
document belongs to classGames/Puzzles/Anagramsand another document be-
longs to classGames/Puzzles/Crosswords, we consider both of them to belong to
classGames/Puzzles. This coarsification is needed in order to balance the number
of classes and the number of snippets returned by a query.

Queries are submitted toVivisimo, asking it to retrieve pages only from ODP.
The resulting set of snippets is parsed and given as input toArmil. This is done to
ensure thatVivisimo andArmil operate on exactly the same set of snippets, hence
to ensure full comparability of the results. SinceVivisimo does not report the ODP
category to which a snippet belongs, for each snippet we perform a query to ODP
in order to establish its ODP-category.

4.4.1.2 Outcome of the comparative experiment

Similarly to [Ferragina and Gulli, 2005; Kummamuruet al., 2004], we have ran-
domly selected 30 of the most popular queries submitted toGoogle in 2004 and
20057; from the selection we have removed queries (such as e.g. “Spongebob”,
“Hilary Duff”) that, referring to someone or something of regional interest only,
were unlikely to be meaningful to our evaluators. The selected queries are listed in
table 4.1.

On average, ODP returned 41.2 categories for each query. In Table 4.2 we
report the NMI and NCE values obtained byVivisimo andArmil on these data.
Vivisimo produced by default about 40 clusters; therefore we have runArmil with
a target of 40 clusters (thus with a choice close to that ofVivisimo, and to the
actual average number of ODP categories per query) and with 30 (this number is
the default used in the user evaluation).

The experiments indicate a substantial improvement of about 10% in terms of
cluster quality ofArmil(40) with respect toVivisimo. This improvement is an im-

7http://www.google.com/press/zeitgeist.html
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• Airbus

• Chat

• Games

• James Bond

• Mp3

• Pink Floyd

• Spiderman

• Tsunami

• Armstrong

• Cnn

• Harry Potter

• London

• New Orleans

• Star Wars

• Wallpaper

• Baseball

• Ebay

• Ipod

• Madonna

• Notre Dame

• Simpsons

• Tiger

• Weather

• Britney Spears

• Firefox

• Iraq

• Matrix

• Oscars

• South Park

• Tour De France

Table 4.1. Queries.

Vivisimo Armil(40) Armil(30)
NCE 0.667 0.735 (+10.1%) 0.683 (+2.3%)
NMI 0.400 0.442 (+10.5%) 0.406 (+1.5%)

Table 4.2. Results of the comparative evaluation.

portant result since, as noted in 2005 in[Ferragina and Gulli, 2005], “The scientific
literature offers several solutions to the web-snippet clustering problem, but unfor-
tunately the attainable performance is far from the one achieved byVivisimo.” It
should be noted moreover thatVivisimo uses a proprietary algorithm, not in the
public domain, which might make extensive use of external knowledge. In contrast
our algorithm is open and disclosed to the research community.

4.4.2 User evaluation of the cluster labelling algorithm

Assessing “objectively” the quality of a cluster labellingmethod is a difficult prob-
lem, for which no established methodology has gained a wide acceptance. For this
reason an user study is the standard testing methodology. Wehave set up an user
evaluation of the cluster labelling component ofArmil in order to have an indepen-
dent and measurable assessment of its performance. We performed the study on 22
volunteer master students, doctoral students and post-docs in computer science at
the University of Siena, University of Pisa, and IIT-CNR. The volunteers have all
a working knowledge of the English language.

The user interface ofArmil has been modified so as to show clusters one-by-
one and proceed only when the currently shown cluster has been evaluated. The
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queries are supplied to the evaluators in a round robin fashion from the 30 prede-
fined queries listed in table 4.1. For each query the user mustfirst say whether the
query is meaningful to him/her; an evaluator is allowed to evaluate only queries
meaningful to him/her. For each cluster we propose three questions:

(a) Is the label syntactically well-formed?

(b) Can you guess the content of the cluster from the label?

(c) After inspecting the cluster, do you retrospectively consider the cluster as
well described by the label?

The evaluator must choose one of three possible answers (Yes; Sort-of; No),
and his/her answer is automatically recorded in a database.Question (a) is aimed at
assessing the gracefulness of the label produced. Question(b) is aimed at assessing
the quality of the label as an instrument predictive of the cluster content. Question
(c) is aimed at assessing the correspondence of the label with the content of the
cluster. Note that the user cannot inspect the content of thecluster before answering
(a) and (b).

Also in this case we used the same set of queries used for evaluating clustering
quality, but in this case we do not used the snippets collected from ODP, but we
usedGoogle andYahoo as auxiliary search engines. The two main reasons for
this choice are: normallyArmil has to deal with those data and not with ODP
data, snippets in ODP are typically hand-made and this can introduce a bias in the
labeling algorithm.

Each of the 30 queries has been evaluated by two different evaluators, for a total
of 60 query evaluations and 1584 cluster evaluations. The results are displayed in
the following table:

Yes Sort-of No
(a) 60.5% 25.5% 14.0%
(b) 50.0% 32.0% 18.0%
(c) 47.0% 38.5% 14.5%

Table 4.3. Results of the user evaluation.

Summing the very positive and the mildly positive answers wecan conclude
that, in this experiment, 86.0% of the labels are syntactically acceptable, 82.0%
of the labels are reasonably predictive and 85.5% of the clusters are sufficiently
well described by their label. By checking the percentages of No answers, we can
notice that sometimes labels considered non-predictive are nonetheless considered
well descriptive of the cluster; we interpret this fact as due to the discovery of
meanings of the query string previously unknown to the evaluator.

The correlation matrices in Table 4.4 show more precisely the correlation be-
tween syntax, predictivity and representativeness of the labels. Entries in the top
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part give the percentage over all answers, and entries in thebottom part give per-
centage over rows.

b-Yes b-Sort-of b-No

a-Yes 42.67% 12.81% 5.11%
a-Sort-of 5.74% 15.27% 4.41%
a-No 1.64% 3.78% 8.52%
a-Yes 70.41% 21.14% 8.43%
a-Sort-of 22.58% 60.04% 17.36%
a-No 11.76% 27.14% 61.08%

c-Yes c-Sort-of c-No

b-Yes 33.52% 12.81% 3.72%
b-Sort-of 11.36% 16.85% 3.66%
b-No 2.14% 8.90% 7.00%
b-Yes 66.96% 25.59% 7.44%
b-Sort-of 35.64% 52.87% 11.48%
b-No 11.88% 49.30% 38.81%

c-Yes c-Sort-of c-No

a-Yes 35.98% 18.93% 5.68%
a-Sort-of 8.64% 12.81% 3.97%
a-No 2.39% 6.81% 4.73%
a-Yes 59.37% 31.25% 9.37%
a-Sort-of 33.99% 50.37% 15.63%
a-No 17.19% 48.86% 33.93%

Table 4.4. Correlation tables of questions (a) and (b) (top), (b) and (c) (mid-
dle), (a) and (c) (bottom).

The data in Table 4.4 (top) show that there is a strong correlation between
syntactic form and predictivity of the labels, as shown by the fact that in a high
percentage of cases the same answer was returned to questions (a) and (b).

The middle and bottom parts of Table 4.4 confirm that while forthe positive
or mildly positive answers (Yes, Sort-of) there is a strong correlation between the
answers returned to the different questions, it is often thecase that a label consid-
ered not predictive of the content of the cluster can still befound, after inspection
of the cluster, to be representative of the content of the cluster.

4.4.3 Running time

Since the hardware architecture ofVivisimo is not known, a fair comparison of
running time is not possible. Moreover the time needed to enquiry and obtain snip-
pets from the auxiliary search engines depends from many external variables: the
available bandwidth or a possible commercial partnership with the queried search
engines.
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Our system runs on an a Intel(R) Pentium(R) D CPU 3.20GHz, 3GbRAM
and operating system openSUSE 10.2. The code was developed in Python V. 2.5.
Excluding the time needed to download the snippets from the auxiliary search en-
gines, the 30 queries have been clustered and labelled in 0.32 seconds on average;
the slowest query took 0.37 seconds.

4.5 Conclusions
Why isArmil not “yet another clustering search engine”? The debate on how to im-
prove the performance of search engines is at the core of the current research in the
area of Web studies, and we believe that so far only the surface of the vein has been
uncovered. The main philosophy of the system/experiments we have proposed fol-
lows these lines: (i) principled algorithmic choices are made whenever possible; (ii)
clustering is clearly decoupled from labelling; (iii) attention is paid to the trade-off
between response time and quality while limiting the response time within limits
acceptable by the user; (iv) a comparative study ofArmil andVivisimo has been
performed in order to assess the quality ofArmil’s clustering phase by means of
effectiveness measures commonly used in clustering studies; (v) an user study has
been set up in order to obtain an indication of user satisfaction with the produced
cluster labelling; (vi) no use of external sources of knowledge is made.
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Chapter

5
Clustering for static and

dynamic video summaries

Abstract

Video browsing has become one of the most popular activity inthe Web. Thus
a tool to provide an idea of the content of a given video is becoming a need. Both
static and dynamic summarization techniques can be used in this purpose as they
set up avideo abstract. For static summaries, a set of frames are extracted from the
original video to produce a summary, while in the dynamic case short video clips
are selected and sequenced to provide the summary. Unfortunately, summarization
techniques typically require long processing time and hence all the summaries are
produced in advance without any possible user customization. With the large user
heterogeneity, this is a burden. In this chapter, we set up anexperimental envi-
ronment where we test clustering performances consideringdifferent: categories
of video, abstract lengths and low-level video analysis. For summaries we used
a fast approximation of M-FPF-MD algorithm. In the static case we worked at
frame level, while in the dynamic case we observed that clustering whose input
is based on the selection of video scenes performs better than clustering based on
video frames. In the end we designedViSto, a completely working Web-based
customizable service for on-the-fly video summarization toshow that, to provide a
customized service, fast clustering algorithms should be considered.
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5.1 Introduction
The availability of digital video contents over the web is growing at an excep-
tional speed due to the advances in networking and multimedia technologies and
to the wide use of multimedia applications: videos can be downloaded and played
out from almost everywhere using many different devices (e.g., cellphones, palms,
laptops) and networking technologies (e.g., EDGE, UMTS, HSDPA, Wi-Fi). The
large popularity is highlighted by the enormous success of web sites like Google-
Video, YouTube and iTunes Video, where people can upload/download videos. In
such a scenario, a tool for performing video browsing would be really appreciated.
To handle the enormous quantity of video contents, many proposals have been
presented for indexing, retrieving and categorizing digital video contents. In this
chapter we focus onsummarization techniques, which aim at providing a concise
representation of a video content. The motivation behind these techniques is to pro-
vide a tool able to give an idea of the video content, without watching it entirely,
such that an user can decide whether to download/watch the entire video or not. In
essence, these techniques are well suited for browsing videos.

In particular, two different approaches are usually followed for producing a
concise video representation:

• static video summary, which is a collection of video frames extracted from
the original video,

• dynamic video skimming(or video abstract), which is a collection of short
video clips.

It is worth mentioning that, in both cases, the output is obtained by analyzing
some low-level characteristics of the video stream (e.g., colors, brightness, speech,
etc.) in order to find out possible aural/visual clues that would allow a high-level
semantics video understanding.

In this chapter we analyze both static and dynamic summarization techniques.
For the static case many different techniques have been proposed[Shahraray and
Gibbon, 1995; Uedaet al., 1991; Zhuanget al., 1998; Hanjalic and Zhang, 1999b;
Gong and Liu, 2003; Hadiet al., 2006; Munduret al., 2006b], most of them based
on clustering techniques. The common key idea is to produce the storyboard by
clustering together similar frames and by showing a limitednumber of frames per
cluster (in most cases, only one frame per cluster is selected). With this approach,
it is important to select the features upon which frames are considered similar, and
different criteria may be employed (e.g., colors distribution, luminance, motion
vector, etc.). For the dynamic case, in the literature, different techniques have been
proposed (see e.g.[Ohet al., 2004]), but there are relatively few works that address
clustering techniques for video skimming. In both the casesthe proposed methods
usually use computationally expensive and very time-consuming algorithms.

Although existing techniques produce acceptable quality storyboards, they usu-
ally use complicated clustering algorithms and thus are computationally expensive

CLUSTERING FOR STATIC AND DYNAMIC VIDEO SUMMARIES 72



Introduction

and very time consuming. For instance, in[Munduret al., 2006b] the computation
of the storyboard takes around ten times the video length. Asa result, this requires
video web sites (e.g., The Open Video Project) to pre-compute video abstracts and
to present themas-is, without offering user customizations. In fact, it is unreason-
able to think of an user waiting idle for a latency time comparable to the duration
of the original video to get an abstract. This is a burden, as customization is be-
coming more and more important in the current Web scenario, where users have
different resources and/or needs. For instance, a mobile user has less bandwidth
than a DSL-connected user, and he/she might want to receive ashort storyboard in
order to save bandwidth. Conversely, an user who is searching for a specific video
scene might want a more detailed storyboard.

The contribution of this chapter is to investigate the benefits of using clustering
techniques to produce video abstracts for the Web scenario.More precisely:

• static storyboards: we designed an approximated version of M-FPF-MD
that takes advantage from the property of HSV vectors to speed up the com-
putation and make the technique suitable for Web video browsing, allow-
ing users to customize the outcome storyboard according to their needs. We
also designed a mechanism that suggests a storyboard lengthbased on the
video characteristics, but the user can select the length ofthe storyboard and,
thanks to the speed-up of our approach, he/she can re-run thesummarization
until satisfied with the result.

• dynamic storyboards: to this purpose, we set-up an experimental environ-
ment considering different clustering algorithms (the well known k-means
and the approximated M-FPF-MD), different categories, both in color and
in motion terms, of videos (cartoon, TV-show and TV-news), different ab-
stract lengths (2 minutes and 4 minutes), different low-level video analysis
(frame-based with HSV color distribution of every frame andscene-based
with HSV color distribution of every scene). Note that a video scene is a
sequence of consecutive video frames that begins and ends with an abrupt
video transition and a silence.

The evaluation of video summaries is done by investigating both the story-
board generation time and the storyboard quality and by comparing the results
with other clustering based approaches likek-means[Phillips, 2002], Open Video
[Open-Video, 2002], and DT Summary[Munduret al., 2006b].

Results show that our approximated M-FPF-MD requires one order of mag-
nitude less time than the fastest of the other clustering algorithms. This allowed
us to set up a complete web based system (called ViSto) able tomake summaries
on the fly. Furthermore, the storyboard quality investigation (measured through a
Mean Opinion Score) shows that the storyboard quality is comparable to the other
approaches.
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5.2 Video summary overview

5.2.1 The metric space and distances

Each video frame can be described with a histogram of color distribution. This
technique is simple to compute and also robust to small changes of the camera
position and to camera partial occlusion. Among the possible color spaces, we
consider one supported by the MPEG-7 standard, namely the HSV.

HSV defines the color space in terms of three components:Hue(the dominant
spectral component, that is the color in its pure form),Saturation(the intensity of
the color, represented by the quantity of white present) andValue(the brightness
of the color).

According to the MPEG-7 generic color histogram description [Manjunathet
al., 2001], we consider the color histogram as composed of 256 bins. Hence, for
each input frame, we extract a 256-dimension vector, which represents the 256 bin
colors histogram in the HSV color space of the given video frame. The vectors
are then stored in a matrixF whose rowfi represents thei-th HSV vector (or
equivalently we usefi as thei-th frame of the videoF ).

5.2.2 Related work on static video summarization

Different approaches have been proposed in the literature to address the problem of
summarizing a video stream. The most common approach relieves on two phases:
firstly a set of video shots is extracted from the video, then for each shot, one
or more key-frame are returned. Usually, one (the first)[Shahraray and Gibbon,
1995] or two (the first and the last)[Uedaet al., 1991] key-frames are chosen.
A drawback of this approach is that, if the shot is dynamic, the first (or the last)
frame may not be the most representative one and hence different approaches, like
clustering techniques, have been proposed.

In [Zhuanget al., 1998] the authors propose a clustering algorithm to group
video frames using color histogram features. As reported in[Munduret al., 2006b],
the approach does not guarantee an optimal result since the number of clusters is
pre-defined by a density threshold value.[Hanjalic and Zhang, 1999b] presents a
partitioned clustering algorithm where the key-frames that are selected are the ones
closest to each cluster centroid. In[Munduret al., 2006b] an automatic clustering
algorithm based on Delaunay Triangulation (DT) is proposed; here frames are de-
scribed through HSV color space distribution. Instead of color space distribution,
[Hadi et al., 2006] uses local motion estimation to characterize the video frames
and then an algorithm based on thek-medoids clustering algorithm is used.

Although the produced storyboards may achieve a reasonablequality, the clus-
tering computational time is the main burden of these approaches. In fact, the ex-
traction of the video features may produce an enormous matrix (depending on the
number of frames that compose the video, i.e. the matrix rowsand on the number
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of features that represents each single frame, i.e., the matrix columns). For this rea-
son, mathematical techniques are used in the attempt to reduce the size of the ma-
trix. For instance,[Gong and Liu, 2003] applies the Singular Value Decomposition
to the matrix, while[Mundur et al., 2006b] uses the Principal Component Anal-
ysis. Needless to say, this requires additional processingtime. Another common
approach assumes that frames contain a lot of redundant information and hence,
instead of considering all the video frames, only a subset istaken (the so-called
pre-samplingapproach) (e.g.,[Munduret al., 2006b]).

Our proposal does not use any mathematical technique to reduce the video
feature matrix, and the decision of using the pre-sampling is left to the user. We
present the expected storyboard generation time for different pre-sampling rates
(or no sampling) and the user will decide either to use sampling or not, eventually
selecting the most appropriate rate.

5.2.3 Related work on dynamic video skimming

Different approaches have addressed the problem of video skimming [Oh et al.,
2004; Truong and Venkatesh, 2007]. In general one can classify the proposed meth-
ods according to several categorical axis:

• the data domain (generic, news, home videos, etc.),

• the features used (visual, audio, motion, etc.),

• the intent (personalization, highlights, information coverage),

• the duration (defined a priori, a posteriori, or user-defined).

Here we focus on techniques for generic videos, using only visual and audio
features.

• Sampling based methodsAuthors in [Nam and Tewfik, 1999] propose a
frame sampling technique where the sampling rate is proportional to a local
notion of ”visual activity”. Such sampling based methods produce quickly
shorter videos but suffer from uneven visual quality, and visual discomfort,
and are usually not suitable for dealing with the associatedaudio trace.

• Frame-based methodsIn principle any method for selecting a static story-
board can be turned into a dynamic one by selecting and concatenating the
shots/scenes containing the key-frames of the storyboard.For example, the
method in[Hanjalic and Zhang, 1999a] works at frame level using a parti-
tional clustering method applied to all the video frames. The optimal number
of clusters is determined via a cluster-validity analysis and key frames are se-
lected as centroids of the clusters. Video shots, to which key frames belong,
are concatenated to form the abstract sequence. In this approach the dynamic
efficiency/quality depends directly from those of the static case.
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• Scene-Based methodsAuthors in[Tan and Lu, 2003] formulate the problem
of producing a video abstract as a graph partitioning problem over a graph
where each node is associated to a shot, and an edge is set up ifthe similarity
of two shots is higher than a pre-defined threshold. The corresponding inci-
dence matrix is clustered using an iterative block orderingmethod. One can
notice that setting up the graph is already quadratic in the number of shots,
thus this method is likely unsuitable for on-the-fly processing of long videos.
The notion of ascene transition graphis also used in[Yeung and Yeo, 1996]:
a complete link hierarchical agglomerative clustering is used together with a
time-weighted distance metric, introducing an overhead that is unsuitable for
on-the-fly computations. Authors in[Ngoet al., 2005] use ascene transition
graph that is clustered via spectral matrix decomposition. In this case, the
mechanism needs 23 minutes to analyze a 69 minutes video. Once again, the
approach is unsuitable for on-the-fly operations.

As mentioned, customization and generation of on-the-fly abstracts are very
important properties. Hence, an analysis of the benefits introduced by clustering
techniques is necessary. In fact, many different methods are surveyed in[Truong
and Venkatesh, 2007], but none claims to have the on-the-fly performance and the
user-oriented flexibility that is needed in web video browsing applications.

5.3 Clustering to produce static video storyboards
The goal of clustering is to group together similar frames and to select a represen-
tative frame per each group to produce the storyboard sequence. In particular, for
storyboard generation using clustering, the following main choices must be done:

• vector space and distance function: while the vector space is typically cho-
sen among standard video representations, the distance function should re-
flect the semantic distance between couples of frames,

• clustering algorithm: having in mind the goal of producing the video sum-
mary on the fly, allowing to set up a service available on the web, clustering
must be as faster as possible without sacrifying quality. The algorithm should
cluster quickly thousands of frames,

• suggesting the number of frames: the choice of the size of the storyboard
is not less important. While from a point of view, leaving free the user to
set the storyboard size is among the desiderata, from the other side at least
an automatic suggestion can be helpful. In fact in a storyboard with too few
frames some important details can be lost, while a too long storyboard can
cause repetition of similar frames and the introduction of noise,

• selection of a representative frame for each cluster: especially in the case
of storyboard with few frames, each cluster can contain frames not so similar
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among them, hence a criterion to select a frame representative for the clus-
ter represent a strategic choice for the overall quality of aclustering-based
summarization system.

In 5.3.1 we describe the result of our investigations for allthe previous de-
scribed choices and showViStowhich is a complete web-based system for static
video summarization.

5.3.1 Showcase: ViSto Video Storyboard

In this section we describe ViSto a Visual VIsual STOryboardsystem for Web
Video Browsing. ViSto is a completely working system for static video summa-
rization. It is the result of our investigations about a fastenough clustering to al-
low on-line computation and good enough to be considered helpful for users. To
achieve this goals, we used an approximated version of the M-FPF-MD described
in chapter 2.

The characteristics of ViSto are very important in the current Web scenario and
will be more and more important in future years. Although a possible storyboard
length is suggested, ViSto allows users to customize the storyboard by selecting
the number of video frames that compose the storyboard.

Also the storyboard generation time can be customized. In fact, since this time
depends on the original video length, ViSto estimates the time necessary to produce
the storyboard and gives the user the possibility of requiring a video pre-sampling.

Pre-sampling is a technique largely used to reduce the clustering time (for in-
stance, the mechanism proposed in[Mundur et al., 2006b] uses it). It is based on
the assumption that all consecutive frames within a certainsmall time interval (i.e.
a second) are likely to be redundant, therefore consideringonly one of them will
suffice. By using a sampling rate, the number of video frames to analyze can be
drastically reduced. Needless to say, the sampling rate assumes a fundamental im-
portance, as the larger this sampling rate is, the shorter isthe clustering time, but
the poorer results might be. For this reason, ViSto simply estimates the time neces-
sary for producing the storyboard using different samplingrates and leaves to the
user the decision of using sampling and eventually selecting the desired sampling
rate.

As shown in Figure 5.1, ViSto is composed of three phases: first, the video
is analyzed in order to extract the HSV color description; second the clustering
algorithm is applied to the extracted data and third, a post-processing phase aims
at removing possible redundant or meaningless video framesfrom the produced
summary.

Vector space and distance function Using HSV as vector space to represent
frames, all the distances defined in 2.1.1 can be used. To better understand which
distance performs better, we testedL1, L2 and theGeneralized Jaccard Coefficient
(GJC) over a set of50 videos from the Open Video Project[Open-Video, 2002].
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Video frame

feature extraction

Storyboard

post processing
Clustering
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Figure 5.1. The three-steps ViSto Scheme.

Recall that GJC in the HSV space can be defined as follow: giventwo HSV vector
histogramss = (s1, ...s256) andz = (z1, ...z256)

GJC(s, z) = 1 −
∑

i min(si, zi)
∑

i max(si, zi)
.

GJC is proven to be a metric[Charikar, 2002].
In our tests, for each video we measured the pairwise distance between pairs of

consecutive frames. Figure 5.2 shows an example of how thesedistances are dis-
tributed, along time. For all the metrics we took into account the distance between
similar frames is small. Instead, in the case of dissimilar frames, it is possible to
observe that GJC tends to return more spread values thanL1 andL2 with respect
to the values returned for pairs of similar frames. Thus GJC highlights better the
differences between frames. The figure shows also that the distribution generated
via GJC tends to have a peak in correspondence of a fade in the video (It can not
be established the type of fade).
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Clustering algorithm For clustering we used an approximated procedure based on
the M-FPF-MD algorithm described in chapter 2. We report here the algorithm
from scratch: givenn frames and a numberk of desired clusters, a sample of

√
nk

frames are selected and clustered ink non overlapping clusters by means of the FPF
algorithm. The remaining points are added one by one in the cluster correspond-
ing to the closest medoid. Medoids are updated accordingly.We already described
some techniques we developed and successfully applied to improve the speed of
this schema without modifying its output. For video summarization we want to go
a step forward. We observed that the two main costly operations in this algorithm
are: the assignment of a new point to its closest cluster thatmay require up tok
distance computations and the recomputation of the medoid whose computational
cost, in the worst case, is linear in the number of elements ofits cluster.

We also noted that, in the task of video summarization, whereonly a represen-
tative element for cluster is really used and the rest are ignored, the insertion of
a point in the wrong cluster does not corrupt the final output quality since it has
no effect in the choice of the representative frame. Thus, for this problem, it can
be considered acceptable an approximated clustering algorithm in which points are
inserted in the cluster that approximatively (and more probably) is the correct one.

Before to describe how we choose the cluster in which to insert a new point,
two considerations must be done:

• as shown in figure 5.2 the distance between two consecutive frames tends
to be small with some peak when the scene change in some way. While for
clustering tasks clearly this is not true in general, in the case of video data
this distribution occurs almost always,

• consider two consecutive pointspi andpi+1 and letd(pi, pi+1) be their dis-
tance. Letc the closest medoid topi. Due to the triangular inequality, the
distanced(c, pi+1) ≤ d(c, pi) + d(pi, pi+1). Given another medoidcj , if
1/2d(c, cj ) > d(c, pi) + d(pi, pi+1), thend(c, pi+1) ≤ d(cj , pi+1).

We make the, not necessarily true, hypothesis that medoids are far from each
other. Therefore, if the distance between two consecutive pointspi andpi+1 is small
enough, andpi was assigned to clustercj we decide that alsopi+1 is assigned to
cj .

Also for the recomputation of medoids we use an approximatedalgorithm. Let
P = pi+1 the last point inserted in a cluster,a andb the two diametral points of the
cluster andm its medoid. After the clustering of the first

√
nk frames with FPF,

for each cluster its medoid is computed using the standard algorithm described in
section 2.4.3. Note that, after this computation, the distancesd(m,a), d(m, b) and
d(a, b) are available. The medoid update can be done using the following approxi-
mate procedure:

1. Compute the distancesd(P, a) andd(P, b),
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2. if d(P, a) > d(a, b) ∧ d(P, a) > d(P, b) discardb, replace it withP and set
d(a, b) = d(P, a),

3. if d(P, b) > d(a, b) ∧ d(P, b) > d(P, a) discarda , replace it withP and set
d(a, b) = d(P, b),

4. if d(a, b) > d(P, a) ∧ d(a, b) > d(P, b):

(a) if |d(P, a) − d(P, b)| + |d(P, a) + d(P, b) − d(a, b)| < |d(m,a) −
d(m, b)|+ |d(m,a)+ d(m, b)− d(a, b)| discardm andP becomes the
new medoid. Setd(m,a) = d(P, a) andd(m, b) = d(P, b),

(b) otherwise discardP

Note that since the above procedure keeps updated the distancesd(m,a), d(m, b)
andd(a, b); only 2 distances must be computed:d(P, a) andd(P, b).

Suggesting the number of frames Although customization allows the user to
freely choose the number of frames in the storyboard, we can not exclude the case
in which the user has no idea of what such a number might be the “right” one.
Hence, we implemented a fast way to make a reasonable estimate of the number
of frames that better represents the entire video (denoted with k). This number is
always suggested to the user and is used as a default value in case the user does not
give any other preference.

We first take a sampleF ′ ⊆ F of the frames of the entire video, taking one out
of ten consecutive frames. We then compute the pairwise distancedi of consecu-
tive framesf ′

i , f
′
i+1, according to GJC, for all such pairs inF ′. Figure 5.2 shows an

example of how these distances are distributed, along time.We observe that there
are instants of time in which the distance between consecutive frames varies con-
siderably (corresponding to peaks), while there are longerperiods in which thedi’s
variance is small (corresponding to very dense regions). Usually, peaks correspond
to sudden movement in the video or to scene change, while in dense regions frames
are more similar one to the other.

To estimatek we count the number of peaks using the following procedure:

1. Order all thedi’s in increasing order and, for each valuev assumed by the
di’s, count how many pairwise distances are equal tov, i.e. lett(v) = |{i |
di = v}|;

2. Determine the valueΓ for which the functiont(v) shows a consistent de-
creasing step and throw away all the frames that are closer than Γ to their
successive;i.e, F ′′ = {f ′

i ∈ F ′ | D(f ′
i , f

′
i+1) > Γ};

3. Consider the setF ′′ of remaining frames and count in how many “sepa-
rated” sets, according to time, they group;i.e., partition F ′′ into an appro-
priate number of sets such that iff ′

ij
andf ′

ij+1
belong to the same set, then
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ij+1 − ij < T , whereT is a small interval of time (meaning the two frames
are displayed one shortly after the other).

The number of sets into whichF ′′ is partitioned gives the number of peaks.
The numberk of frames suggested to the user is set to the number of peaks minus
one (videos usually begin and end with a peak).

To test if frame sampling influences the estimate ofk, we considered our pre-
diction method using all the frames in a video and using only asample of frames
(one out of ten). We tested all the 50 video in[Munduret al., 2006a] and we found
out that the estimate ofk is exactly the same for 47 videos, while it differs by±1
for the remaining three. We conclude that the prediction method is not affected by
sampling.

The prediction method (with sampling) applied to the 50 videos in [Mundur
et al., 2006a] took on the average0.1 seconds to estimatek (with values spanning
from 0.22 to 0.04 seconds).

Selection of a representative frame for each cluster The content of each cluster
can be heterogeneous and the distance between a pair of frames inside a cluster can
be high. This is due to the fact that the number of clusters is independent from the
number of video cuts in the original video, but it depends from the length of the
storyboard the user required. Moreover there are frames that are intrinsically not
informative (i.e. black frames due to video cuts). In absence of a semantic way
to determine which frame of the cluster is the most appropriate as representative
frame for each cluster, the most natural choice in our schemawas to select the
medoid.

5.3.2 ViSto evaluation

ViSto is evaluated through a comparison study with other approaches: an accel-
erated version ofk-means[Phillips, 2002], the Delaunay-based technique (DT)
[Munduret al., 2006b] and the one used by the Open Video Project[Open-Video,
2002].

The study is carried out with two different sets of videos: one is taken from
[Mundur et al., 2006a] and is a subset of short videos available within the Open
Video Project[Open-Video, 2002] (MPEG-1 encoded with a resolution of 352x240);
the second set is composed of long entertainment and informative videos (e.g., car-
toon, TV-shows and TV-news), MPEG-1 encoded with a resolution of 352x288.

Note that we consider different types of videos in order to evaluate our ap-
proach under different conditions with respect to color andmotion. All the experi-
ments have been performed using a Pentium D 3.4 GHz with 3GB RAM, with the
aim of investigating two different parameters: the time necessary to produce the
storyboard and the quality of the produced summary.
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5.3.2.1 Storyboard generation time

The time necessary to generate a video summary of a given video is an important
parameter to decide whether a mechanism can be used to produce on-the-fly sum-
maries or not. Therefore, we evaluate the processing time for different videos with
different lengths.
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Figure 5.3. Storyboard generation time: DT vs k-means vs ViSto [Logarith-
mic scale].

Figure 5.3 presents results obtained analyzing a set of seven different videos
[Munduret al., 2006a], whose length spans from the 72 seconds (A New Horizon
1) to 168 seconds (Digital Jewelry). Since no statement is given about the time
needed to build the storyboards in the Open Video Project[Open-Video, 2002], as
well as nothing is said about the running time of the method onwhich the project
is based[DeMenthonet al., 1998], here we compare our ViSto approach, with
k-means and with DT[Mundur et al., 2006b].1 In the figure we also report the
entire video length. Note that results are presented on a logarithmic scale, due to
the considerable difference among the compared techniques. It can be observed that
the usage ofk-means and of DT is not reasonable to produce on-the-fly summaries;
in fact,k-means, to produce the summary, needs a time comparable withthe video
length, while DT needs about 1000 seconds. Conversely, ViSto needs less than 10

1Results of DT are simply estimated using the value describedin [Munduret al., 2006b], where
it is reported that the mechanism requires between 9 and 10 times the video length to produce the
summary.
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seconds and hence is well suited to produce on-the-fly summaries. Roughly, in all
the tests, ViSto is 25 times faster thank-means and 300 times faster than DT.
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Figure 5.4. Storyboard generation time: A comparison between k-means
and ViSto with and without sampling (Sx, with x = 5, 12, is the sample rate)
[Logarithmic Scale].

A more general investigation on the time necessary to produce a storyboard is
presented in Figure 5.4. We vary the length of the given videofrom 5000 frames
(200 seconds) to 60000 frames (40 minutes), the length of theproduced storyboard
(10, 20, 25 and 30 frames) and the rate of the pre-sampling (none, 1 out of 5 and 1
out of 12) that is applied to the video frame feature matrix. We comparek-means
and ViSto (the code of the other approaches is not available).

Once again, due to the large difference between the results of the two ap-
proaches, the storyboard generation time is presented on a logarithmic scale. With
no surprise, the storyboard generation time depends on its length (the longer the
storyboard is, the longer is the computational time) and on the pre-sampling rate
(the higher the sampling rate is, the shorter is the computational time). This ap-
plies to both approaches. Results confirm thatk-means requires a generation time
that causes the method to be unsuitable for on-the-fly video summarization: with no
doubts, 178 seconds to summarize a 200 seconds video is too much, not to mention
the 36 minutes (2165 seconds) required to summarize a 40 minutes video (60000
frames). Only with a pre-sampling of 1 out of 12,k-means can be used for short
videos (18 seconds required for a 200 seconds video), but notfor longer videos
(183 seconds required for a 40 minutes video). To better understand the ViSto be-
havior, Figure 5.5 presents a detailed close-up of Figure 5.4. The ViSto storyboard
generation time with no sampling is reasonable only for videos whose length is up
to 15000 frames (10 minutes). In fact, it is not thinkable to let the user wait for
more than 20-25 seconds. For longer videos, a sampling of 1 out of 5 frames pro-
duces a waiting time no longer than 20/25 seconds for videos up to 35000 frames
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Figure 5.5. ViSto Storyboard generation time with and without sampling
(Sx, with x = 5, 12, is the sample rate).

(23 minutes). For video larger than 35000 frames, a pre-sampling of 1 out of 12
frame should be considered.

Since the pre-sampling rate might affect the storyboard quality, we let the user
select whether to apply a sampling or not. Figure 5.6 shows the ViSto interface,
where a user, in addition to the storyboard length, can also select the quality of the
storyboard based on the time he/she is willing to wait.

5.3.2.2 Storyboard quality

The time necessary to produce a video storyboard is an important issue, but the
quality of the produced storyboard is even more important. In fact, bad quality sto-
ryboards (i.e., storyboards that do not well represent the video content) are useless,
no matter if they are generated in an instant. For this reason, in the following we
investigate the quality of the video summaries produced by ViSto.

The storyboard quality evaluation was carried out by comparing the ViSto re-
sults with the one of the Open Video Project, the DT-summary and thek-means.
We made two sets of experiments: one with short videos using the data set of
[Mundur et al., 2006a] and the other with long videos recorded from TV. Unfor-
tunately, since both Open Video and DT-summary softwares (or details to reim-
plement them) are not freely available, we could compare with them only using
data of[Munduret al., 2006a] for which the output storyboards of both algorithms
are available. The set of experiments using long videos was done comparing ViSto
only againstk-means.

Quality evaluation is investigated through a Mean Opinion Score (MOS) test;
in particular, we asked a group of 20 people with different background (Ph.D. stu-
dents, graduate students, researchers) to evaluate the produced summaries. The pro-
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Figure 5.6. ViSto: Length and quality of the storyboard can be easily cus-
tomized. ViSto is available at http://visto.iit.cnr.it.

cedure was the following: we first showed them the video and then the summary,
asking whether the summary was a good representation of the original video.

The quality of the video summary was scored on a scale 1 to 5 (1=bad, 2=poor,
3=fair, 4=good, 5=excellent) and people were not aware of the mechanism used to
produce the video summary. The length of the produced summary was set in order
to match the other approaches (i.e., if the Open Video summary was of 5 frames,
the length of the ViSto summary was set to 5 frames, too).

Figure 5.7 reports the results obtained when evaluating short videos obtained
from [Mundur et al., 2006a]: A new Horizon 1(72 seconds long),Ocean floor
Legacy 8(127 seconds long),Drift ice 8 (144 seconds long),The voyage of the
Lee 15(90 seconds long),Exotic Terrane 1(117 seconds long),Hurricane Force
3 (92 seconds long) andDigital Jewelery(168 seconds long). With the exception
of Digital Jeweleryfor the DT method andA new Horizonfor Open Video, these
methods achieve poor results. ViSto achieves the best scorefor Hurricane Force
3, Exotic Terrain 1andThe voyage of the Lee 15. With respect to the remaining
videos, ViSto andk-means achieve comparable results.

Figure 5.8 presents the summaries of theA new Horizon 1video, where Open
Video, k-means and ViSto achieve comparable results. As the MOS reported, it
is possible to note that the output of the three storyboards achieve a comparable
quality.

Figure 5.9 presents the summaries generated by ViSto andk-means for the
video Exotic Terrane 1. The video is a documentary that shows a mountain land-
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Figure 5.7. Mean Opinion Score of different storyboard of short videos.

scape with some animals. Although some frames are the same inboth summaries,
ViSto shows a view from the sky and a frame with the video title(last two frames).

Figure 5.10 reports the MOS results obtained when evaluating long videos:The
Simpsons(20 minutes long),TV-News(30 minutes long),Lost (40 minutes long)
and Talk-Show (15 minutes long). Due to the length of these videos, we produce
two different storyboards: one with 15 frames and the other with 30 frames.

Results are comparable forLostand forTV-Newsand different forThe Simp-
sons(k-means achieves better results) and fortalk-show(ViSto achieves better re-
sults). These two latter cases are detailed in Figure 5.11 and in Figure 5.12, where
the difference is quite clear. In particular, it is interesting to observe that the sum-
maries of Figure 5.11 are completely different, although related to the same video.
This can be explained considering the nature of the video taken into consideration:
first, just a very small number of frames (15) composes the thestoryboard of a
video containing a much larger number of frames (30,000); second, in this video,
many frames have the same background color and show a yellow character, result-
ing in high color similarity of frames. Observe that the ViSto summary is composed
by frames that show significant color differences. On the other side, the summary
of Figure 5.12 shows how some of the key-frames selected byk-means are very
similar one to the other, while ViSto gives a more comprehensive overview of the
people participating to the talk show.
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Open Video Summary (10 frames)

DT Summary (6 frames)

Our Visto summary (6 frames)

Our Visto summary (10 frames)

K-means summary (11 frames)

Our Visto summary (11 frames)

Figure 5.8. A new Horizon: storyboard comparison.

Our Visto  summary (9 frames)

K-means summary (9 frames)

Figure 5.9. Exotic Terrane: k-means and ViSto comparison.

5.4 Clustering to produce dynamic video skim-
ming

In the literature, among the few clustering techniques designed to produce video
abstracts, some start by clustering frames and then recoverthe scenes from the se-
lected frames; others, cluster scenes and then select one scene per cluster. Although
the definition of a scene might vary from technique to technique, the final output is
always produced by sequencing the selected video scenes.

In this section we analyze both approaches (i.e., frame-based and scene-based
selection), where a scene is a segment of video that begins and ends with a silence
and a video cut. Note that, when talking about the scene to which the frame belongs
to, we mean the only scene in which the frame appears.

Frames are represented as explained in section 5.2.1 and stored in a matrix
MHSV , while each scene is represented by a 256-dimensional vector whosei-th
entry is the mean of the corresponding entries of the frames belonging to the scene.
Scenes are stored as rows of the matrixMavgHSV .
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5.4.1 Video segmentation

A video abstract is composed by a sequence of the most important segments of the
original video and hence the abstract quality also depends on the video segmenta-
tion process. We observed that it is of crucial importance for the process to consider
both audio and video features of the video to be summarized. In fact, if a video is
divided according only to visual information, for instanceby splitting the video
where there is a video cut, (which happens when two consecutive video frames
have few parts in common), it is likely that a video segment has an incomplete
audio.

To split the video into segments we use the technique proposed in [Furini,
2007] that takes into account low-level audio and video features.When a video cut
is detected, the audio energy at the video transition is checked: if there is silence,
the transition is considered to be the end of a segment, otherwise it is assumed that
the segment is not over. When combining segments obtained inthis way, we get a
fluid, understandable abstract in which the audio is completely intelligible and not
interrupted.

5.4.2 Comparison between the use of scenes or frames

Considering the problem of static storyboard generation, in which the final output
is a set of frames, it seems reasonable to consider frames as input of the clustering
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ViSto k-means

Figure 5.11. The Simpsons: ViSto vs k-means.

algorithm. In the video skimming framework, where a sequence of scenes will be
returned, one should evaluate whether is more convenient anapproach that uses
frames for clustering and then from them derives video shots, or the alternative
approach in which the video is immediately segmented and scenes are the input of
the clustering algorithm.

For the sake of testing which approach performs better, given a video and
a desired abstract lengthT , we produce two abstracts, one obtained by cluster-
ing vectors inMHSV (corresponding to frames), and one by clustering vectors in
MavgHSV (corresponding to scenes).

We evaluate two clustering algorithms with different characteristics: one is the
well-knownk-means[Phillips, 2002], widely used and considered in literature, the
other is the approximated version of the M-FPF-MD algorithmdescribed in section
5.3.1.

As in the static case, both algorithms require as input the number of clusters
k, and, for each cluster they return a representative element. To measure the frame
(scene) similarity, we consider the Generalized Jaccard Distance[Charikar, 2002],
since, as noted in section 5.3.1 this metric has shown to perform well for HSV
vectors (see also[Furini et al., 2007]).

We do not take into account other well known clustering algorithms (e.g., Hi-
erarchical clustering) because these are computationallyslower thank-means and,
hence, they do not apply to our scenario of on-the-fly customized video abstract
generation.

We produce abstracts in the following way:
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ViSto k-means

Figure 5.12. Talk-show: ViSto vs k-means.

• Abstract by frames: givenT in seconds andfps, the frame per seconds of
the original video, we compute the number of frames that should be in the
abstract as#SF = T · fps. We estimate the number of scenes#SS in the
abstract with a value such that the ratio between the number of frames and
the number of scenes in the original video and in the abstractis the same.
Chosen an arbitrary small integer constantc, we cluster vectors inMHSV in
k = #SS · c clusters, obtainingk representative frames. For each frame we
determine the scene to which it belongs to and we increment byone a counter
associated to the scene (initially all counters are set to zero). Starting from
the scene with higher counter, and considering scenes in decreasing order,
we select the scenes to be in the abstract until the total length of the selected
scenes reaches the timeT . Observe thatc is used to produce a number of
clusters higher than the number of scenes that will compose the abstract,
generating a significant ranking of the scenes by means of thecounters.

• Abstract by scenes:we cluster vectors of the matrixMavgHSV . The main
problem, in this case, is to find the appropriate value fork such that the result-
ing output storyboard has the desired length. We were forcedto use different
approaches for ViSto andk-means. In the case of ViSto we exploited the fact
that FPF generates a new permanent center of a new cluster at each iteration,
giving a way to rank centers,i.e., a selection order. Note that items that are
clustered represents scenes and that, the order in which they are considered
in the clustering process is completely independent from the order in which

CLUSTERING FOR STATIC AND DYNAMIC VIDEO SUMMARIES 90



Clustering to produce dynamic video skimming

the scenes appear in the original video. Thus we simply overestimatedk to
be higher thanT/SL whereSL is the average length of a scene and then,
in the same order in which clusters were created, scenes are selected and
inserted in the abstract. The process continues until the total abstract length
reaches the durationT . For thek-means algorithm we proceed with a brute
force approach to determine thek clusters necessary to produce an abstract
of lengthT (note that at the moment we are not discussing the best way to
choosek). In both cases, the selected scenes are ordered according to the
time in which they appear in the original video and the sequence that has
been obtained is presented as the abstract.

Random abstract To evaluate if clustering might help in producing video ab-
stracts, we also compute abstracts by choosing frames and scenes at random. If
there is no significant difference between these abstracts and those produced using
clustering, the only natural conclusion is that there is no reason in spending time
and resources with clustering. To produce the randomized abstracts we proceed as
follows:

• Abstract by frames: choose frames at random and select their correspond-
ing scenes until the total length of the selected scenes reachesT .

• Abstract by scenes:randomly choose scenes until the total length of the
selected scenes reachesT .

In both cases, we reorder the scenes according to the time in which they appear
in the original video and we output the resulting abstract.

5.4.3 Evaluation

To evaluate the benefits of using clustering algorithms to produce video abstracts
in the web scenario, we set up an experimental environment investigating the per-
formance of clustering algorithms against a random approach. In order to have a
wide test bed, we consider three different categories of videos: cartoons, TV-Shows
and TV-News. Movies have not been considered since video abstracts reveal too
much contents (e.g, the end of the movie), and hence ad-hoc techniques to produce
highlightsare more suited for this category. Table 5.1 reports a detailed description
of the dataset.

Afterwards, a HSV color analysis produces, for each video, two different ta-
bles (representingMHSV andMavgHSV ), which are the input for the clustering
algorithms.

We produce two sets of video abstracts: one contains 2 minutes long abstracts
and the other contains 4 minutes long abstracts. These lengths have been chosen
to be reasonable for a video abstract. For each set, we compute two different video
abstracts for each video: one is frame-based and the other isscene-based. This
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Category duration avrg. scenes title # videos

TV-Shows 40 min 534

Charmed 1
Roswell 1

Dark Angel 1
Lost 1

Cartoons 20 min 322
The Simpsons 2

Futurama 2

TV-News 15 min 67
Sky TV 2

BBC 2

Table 5.1. Dataset description.

means that, considering also randomly produced abstracts,for each given video we
have 6 different video abstracts.

The goal of this experimental environment is to test the quality of the pro-
duced video abstracts and also the generation time in order to potentially offer a
customized service.

5.4.3.1 Quality evaluation using a ground-truth

The set up of the evaluation of a video abstract is a difficult task: objective metrics
like PSNR cannot be applied to videos of different lengths, hence, user evaluation
has to be considered[Truong and Venkatesh, 2007]. However, since the presence
of long videos may discourage a truthful evaluation, a more effective method is to
compute aground-truthabstract of each video (a manual built abstract containing
the most important video scenes), and compare the produced abstracts with it. We
proceed as follows:

(a) Given the original video, we manually split it intoSuper-Scenes(s-scene)
each having a self contained meaning (e.g., dialog between two characters in
the kitchen; trip from here to there by car and so on). A s-scene might contain
more than one scene (as defined in this chapter) or can be a fraction of a scene
(e.g. two different actions taking place during one single background piece
of music).

(b) We ask a set of 10 users (undergraduate and Ph.D. students, young researchers
and non-academic) to score each s-scene with a value from zero to five (0 =
un-influent,5 = fundamental). Then, to each s-scene we associate a score,
that is computed as the average of the scores given by the users.

(c) Given an abstract, each scene is scored with the score given to the s-scene it
belongs to or with the sum of the scores given to the scenes it is composed
of. The abstract receives a score that is equal to the sum of the scores of the
scenes it is composed of.
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It might be observed that also this evaluation approach needs the intervention
of several users, as it was in the user study approach. On the other hand, in the
ground-truth approach, once the process of scoring s-sceneis done, experiments
can be carried out and automatically evaluated.
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Figure 5.13. Ground Truth Evaluation: Comparison of abstracts produced
using a frame analysis. Results are normalized with respect to the random
abstract scores (positive values mean better results than random, negative
worse).

Before presenting the details of the ground-truth evaluation, it is worth pointing
out that the data produced by the set of users presented a large statistical difference
in the scores related to TV-News, whereas more homogeneous scores have been
given for cartoon and TV-Shows videos. This shows the importance of a story-line
in the video: TV-News has multiple story-lines, each one presented in a different
video clip and some users might prefer some story-lines to others (e.g., the same
soccer video may be evaluated as very important by a soccer fan, whereas it can be
meaningless for his wife). Conversely, when there is a single (or few) story-line,
as in Cartoon/TV-Shows, evaluation of the video clips tendsto be more oriented to
the video story-line and less to the users interests.

Figure 5.13 reports the results of the ground-truth evaluation of abstracts pro-
duced with frame-based analysis. Results are normalized with respect to the qual-
ity achieved by the random approach (i.e., positive values mean better results than
random, negative worse). Clustering techniques are worth using only for Cartoon
videos; for TV-News there is no significant difference with the random approach;
for TV-Shows videos, clustering are not worth using for 2 minute abstracts, whereas
some benefits are present for 4 minute abstracts. The TV-Newsbehavior is not sur-
prising considering the large statistical difference of the ground-truth evaluation.
Instead the bad results of 2 minutes long TV-Show abstracts are a little bit sur-
prising. An explanation might be that the abstracts are too short compared to the
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Figure 5.14. Ground Truth Evaluation: Comparison of abstracts produced
using the scene analysis. Results are normalized with respect to the random
abstract scores (positive values mean better results than random, negative
worse).

original videos (2 minute abstracts against a 40 minute video) and hence it is diffi-
cult to pick up interesting scenes to fill in such a limited time abstract (for instance,
Roswellabstracts perform very similar to the one randomly produced, whereas
Charmedabstracts are much worse than the random ones). In fact, looking at the
longer 4 minute abstracts, we can find better results for clustering.

Figure 5.14 reports the results of the ground-truth evaluation of abstracts pro-
duced with scene-based analysis. Also in this case, resultsare normalized with
respect to the achieved random quality. Clustering techniques are not worth using
for TV-News videos, whereas there are benefits for cartoon videos. For TV-Show
videos there are no significant benefits for 2 minute abstracts, whereas clear ben-
efits are present for 4 minutes long abstracts produced with the M-FPF-MD tech-
nique.

5.4.3.2 Generation time evaluation

In this section we analyze the abstract generation time, which is very important for
video abstract length customization, as abstracts have to be produced on-the-fly to
meet the user request. The following results are obtained using a simple Pentium
D 3.4 GHz with 3GB RAM. Although more powerful hardware can beemployed
to lower the generation time, the ratio is likely to be the same.

Figure 5.15 reports results related to the abstract generation time (in seconds)
with frame analysis, given on a logarithmic scale. Generation time of random ab-
stract is not reported as it is less than one second, regardless of the type of video.
Needless to say, the lower the generation time, the better for a customized service.

CLUSTERING FOR STATIC AND DYNAMIC VIDEO SUMMARIES 94



Clustering to produce dynamic video skimming

 10

 100

 1000

 10000

 100000

TV-ShowsCartoonsTV-News

S
co

re
2 minutes abstracts

ViSto
k-means

 10

 100

 1000

 10000

 100000

TV-ShowsCartoonsTV-News

4 minutes abstracts

ViSto
k-means

Figure 5.15. Generation Time: Comparison of abstracts produced using
frame analysis. Results are presented on a logarithmic scale.

Observe thatk-means is out of the game (note that we don’t consider the timespent
looking for a good value ofk), as it takes too much time to produce a video ab-
stract. M-FPF-MD has reasonable performances only for TV-News (27 seconds to
produce an abstract for a 15 minutes video).

Figure 5.16 reports results related to the abstract generation time (in seconds)
with scene analysis, given on a logarithmic scale. Again, the generation time of
random abstracts is not reported as it is around 0.1 seconds,regardless of the type
of the video. M-FPF-MD has always good performances (19 seconds to gener-
ate a 4 minute abstract of a 40 minute video and less than one second for TV-
News videos), whereas,k-means has reasonable generation time only for TV-News
videos.

5.4.3.3 Summary of results

Experimental results lead to the following conclusions:

• Clustering techniques seems not to be useful for multiple story-line videos
like TV-News. If videos are based on a story-line, as cartoons and TV-Shows,
the benefits of clustering are significant, especially for 4 minute abstracts
based on video scene analysis.

• Random selection has to be preferred to clustering for 2 minutes long ab-
stracts. In such videos, the limited number of scenes that can be selected to
compose the abstract, compared to the total number of video scenes, does
not leave much space for interesting choices.

• Generation of abstracts by frame analysis takes much longerthan those by
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scene analysis (e.g., scene-based clustering is one order of magnitude more
efficient than the frame-based one) and hence abstracting byframe analysis
is not a winning strategy.

• k-means is too time consuming to be considered as a technique to produce
on-the-fly abstracts.

• If user customization is enabled only a very fast clusteringalgorithm as the
approximate M-FPF-MD can be used.

Another important issue is the estimation of the number of clustersk to get
an abstract of the desired length. Since, it is not easy to associatek with scene
lengths, clustering algorithms should be not forced to start over again if the choice
of k results incorrect, thus incremental clustering represents a better strategy.
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Figure 5.16. Generation Time: Comparison of abstracts produced using
scene analysis. Results are presented on a logarithmic scale.

5.5 Conclusions
In this chapter we studied the problem of on-the-fly generation of video abstracts
of long videos. In the case of static storyboard generation many clustering based
approaches are proposed in the literature, but they are too slow to be applied to
on-line contexts like the Web. For dynamic video skimming, clustering is typically
not considered as a possible approach due to its computational cost. We proposed
ViSto, a mechanism designed to produce customized on-the-fly video storyboards.
ViSto is based on an approximated version of the M-FPF-MD algorithm. We tested
ViSto against an accelerated version of the standardk-means and, only for static
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case, in which other methods were available, against DT summary and the ap-
proach used in Open Video. The results of the comparison showthat ViSto is about
25 times faster thank-means and 300 times faster than DT.

A rigorous evaluation of the quality of storyboard is not present in the literature.
Moreover it is a hard task also for humans. The same output canbe considered
differently among a group of people. For this reason we evaluated both static and
dynamic storyboards by means of an extended user study. In the case of dynamic
summarization we were also interested to analyzed the benefits of using clustering
techniques on frames or directly on scenes to produce video abstracts. Results show
that although in most cases ViSto achieved the best score, itcan be said that the
quality of the storyboard produced by all the considered algorithms is comparable
and, in the dynamic case, the use of scenes is helpful in obtaining a better results.
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6
Clustering for similarity

search

Abstract

Modern text retrieval systems often provide asimilarity search utility, that al-
lows the user to find efficiently a fixed numberk of documents in the data set that
are themost similarto a given query (here a query is either a simple sequence of
keywords or a full document). We consider the case of a textual database made up
of semi-structured documents. For example, in a corpus of bibliographic records
any record may be structured into three fields: title, authors and abstract, where
each field is an unstructured free text. Each field, in turns, is modeled with a spe-
cific vector space. The problem is more complex when we also allow users to asso-
ciate a score to each such vector space at query time, influencing its contribution to
the overall dynamic aggregated and weighted similarity. Weinvestigated a way of
using clustering to prune the search space at query time. We observed that the more
the query is close to a cluster center, the more thek-center objective function as-
sure that the elements in the cluster are the nearest neighbors for the query. Also the
embedding of the weights in the data structure was investigated with the purpose of
allowing user query customizations without data replication like in [Singithamet
al., 2004]. The validity of our approach is demonstrated experimentally by showing
significant performance improvements over the scheme proposed in[Singithamet
al., 2004] and also with respect to the method[Chierichettiet al., 2007]. We also
speed up the pre-processing time by a factor at least thirty.
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6.1 Introduction to similarity searching
Similarity Searching in an ubiquitous operation much studied in a variety of re-
search communities including: database, spatial databases, data structure, compu-
tational geometry, information retrieval[Chávezet al., 2001]. An alternative name
is nearest-neighbor searching, while another old name is thepost office problem.

The problem can be studied in a variety of settings: static ordynamic, off-
line/on-line, main memory/secondary memory, streaming data vs fully stored data,
exact solution/approximate solution, 1-nearest-neighbor vsk-nearest-neighbor, worst
case asymptotic guarantees vs heuristics.

As in all data structure problems if one assumes that the datais available for
pre-processing the most relevant performance measurements are pre-processing
time, storage and query time. In a dynamic setting also the time for dynamic oper-
ations is of interest. In an approximate case one is also interested in the quality of
the approximation.

Another important discrimination is based on the nature of the data being
searched (free textual data, structured records, images, sounds, etc..), on the na-
ture of the representation of the items being searched (eg. dense vectors versus
sparse vectors), on the intuitive notion of “similarity/distance” being investigated,
and on the formal notion of “distance” being adopted.

Another very closely related problem is that of fixed-radiussearching (a type of
range-searching) in which one searches for all the elementsin a data set at distance
less than a certain parameterr from a query object.

Similarity searching is strongly connected to many other important problems:

• Set-Membership: one can see the set-membership problem as a limiting
case. Given a finite subsetS of a universeU , determine for anx ∈ U if
x ∈ S. Naturally one could see this problem as an exact similaritysearching
problem where the distance of two elements is given byd(x, y) = 0 for any
x ∈ S, andd(x, y) = 1 for any x ∈ U \ S. Sometimes this is called the
“exact match” problem.

• Inverse Indexing: Web Search Engines have made popular Inverse Indices
to solve the following problem: Given a familyF = {F1, ...Fk} of subsets
of U , for anyx ∈ U return allFi ∈ F such thatx ∈ Fi. This can be seen as a
similarity search problem in whichd(x, Fi) = 0 if x ∈ Fi, and1 otherwise.
Note that here we have two classes of objects, points and sets, rather than
one. Hence a notion of distance between a set and a point must be defined.

• Voronoi Diagrams: given a universeU and a distance functiond : U×U →
R and a finite setS ⊂ U , let D(x, S) = arg miny∈2S d(x, y), a function
U → S. PartitionU into subsets with the same pre-image (that is, define the
equivalence classes under the inverse mappingD−1). Note that a Voronoi
diagram, in a sense, stores compactly the answers to all possible 1-nearest
neighbor queries. It can be used by transforming the nearest-neighbor query
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into a point-location query in this special subdivision ofU . Unfortunately in
many high dimensional situations the Voronoi diagram itself is a too large
object to be of any use when stored explicitly.

• Dynamic Vector Score Aggregation: given a setS of s sources of evidence
and a setE of n records, letσi(ej) be a source score for each recordej ∈
E and each sourcesi ∈ S. Moreover for each sourcesi we have a scalar
positive weightwi that is user-defined and changes dynamically for each
query. The dynamic aggregated score ofej is

∑s
i=1 wiσi(ej). TheDynamic

Vector Score Aggregationproblem [Singithamet al., 2004] is to find the
k elements inE with the highest dynamic aggregate score. In[Singitham
et al., 2004], the authors note that in absence of any further structure the
only solution is an exhaustive computation of the aggregatescore for all the
elements inE and the determination of thek highest elements in the ranking
induced by the aggregation score. Therefore they consider the special case
when each feature of the recordsej is actually a vector, and the source score
functionσi(ej) is a geometric distance function measuring the distance ofej

to a query pointq (equivalently one can define a dual similarity function to
the same purpose). Observe that ifs = 1 and the source score is a geometric
proximity function (e.g. a metric) to a query point then thisproblem reduces
to the classicalk-nearest neighbor problem. The difficulty in handling the
k-nearest-neighbor problem in the general case of a linear combination of
s ≥ 2 geometric proximity functions stems from the need of combining
the scores from generally unrelated sources compounded with the presence
of arbitrary positive weights. In[Singithamet al., 2004] the Vector Score
Aggregation problem is solved by extending the cluster pruning technique
for the geometrick-nearest-neighbor.

In this chapter we observe a relationship between the approximate similarity
searching problem and thek-center problem. Thus we show how the cluster prun-
ing strategy for approximate similarity searching can be improved using a clus-
tering algorithm which hask-center as objective function. Moreover, since we ob-
served that the most of the nearest neighbors are found visiting the first few clusters
we modified the cluster pruning approach to work with a multi-clustering obtained
by merging few independent clusterings.

To finish, using cosine similarity to measure the distance among pairs of doc-
uments, we derived a different scheme for the dynamic vectorscore aggregation
problem respect with the one proposed in[Singithamet al., 2004]. Our method is
able to deal with weights just at query time, thus we do not need to know/manage
them during the preprocessing of data. This reduced our preprocessing time and,
contrarily to the method proposed in[Singithamet al., 2004], made it independent
from the number of sources of evidence present in the dataset.
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6.2 Related work on similarity searching
A lot of effort has been spent studying similarity searchingand literature about this
topic is wide. There are two main categories of similarity searching problems:exact
similarity searchingin which thei-th retrieved element is exactly thei-th nearest
neighbor; andapproximate similarity searchingin which the following relationship
holds:

d(q,Retrivedi)

d(q,NNi)
< 1 + ǫ

whereq is the query point,Retrivedi is thei-th retrieved element,NNi is thei-th
nearest neighbor andǫ is a small positive constant.

6.2.1 Exact similarity searching

The most of exact similarity searching data structures are based on partitioning the
search space and organizing the obtained partitions in a tree-like data structure. At
query time the tree structure is used to decide in which partitions to search for the
nearest neighbors. Among the most commonly appreciated partitioning methods,
there are: theball partitioning andgeneralized hyperplane partitioningcriteria in-
troduced in[Uhlmann, 1991] and theexcluded middle partitioningdescribed in
[Yianilos, 1999]. In figures 6.1, 6.2 and 6.3 the three methods are summarized.

In a nutshell given a metric spaceM = (U, d) and a set of objectsS ∈ U :

• ball partitioning : given a pointp ∈ U and a constantdm, S is divided in
two groupsS1 andS2 such that the inner points of the ball of centerp and
radiusdm are inS1 while the remaining are inS2,

dm

S1

S2

P

Figure 6.1. Ball partitioning.

• hyperplane partitioning : given two pointsp1 ∈ U andp2 ∈ U , S is splitted
in two setsS1 andS2 such that points inS1 are closer top1 than top2 and
vice versa,
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P1

P2
S2S1

Figure 6.2. Hyperplane partitioning.

• excluded middle partitioning: given a pointp ∈ U , a threshold distance
dm, and a constantδ, the setS is divided in three subspacesS1, S2 andS3.
The points at distance at mostdm − δ from p are assigned toS1, the points
furthest thandm+δ from p are assigned toS2 and the unexpended points are
inputed toS3. The main advantage of this partitioning scheme with respect
to the others is that, also in the case in which the requested query pointq is
too close to such a boundary, if the searched points stand in the a ball with
centerq and radiusδ it is always possible to exclude at least one partition in
the visiting procedure.

dm

S2

S1

S3

P
2p

Figure 6.3. Excluded middle partitioning.

Let now describe some common methods for exact similarity searching that
employ the above described partitioning techniques for organizing data.

The most simple method consists in building a binary tree structure using ball
partitioning for assigning points to one of the halves of thetree. At the beginning
all the points are assigned to the root, a pivot pointp is randomly chosen and the
space is partitioned. The root node is labeled withp. Each partition is again splitted
using the same criterion until a stop condition is reached. Queries consist in a top-
down visit of the tree; visiting nodet, the distance between the query and the pivot
pt is computed and the algorithm decides which partition (could be both) might
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contain similar data. The querying process continues until, for each visited path, a
leaf node is reached.

The bisector tree (BST)[Kalantari and McDonald, 1983] is probably the first
data structure proposed that takes advantage from the hyperplane partitioning. Also
this tree structure is built recursively. At each node two pivots pointsp1 andp2 are
selected and hyperplane partitioning is applied. Objects are assigned to the two
children of the considered node according with their distance top1 andp2. For
each pivot its covering radius is computed and stored in the appropriate child node.
The covering radius is the distance between the pivot and thefurthest point in
its partition. Also in this case the query consists in a top-down visit of the tree.
Considering a nodet havingpt as pivot andrt as covering radius and a query point
q, in a metric space points int are further thand(pt, q)−rt from q. Thus, if searched
points are closer, then there are no interesting points in that subtree and it can be
safely pruned.

Brin [Brin, 1995] tackles the problem of detecting the points of a data set in
a metric space within a radiusr of a query pointx. Both r andx are specified
at query time. The proposed data structure the GNAT (Geometric Near-Neighbor
Access Tree) uses only pairwise distance computations and builds a deep search
tree by recursive subdivision clustering at each node of thetree. At each node ran-
dom sampling and a greedy selection of candidates split points using the furthest-
point-first idea is performed. The GNAT is used to find exactlyall points in a
radius r from a query pointx and each node of the data structure that poten-
tially intersects the query ball is visited. Potentially one could use GNAT and
a binary search scheme on the radius valuer so to detect the ballrl contain-
ing exactly l elements closest to the query pointx. In practice such a scheme
could result in a visit of a much larger fraction of the pointsin the database than
needed. Variants are discussed in[Chávez and Navarro, 2000; Cantoneet al., 2005;
Figueroaet al., 2006].

6.2.2 Approximate similarity searching

Fagin et al. in[Faginet al., 2003] show that one can solve approximate Euclidean
nearest neighbor by first projecting data points and query points onto a set of 1-
dimensional flats (lines), compute the rank of the query in each 1-dimensional
space, and then combine (aggregate) these ranks using deep techniques fromvot-
ing theory. Experiments reported in[Faginet al., 2003] are on dense data sets in
dimension100 (stock market time series) and dimension784 (vectorialization of
digital images).

Cluster pruningis an approach to similarity searching that is rather simplebut,
just because of its simplicity, is suitable to handling verylarge data sets in very
high dimensional spaces (as arise for example in handling large corpora of free
textual information). Consider the data items as points in ahigh dimensional space
endowed with a distance function. Subdivide the data pointsinto many small com-
pact clusters and elect a representative point in each cluster. When a query pointq
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is given,q is compared with the representatives and based on this comparison one
decides either to explore further the cluster or to disregard completely the associ-
ated cluster. The heuristic step (no guarantee) is that the selected clusters contain
the exact (or approximate) answer we are looking for. There are many algorithmic
design choices one has to take (see a recent paper[Chierichettiet al., 2007] explor-
ing many of these choices). The approach itself in general has been used before,
see e.g.[Hafneret al., 1998; Sitaramaet al., 2003].

Indyk and Motwani propose thelocality sensitive hashing[Indyk and Motwani,
1998], that reduces the approximate similarity searching problem to thePoint lo-
cation in equal ballsproblem (PLEB). Given a setC = {c1, . . . , cn} of balls of a
fixed radiusr in a metric space and a query pointq, if there exist a ball such that
q ∈ B(ci, r), then returnci. Thus the authors introduce a familyH : S → U of
hashing functions such that ifq ∈ B(ci, r) thenPrH[h(q) = h(ci)] ≥ p1 while
if q /∈ B(ci, r) thenPrH[h(q) = h(ci)] ≤ p2 with p1 > p2. Essentially the main
property of LSH is that similar objects hashed withH are much more likely to
collide than dissimilar objects. At query time the queryq is hashed and only the
points in the ballBi such thath(q) = h(ci) are scanned to find the most similar to
q.

In [Bawaet al., 2005] a LSH-based index is presented. Given a familyH =
{h1, . . . hn} of LSH functions,l hash tables are built independently. For each table,
k hash functions are selected at random. Then each document ishashed using all
these functions and placed in the bucket which has as key the concatenation of the
hash functions. For example if we considerH : S → [0, 9] in the hash table there
will be 10k buckets. The smaller isk, the greater is the probability of conflicts
among dissimilar points. But, a large value fork means a large number of buckets
and an increase of probability that similar objects are assigned to small buckets.
At query time nearest neighbors are searched separately in all the l hash tables and
then recombined. Note that one of the major advantages of this data structure is
that it can be used in parallel or distributed frameworks.

A series of papers describe solutions tailored on the scenario in which data are
accessed as a stream, that is they are presented to the systemin a sequence and
assigned to a cluster once and for all. One can work in a scenario in which there
is loss or no loss of information, see[Guhaet al., 2003; Charikaret al., 1997;
Farnstromet al., 2000]. Clearly this is a more extreme scenario in which, besides
the simple scalability issue (due to sheer size of the input), one has to cope also
with the restriction of deciding the association of each data item only once. In the
applications over large textual corpora coping with this last requirement it is likely
to produce lower quality results. The experiments reportedin [Farnstromet al.,
2000], that exhibit no loss in quality against standardk-means, are performed on a
data set in 481 dimensions, where each record is dense (i.e. most components are
non zero).
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6.2.2.1 User defined aggregated metrics

In the standard version of the similarity searching problemthe user is allowed to
choose the queries, but not the underlying distance function that is fixed at pre-
processing time. Suppose now that we want to give the user thepossibility of
choosing a metric of his/her own choice at query time. One special case of this
scenario is for example when the objects to be searched have an internal structure
and the overall distance function is anaggregationof the outcome of several dis-
tance functions defined on the components of the structure. Even if the data set to
be searched is the same, at different times the user might prefer a different relative
weight of the individual factors within the overall aggregated distance function.
This choice is taken at query time and the data structure mustbe flexible in this
respect. This scenario has been considered in a recent paperby Singitham et al.
[Singithamet al., 2004]. In [Ciaccia and Patella, 2002], Ciaccia and Patella discuss
which general relations should hold between two metrics that allow to build a data
structure using the first metric, but perform searches usingthe second (e.g. a user
defined) one. They propose a method that can be applied to any generic distance
based search tree. The performance analysis is based on probabilistic distance dis-
tributions.

6.2.2.2 Cluster based search versus inverted index based search

Voorhees[Voorhees, 1986] discusses the problem of comparing the performance
of similarity search algorithms based on inverted indices with those based on clus-
tering. The issue has been re-evaluated by Can et al.[Canet al., 2004]. For sake of
simplicity assume that the similarity of two vectors is given by their inner product
and that both documents and queries have been re-cast in a vector space. Inverted
Index Similarity Searching is based on the principle that taking the non-zero com-
ponents of the query vector we can access all and only the documents having also
a non-zero value for at least one of those components; thus wecan compute all
inner products in a component by component order, and selectat the end the docu-
ment most similar to the query. This approach is suitable forexact nearest neighbor
queries, however it runs into difficulties for approximate queries.

6.2.2.3 Measuring output quality

Given a certain database of objects and a query, in the exact similarity searching
context, all the algorithms return exactly the same result.Thus what make the dif-
ference among different solutions are: preprocessing timeand query time. In the
approximate similarity searching setting, instead, it is also important to establish
how good is the returned solution. In this last case, beyond preprocessing and query
time, many other aspects should be considered. For example:how many (and which
ones) of the true similar objects appear among the retrievedobjects and how far are
the retrieved points from the query. For example, looking for the two most similar
objects, it is better to find the closest object rather than the second one. Moreover it
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could be better to find the second and the third most similar objects instead of the
closest object and a far one.

Two popular quality indexes are often used: themean competitive recalland the
mean normalized aggregate goodness. Since they are employed also in[Singitham
et al., 2004] and[Chierichettiet al., 2007], we will use them for our experiments.

• Mean Competitive Recall.Let k be the number of similar documents, we
want to retrieve (in our experimentsk = 10) andA(k, q,E) the set of the
k retrieved documents for a queryq by algorithm A on data setE, and
the Ground TruthGT (k, q,E), the set of thek closest points inE to the
queryq which is found through an exhaustive search; the competitive recall
is CR(A, q, k) = |A(k, q,E)∩GT (k, q,E)|. Note that competitive recall is
an integer number in the range[0, . . . , k] and a higher value indicates higher
quality. The Mean Competitive Recall̄CR is the average of the competitive
recall over a set of queriesQ:

CR(A,Q,E) =
1

|Q|
∑

q∈Q

CR(A, q, k)

This measure tells us how many of the truek nearest neighbors an algorithm
was able to find.

• Mean Normalized Aggregate Goodness.We define as the Farthest Set
FS(k, q,E) the set ofk points inE farthest fromq. Let the sum of distances
of thek furthest points fromq beW (k, q,E) =

∑

p∈FS(k,q,E) d(q, p). The
normalized aggregate goodness:

NAG(k, q,A) =
W (k, q,E) − ∑

p∈A(k,q,E) d(q, p)

W (k, q,E) − ∑

p∈GT (k,q,E) d(q, p)
.

Note that the Normalized Aggregate goodness is a real numberin the range
[0, 1] and a higher value indicates higher quality. The Mean Normalized Ag-
gregate GoodnessNAG is the average of the normalized aggregate goodness
over a set of queriesQ:

NAG(A,Q,E) =
1

|Q|
∑

q∈Q

NAG(A, q, k).

Among the possible distance functions there is a large variability in behavior
(for example some distance functions are bounded, some are not). Moreover
for a givenE andq there could be very different ranges of possible distance
values. To filter out all these distortion effects we normalize the outcome of
the algorithm against the ground truth by considering the shift against the
k worst possible results. This normalization allows us a finerappreciation
of the different algorithms by factoring out distance idiosyncratic or border
effects.
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6.3 Our contribution
In this chapter we first deal with the problem of fast approximate similarity search-
ing for semi-structured text documents, then we focus on themore general problem
in which users can decide to dynamically assign different weights to each field of
the searched text (Dynamic Vector Score Aggregation). We observed an analogy
between the similarity searching problem and thek-center objective function for
clustering. Thus, according with the cluster pruning approach, we used a clustering
algorithm for thek-center problem for approximate similarity searching. Moreover
we derived a new and much simpler way for managing dynamic weights, avoiding
to consider them in the preprocessing phase and thus to replicate clustering with
many assignments of weights. To finish, by using a different clustering strategy
(in which we introduced a certain data redundancy) we obtainfurther benefits in
terms of precision. In particular we will describe alternatives for the following key
aspects:

• The ground clustering algorithm. When searching for the nearest neigh-
bors of a query pointq, it is natural to consider a cluster good for such a
search when its diameter is small. This leads to consideringthe optimalk-
center problem (i.e. finding a decomposition minimizing themaximum di-
ameter of any cluster produced) as a better objective to attain with respect to
other conceivable objectives. Thus we are led to consider the Furthest-Point-
First heuristic, that is 2-competitive for this problem[Gonzalez, 1985]. We
attain two benefits: (1) the quality of the output is increased, as demonstrated
by the experiments in Section 6.4, (2) the preprocessing time is reduced by
orders of magnitude since we can use fast variants of this algorithm (see e.g.
[Geraciet al., 2006b; 2006a]).

• Multiple clusterings. In cluster pruning search one decides beforehand to
visit a certain number of clusters whose “leaders” are closest to the query
point. However, there is a hidden law of diminishing returns: clusters further
away from the query are less likely to contain goodk-neighbors. We use a
different strategy: we form not one but several (three in ourexperiments)
different independent clusterings and we search all three of them but looking
into fewer clusters in each clustering.

• How weights are embedded into the scheme. In the general Vector Score
Aggregation problem the user supplies a query (this can be either a document
in the database or a collection of keywords that capture the concept being
searched for) and a weight-vector that expresses the user’sperception of the
relative importance of the document features in capturing the informal notion
of “similarity”. We show in Section 6.3.3 that, surprisingly, one needs not to
be concerned with dynamic weights at all during pre-processing; the solution
for the unweighted case is good also for the weighted one.
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By introducing these three variations we significantly outperform the state of
the art algorithms for this problem.

6.3.1 Clustering algorithm

Cluster pruning leaves open the issue of which is the best clustering strategy to
adopt. An exhaustive answer to this question is probably impossible since cluster
pruning is heuristic. However, some considerations can be done. We found that
there is a relationship between similarity searching and the optimalk-center prob-
lem. Thek-center target is to find an assignment of cluster centers that minimizes
the wider cluster radius. Thus the found clusters should be compact. If the query
point q is exactly the center of clusterCi, its elements are the first|Ci| nearest
neighbors ofq. This also means that the more a query pointq is close to the cluster
center, the more it is probable that its nearest neighbors are points of the cluster.
More specifically, if the cluster radius isD and the distanced(q, ci) < D, all the
nearest neighbors at distance at mostD − d(q, ci) are points ofci. Sincek-center
imposes that the wider cluster diameter is the smallest possible, in the case queries
are points of the clustering, this means that also the maximal distance between the
query and the closest center is minimized.

In chapter 2 three clustering algorithms fork-center problem were described:
the standard FPF introduced in section 2.2.1.1 and two variants M-FPF that em-
ploies random sample techniques (see section 2.4.2) and M-FPF-MD which intro-
duces medoids (see section 2.4.3).

The choice of which of these clustering algorithms is the best candidate for
similarity searching can not be supported by theory. Each ofthese algorithms has
pros and cons. For example the standard FPF has theoretical guarantees, instead
the use of medoids has a better distribution of centers. For this reason we simply
tested the performance of all the algorithms on two databases of documents and
adopted the best one. In section 6.4.3 we report the results of our tests which show
that consistently M-FPF has the best performance.

6.3.2 Multiple clusterings

Apparently it seems that it would suffice to run ak-center algorithm on the input
data (instead ofk-means like in[Singithamet al., 2004]) and the trick is done. The
situation is slightly more complex. Generally speakingk-means is much slower
thank-center, but typically produces higher quality clusters (the iterative process
has a smoothing effect).

In a different setting, when strictly on-the-fly computations are required, such
as those described in chapter 4 where interactive web snippets clustering is done
or in chapter 5 where a video storyboard must be produced on demand, time con-
straints can make the difference between a successful tool and a boring useless
software. In our setting, however, clustering is a pre-computation done off-line

CLUSTERING FOR SIMILARITY SEARCH 108



Our contribution

and, while one would appreciate a result in hours rather thandays, clearly, quality
of the outcome has to be considered in absolute terms.

We have found that, while one application of M-FPF is not ableto outperform
k-means in quality, a few independent applications of randomized M-FPF (multi-
clustering) produce a set of overlapping clusters that yield better output quality.
This intuition, later shown experimentally, came from two observations: after vis-
iting t clusters the exam of a further one tends to be even more useless, redundancy
of points makes the system more robust.
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Figure 6.4. The marginal utility of examining the cluster t + 1 after the in-
spection of t clusters. On the x axis the number of visited clusters, on the
y axis the marginal utility in terms of recall (left) and normalized aggregate
Goodness (right).

We studied how helpful is the visit of one more cluster after examining a cer-
tain number of clusters. In figure 6.4 we show how, after the visit of t clusters, the
marginal utilitychanges after examining a new cluster. Themarginal utility is com-
puted for both Normalized Aggregated Goodness and Recall and it is expressed as
the difference between the value of the measure visitingt andt + 1 clusters.

Figure 6.4 shows that the visit of the first cluster is the mostimportant and the
marginal utility of examining a new cluster decays drastically after just thevisit of
three or four clusters. This suggests that is probably better to examine less clusters
in some independent clusterings, than more clusters of the same clustering.

The second observation that suggested us to use multi-clustering was that the
redundancy of points makes the system more stable in terms ofquery performance.
This effect can be better explained with the example of figure6.5.

In the figure the red circles and the green circles represent two independent
clusterings (the center of a cluster is the point of the same color). Let q be the
query and the yellow points the nearest neighbors. Suppose we want to visit two
clusters searching for the nearest neighbors. If one considers only the red clustering
q is close toR1 andR2, thus all nearest neighbors are found. Instead considering
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3V

1R

V12V
2R

3R

q

Figure 6.5. Two independent clusterings (one in red and one in green) of
the same set of points. In magenta a query point and in yellow its nearest
neighbors.

the green clustering,q is close toV1 andV2, but one of the searched points is inV3.
If one considers all the red and green clusters as a single clustering, thenR1 andV1

are the closest centers and all the searched points are found. It is easy to note that
in the last case the clusters with highestmarginal utilityare selected increasing the
final expected quality.

The figure also shows that the mean distance among the query point and the
nearest centers in the multi-clustering scheme must be equal or smaller than in the
single clustering scheme.

At this point one can erroneously think that the advantage isin the higher num-
ber of centers and not in multi-clustering. Moreover multi-clustering has the dis-
advantage that there could be points evaluated more then once. Thus it could be
better to make more smaller clusters and increase the numberof visited clusters
balancing the final cost. The example of figure 6.6 shows on theleft a set of points
divided in three clusters (CL1) and on the right the same set splitted in six clusters
(CL2). Given the queryq: we examine 2 clusters on CL1 and 4 on CL2. Note that
only the cost of finding the nearest centers increases searching the structure on the
right. In fact, since the visited clusters in CL2 are twice those visited in CL1, this
balances the lower expected number of elements in each visited cluster. In both
cases there is a nearest neighbor not found and the higher number of clusters on
the right does not help.

In the comparison ofk-means and multi-clustering there is an extra cost in
terms of the number of distance computations to be paid at query time when search-
ing the latter. However, since each distance computation ink-center involves only
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Figure 6.6. The same set of points divided in 3 clusters (left) and 6 (right).
In magenta the query point q and in yellow the 3 nearest neighbors.

sparse vectors (i.e. there are no dense centroids), the two effects balance out at
query time. In our experiments three applications ofk-center to different random
samples of the input suffice.

There are two main ways to query multi-clustering. Suppose one wants to
examinet different clusters at query time, the system can consider the threek-
clusterings as a single clustering structure with3k clusters (and centers) and ex-
aminet clusters, or it can query independently the three clusterings visiting t/3
clusters for each structure. We observed that this choice does not affect the final
result neither in terms of quality nor in terms of speed. Thuswe decided to use the
latter strategy.

6.3.3 How weights are embedded in the scheme

In the vector score model the queries are of the formq = (q1, . . . , qs) where
eachqi is a vector of unit length; moreover the user supplies a weight vector
w = (w1, . . . , ws) where eachwi is a positive scalar weight, and the weights
sum to 1. The elementej in the input setE is of the form((ej)1, . . . , (ej)s) where
each(ej)i is a vector of unit length. The aggregate similarity is:sAD(q, ej) =
1− dAD(q, ej) =

∑

i wi(qi · (ej)i) whereqi · (ej)i is the cosine similarity between
qi and(ej)i. We remind that, as shown in section 3.2.1.1, from cosine similarity
can be derived a distanceD for which the extended triangular inequality holds.
Thus, the aggregate distance function isdAD(q, ej) = 1 − ∑

i wi(qi · (ej)i).
One should notice that because of the linearity of the summation and the inner

product operators, the weights can be associated to the vector space:
∑

i wi(qi ·
(ej)i) =

∑

i qi·wi(ej)i = q·wej . This association has been chosen in[Singithamet
al., 2004]. Thus the challenge arises from the fact that one has to do pre-processing
without knowing the real weights that are supplied on-line at query time.
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A different aggregation Let q be a query point,c a center of clusterC(c), p a
point in clusterC(c), andd a distance function that satisfies the extended triangular
inequality with parameterα. The effectiveness of clustering search stems from the
observation that the distanced(q, p) is bounded by an increasing function ofd(q, c)
andd(c, p). Moreover whenp ∈ C(c), the distanced(c, p) has the smallest value
over all centers in the clustering. Thus using the centerc closest toq gives us the
best possible upper estimate of the distanced(q, p). We have:

d(q, p) ≤ (d(q, c)α + d(c, p)α)1/α

Consider now theweighted similarityWS:

WS(w, q, p) =
∑

i

wi(pi · qi) =
∑

i

(wiqi) · pi = Qw · p.

whereQw = [w1q1, .., wsqs] is the weighted query vector of vectors. Since the
linear combination of weights and queries might not result in a unit length vector
we perform a normalization (depending only in the weights and query point) and
obtain anormalized weighted distanceNWD:

NWD(w, q, p) = 1 − WS(w, q, p)

|Qw|
= 1 − Qw/|Qw| · p = d(Q′

w, p),

whereQw/|Qw| = Q′
w is the normalized weighted query vector of vectors.

Now we are in the condition of using the above generalized triangular inequality
and establish that:

NWD(w, q, p) = d(Q′
w, p) ≤ (d(Q′

w, c)α + d(c, p)α))1/α.

Sinced(c, p) is independent of the pairq, w we can do at preprocessing time
a clustering based on the input setE and the distanced, regardless of weights
and queries. At query time we can computed(Q′

w, c) and combine this value with
d(c, p) to get the upper estimate ofNWD(w, q, p) that guides the searching. The
conclusion of this discussion is that using cosine similarity the multi-dimensional
weighted case can be reduced to a mono-dimensional (i.e. notweighted case) for
which we have good data structures.

The discussion above shows that the pre-processing can be done independently
of the user provided weights and that any distance based clustering scheme can be
used in principle. Weights are used to modify directly the input query point and are
relevant only for the query procedure.

6.4 Experiments
In this section we will first show benefits obtained using the multi-clustering strat-
egy with respect to standard clustering, then we compare oursolution against two
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baselines: the algorithm in[Singithamet al., 2004] that usesk-means clustering
and the algorithm in[Chierichettiet al., 2007] modified such as to use the simple
cluster pruning randomized strategy proposed in[Singithamet al., 2004].

6.4.1 Baseline algorithms

Let now give just some details of the two algorithms we used asbaseline to evaluate
the quality of our solution.

In [Singithamet al., 2004] several schemes and variants are compared but ex-
periments show that the best performance is consistently attained by the Query
Algorithm 3 (CellDec) described in[Singithamet al., 2004, Section 5.4]. The pre-
processing is as follows. For simplicity we consider the 3-dimensional case, that is
a data set where each record has 3 distinct sources of evidence (e.g. in our tests,
title, authors and abstract of a paper). We consider the setT of positive weight-
vectors summing to one (this is the intersection of the hyperplanew1+w2+w3 = 1
with the positive coordinate octant). We splitT into 4 regular trianglesT1, T2 and
T3 each incident to a vertex ofT and the central regionT4.

For each region we build a different vector space. LetVi,j be the vector corre-
sponding to recordej and sourcesi. Since the value of weights in regionT4 (the
central one) are comparable, we form a composite vector as follows V (T4)j =
V1,j +V2,j +V3,j. For the other three regions we simply apply a squeeze factorθ in
correspondence of the two lowest weights. Thus we haveV (T1)j = V1j

+ θV2,j +
θV3,j, V (T2)j = θV1j

+ V2,j + θV3,j andV (T3)j = θV1j
+ θV2,j + V3,j.

Experiments in[Singithamet al., 2004] show that a value ofθ = 0.5 attains
the best results. At query time, given the queryQ = (q, w) one first detects the
region ofT containingw, then usesq in the associated indexing data structure for
cluster-pruning.

In [Chierichettiet al., 2007] Chierichetti et al. propose a very simple but ef-
fective scheme for doing approximatek-nearest neighbor search for documents. In
a nutshell, after mappingn documents into a vector space they choose randomly
K =

√
n such documents as representatives, and associate each other document to

its closest representative. Afterwards, for each group thecentroid is computed as
“leader” of the group to be used during the search. In[Chierichettiet al., 2007] the
authors are able to prove probabilistic bounds on the size ofeach group which is
an important parameter that directly influences the time complexity of the cluster
prune search. Dynamically weighted queries are not treatedin [Chierichettiet al.,
2007], therefore we choose as a second base-line to employ[Chierichettiet al.,
2007], in place ofk-means, within the weighting framework of[Singithamet al.,
2004]. We will refer to it asPODS07for lack of a better name.

6.4.2 Experimental setup

We implemented all the algorithms in Python. Data were stored in textualbsd
databases. Tests have been run on a Intel(R) Pentium(R) D CPU3.2GHz with 3GB

CLUSTERING FOR SIMILARITY SEARCH 113



Experiments

of RAM and with operating System Linux.
Following [Singithamet al., 2004] we have downloaded the first one hundred

thousands Citeseer bibliographic records1. Each record contains three fields: paper
title, authors and abstract. We built the two data sets described in table 6.1. In the
table, it is also reported the numberk of clusters made by all the considered al-
gorithms. After applying standard stemming and stop words removal, three vector
spaces were created: one for each field of the documents. Terms in the vector are
weighted according to the standardtf-idf scheme.

Dataset TS1 TS2
Input size (MB) 41.80 76.13
# Records 53722 100000
# Clusters 500 1000

Table 6.1. Dataset description.

Without loss of generality, we used documents extracted from the data set as
queries. Test queries have been selected by picking a randomset of 250 documents.
During searches the exact match of the query document is not counted. In our
experiments we used the 7 sets of weights reported in table 6.2 adopted also in
[Singithamet al., 2004]. For each set of weights, we always used the same query
set. This gave us the opportunity of comparing results for different choices of the
weight vector.

Weight clue Author Title Abstract
1 0.33 0.33 0.33
2 0.4 0.4 0.2
3 0.4 0.2 0.4
4 0.2 0.4 0.4
5 0.6 0.2 0.2
6 0.2 0.6 0.2
7 0.2 0.2 0.6

Table 6.2. Weights used for queries.

6.4.3 Comparison among different k-center algorithms

As explained in section 6.3.1 our intuition suggested us to use a clustering algo-
rithm that attempts to solve thek-center problem since there is an affinity with the
similarity searching problem. We faced the problem to establish which one of the
algorithms described in chapter 2 for thek-center problem is the best candidate for
similarity searching: the standard FPF (see section 2.2.1.1) or our M-FPF which
uses a random sample (see 2.4.2) or the M-FPF-MD which uses a random sample

1http://citeseer.ist.psu.edu/
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and medoids (see section 2.4.3). Each of this algorithms haspros and cons. For
example the standard FPF has theoretical guarantees instead the use of medoids
has a better distribution of centers.

Table 6.3 shows a comparison of the 3 clustering algorithms for thek-center
problem (FPF, M-FPF, M-FPF-MD) using the TS2 dataset. We obtained analogous
results using the TS1 dataset. Observe that M-FPF obtains better results in all cases
in terms of both Normalized Aggregate Goodness and Recall.

Normalized Aggregate Goodness Recall
# Visited FPF M-FPF M-FPF-MD FPF M-FPF M-FPF-MD
3 0.733 0.756 0.755 5.324 5.688 5.612
6 0.780 0.799 0.786 6.044 6.352 6.068
9 0.785 0.809 0.796 6.12 6.556 6.28
12 0.787 0.815 0.808 6.156 6.692 6.448
15 0.791 0.823 0.810 6.196 6.752 6.488
18 0.794 0.829 0.812 6.236 6.824 6.548
21 0.798 0.834 0.816 6.284 6.892 6.616
24 0.801 0.837 0.818 6.32 6.94 6.628

Table 6.3. Comparison of the FPF, M-FPF, M-FPF-MD algorithms on TS2.
Recall is a number in [0,10], Normalized Aggregated Goodness is a number
in [0,1].

Query time of the 3 considered algorithms is very similar, thus we do not report
detailed comparative results. Only note that query on clusterings made using M-
FPF-MD is typically 0.1 second slower than the others because cluster cardinalities
with this scheme tends to be not as well balanced as those obtained by the other
clustering algorithms. Query time varies in the range of 0.3seconds visiting 3
clusters up to 0.9 seconds visiting 24 clusters.

6.4.4 Fast multi-clustering for precision improvement

Results in the previous section show that M-FPF achieves a better performance
with respect to the other algorithms. In this section we discuss experimental results
that show how multi-clustering works better than simple clustering.

As explained in section 6.3.2 there are two main ways to querymulti-clustering:
querying independently each clustering or considering them as a single clustering.
In most of the cases both these querying strategies return exactly the same set of
objects in comparable time, thus we do not report experimental details.

In table 6.4 we report a comparison between multi-clustering and M-FPF in
terms of Normalized Aggregate Goodness, Recall and query time.

Results show that multi-clustering achieves better quality than M-FPF but spends
more time. Clearly, visiting the same number of clusters, multi-clustering query-
ing is slower than querying a single clustering. This is due to the higher number
of centers against which the query must be compared. In our case we made three
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Normalized Aggr. Goodness Recall Time
# Visited Multi M-FPF Multi M-FPF Multi M-FPF
3 0.842 0.755 6.884 5.612 0.619 0.298
6 0.887 0.786 7.688 6.352 0.692 0.384
9 0.907 0.796 8.096 6.28 0.828 0.440
12 0.915 0.808 8.292 6.448 0.886 0.539
15 0.921 0.810 8.408 6.488 0.942 0.551
18 0.925 0.812 8.508 6.548 0.988 0.593
21 0.927 0.816 8.528 6.616 1.068 0.636
24 0.928 0.818 8.548 6.628 1.087 0.691

Table 6.4. Comparison of multi-clustering (multi) and M-FPF algorithms on
TS2. Highlighted entries are results obtained with the same query time.

independent clusterings of 1000 elements in the case of TS2 (500 in the case of
TS1). Thus this means an additional cost of 2000 distance invocations for an aver-
age cost of about 0.4 seconds. It is interesting to note that querying multi-clustering
remains qualitatively better than M-FPF even in the case when the querying pro-
cesses on the two clusterings are constrained to spend the same amount of time.
In table 6.4 we highlight those results in which M-FPF and multi-clustering spend
about the same time for querying. In this case multi-clustering had time to visit
only 6 clusters, while M-FPF visited 24 clusters. Also in this case multi-clustering
performs better than M-FPF in terms of both Normalized Aggregated Goodness
and Competitive Recall.

6.4.5 Comparison with baseline algorithms

In this section we compare our Multi-clustering algorithm against the two baseline
algorithms described in section 6.4.1 in the most general setting in which dynami-
cally user-defined score are allowed.

Preprocessing time: as shown in table 6.5, the simple clustering strategy in[Chierichetti
et al., 2007] has preprocessing time close to ours (but quality/cost performance in-
ferior to our scheme and to that in[Singithamet al., 2004]), while [Singithamet
al., 2004] is noteworthy much slower. In a test with 100,000 documents,we gain a
factor 30. In practice we could complete the preprocessing in one day compared to
one month required by[Singithamet al., 2004].

The difference in preprocessing performance between our solution and CellDec
is due to three main factors:

• The clustering algorithms: as already seen in previous chapters,k-means
algorithm is slower than M-FPF. This is still true also using(like in our
implementation) a faster version ofk-means[Phillips, 2002].
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Dataset TS1
Algorithm Our CellDec PODS07
Preprocessing time 5:28 215:48 7:18
Space (MB) 332.078 1407.656 1402.140

Dataset TS2
Algorithm Our CellDec PODS07
Preprocessing time 20:13 636.80 22:56
Space (MB) 645.765 2738.671 2725.078

Table 6.5. Preprocessing time (in hours and minutes) and storage (in
Megabytes) of the data structures generated by CellDec, PODS07 and our
algorithm.

• The embedding scheme: the embedding of weights in the preprocessing
forces CellDec to make a different clustering for each weight assignment.
Note that in the CellDec space decomposition scheme, the number of weight
assignments is proportional to the number of sources of evidence in the
dataset. In our case, multi-clustering requires to make three clusterings in-
dependently from the number of sources of evidence presentsin the data
domain.

• The use of centroids: the general idea that a distance computation between
two objects takes constant time is not always true for all thedata types and
distances. Clearly this assumption holds in cases like video data presented in
chapter 5, where frames and centroids have the same number offeatures. In-
stead, in the case of tf-idf schema, to compute the cosine similarity between
two objects, one needs to find the features in common between them. This
can be efficiently done storing features in a hash table and, for each feature of
the smaller object, looking in the bigger object if the feature is present. This
minimizes the number of hashes needed, but does not resolve the problem
that hashing cost depends on the number of elements in the table.

Query quality and speed: figure 6.7 shows the query time/recall tradeoff of the
three methods. In the graph each dot represents the average of 250 queries for a
given choice of clusters to visit and user weights (see table6.2). The 250 queries
were selected only once and submitted to each algorithm and weights assignment.
Our method is clearly dominant giving consistently better quality results in less
time. Quality data are also given in tabular form in table 6.6, table 6.7, table 6.8
and table 6.9.

The query time as a function of the number of visited clustersis reported in
figure 6.8 and shows clearly a speed up factor of two. Also in this case the speed
up is due to the choice of avoiding to use centroids.

The top portion of table 6.6, table 6.7, table 6.8 and table 6.9. correspond to
the case of equal weights, that is equivalent to the unweighted case as already
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Figure 6.7. Recall of 10 nearest neighbors as a function of query time. Each
point in the graph is the average of measurements of all queries for a class
of weights and a number of visited clusters. The points in the upper left
corner of the graphs corresponding to our algorithm show clear dominance.
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Figure 6.8. Average query time (in seconds) over all queries in function of
the number of visited clusters.

partially shown in sections 6.4.3 and 6.4.4. In the entries of table 6.6 and table
6.8, for unequal weights our scheme is vastly superior in recall, even doubling the
number of truek-nearest neighbors found using less time over both baselines. The
overall quality of the retrieved nearest neighbors, as measure via thenormalized
aggregated goodness, is also improved: this indicates that our method is robust and
stable relative to the baselines.

6.5 Conclusions
In this chapter we tackled the similarity searching problemin semi-structured text
documents. We provided an approximated solution based on cluster pruning. Our
method is based on the observation that there is a relationship between thek-center
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problem and the similarity searching problem, thus the former can be helpful to
approximate the latter. We also introduced multi-clustering that, by introducing
redundancy in the input data, makes the whole system more stable in terms of
output quality. Moreover, we have shown that a difficult searching problem with
dynamically chosen weights can be reduced, thanks to the linearity properties of
the cosine similarity metric, to a simpler static search problem. For this problem
we provide an efficient and effective method that is competitive with the state of
the art techniques for large semi-structured textual databases.
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Data Set TS1 = 50K docs.
Visited clusters 3 6 9 12 15 18

Weights: query 0.33-0.33-0.34 - CellDec 1-1-1

Recall
CellDec 6.088 6.688 6.884 7.096 7.22 7.36
PODS07 5.768 6.484 6.752 6.928 7.072 7.188
Multi 6.016 7.172 7.64 7.852 7.94 7.992

Weights: query 0.4-0.4-0.2 - CellDec 1-1-1

Recall
CellDec 4.812 5.184 5.336 5.472 5.544 5.644
PODS07 4.512 5.032 5.196 5.284 5.372 5.444
Multi 6.128 7.168 7.64 7.832 7.916 7.984

Weights: query 0.2-0.4-0.4 - CellDec 1-1-1

Recall
CellDec 3.864 4.06 4.148 4.284 4.312 4.404
PODS07 3.772 4.168 4.284 4.3 4.284 4.328
Multi 6.356 7.116 7.516 7.624 7.704 7.76

Weights: query 0.4-0.2-0.4 -CellDec 1-1-1

Recall
CellDec 4.0 4.176 4.292 4.312 4.324 4.352
PODS07 3.752 4.104 4.188 4.256 4.204 4.244
Multi 5.608 7.048 7.664 7.932 8.096 8.176

Weights: query 0.2-0.6-0.2 - CellDec 0.5-1-0.5

Recall
CellDec 4.084 4.18 4.236 4.312 4.388 4.428
PODS07 3.496 3.684 3.848 3.932 3.964 4.04
Multi 6.392 7.008 7.22 7.344 7.4 7.448

Weights: query 0.6-0.2-0.2 - CellDec 1-0.5-0.5

Recall
CellDec 3.172 3.308 3.376 3.396 3.424 3.44
PODS0 7 2.716 3.14 3.216 3.292 3.336 3.36
Multi 5.76 7.236 7.848 8.156 8.32 8.412

Weights: query 0.2-0.2-0.6 - CellDec 0.5-0.5-1

Recall
CellDec 3.384 3.532 3.64 3.736 3.832 3.892
PODS07 3.168 3.436 3.604 3.7 3.74 3.764
Multi 5.812 7.108 7.728 7.92 8.064 8.164

Table 6.6. Quality results of the compared algorithms on TS1. Recall is a
number in [0,10], Data as a function of the number of visited clusters.

CLUSTERING FOR SIMILARITY SEARCH 120



Conclusions

Data Set TS1 = 50K docs.
Visited clusters 3 6 9 12 15 18

Weights: query 0.33-0.33-0.34 - CellDec 1-1-1

NAG
CellDec 0.779 0.822 0.841 0.854 0.865 0.876
PODS07 0.753 0.816 0.831 0.842 0.852 0.863
Multi 0.776 0.838 0.863 0.876 0.879 0.882

Weights: query 0.4-0.4-0.2 - CellDec 1-1-1

NAG
CellDec 0.769 0.811 0.830 0.844 0.855 0.866
PODS07 0.743 0.807 0.821 0.832 0.842 0.853
Multi 0.778 0.833 0.856 0.869 0.872 0.875

Weights: query 0.2-0.4-0.4 - CellDec 1-1-1

NAG
CellDec 0.698 0.737 0.756 0.774 0.786 0.797
PODS07 0.679 0.738 0.753 0.763 0.772 0.783
Multi 0.762 0.807 0.827 0.836 0.840 0.842

Weights: query 0.4-0.2-0.4 -CellDec 1-1-1

NAG
CellDec 0.791 0.830 0.845 0.851 0.858 0.865
PODS07 0.757 0.815 0.828 0.839 0.849 0.856
Multi 0.786 0.869 0.901 0.916 0.922 0.926

Weights: query 0.2-0.6-0.2 - CellDec 0.5-1-0.5

NAG
CellDec 0.770 0.802 0.818 0.828 0.842 0.848
PODS07 0.668 0.702 0.734 0.751 0.762 0.769
Multi 0.740 0.775 0.788 0.799 0.801 0.805

Weights: query 0.6-0.2-0.2 - CellDec 1-0.5-0.5

NAG
CellDec 0.809 0.845 0.861 0.867 0.870 0.874
PODS07 0.725 0.793 0.823 0.839 0.849 0.856
Multi 0.795 0.883 0.913 0.930 0.936 0.939

Weights: query 0.2-0.2-0.6 - CellDec 0.5-0.5-1

NAG
CellDec 0.773 0.806 0.828 0.840 0.856 0.866
PODS07 0.737 0.785 0.812 0.825 0.835 0.840
Multi 0.773 0.859 0.887 0.896 0.902 0.908

Table 6.7. Quality results of the compared algorithms on TS1. Normalized
Aggregated Goodness is a number in [0,1]. Data as a function of the number
of visited clusters.
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Data Set TS2 = 100K docs.
Visited clusters 3 6 9 12 15 18 21

Weights: query 0.33-0.33-0.34 - CellDec 1-1-1

Recall
CellDec 7.008 7.308 7.516 7.672 7.772 7.892 7.996
PODS07 6.044 6.632 6.908 7.156 7.256 7.34 7.412
Multi 6.884 7.688 8.096 8.292 8.408 8.508 8.528

Weights: query 0.4-0.4-0.2 - CellDec 1-1-1

Recall
CellDec 5.492 5.536 5.704 5.776 5.86 5.904 5.972
PODS07 4.852 5.18 5.368 5.444 5.528 5.6 5.652
Multi 6.848 7.708 8.08 8.268 8.392 8.448 8.48

Weights: query 0.2-0.4-0.4 - CellDec 1-1-1

Recall
CellDec 4.78 4.692 4.796 4.916 4.956 5.004 5.072
PODS07 4.0 4.2 4.344 4.428 4.5 4.552 4.58
Multi 6.96 7.708 8.004 8.076 8.184 8.24 8.268

Weights: query 0.4-0.2-0.4 -CellDec 1-1-1

Recall
CellDec 4.388 4.396 4.444 4.4 4.412 4.444 4.456
PODS07 3.792 4.172 4.284 4.312 4.312 4.308 4.296
Multi 5.988 7.272 7.82 8.136 8.44 8.516 8.608

Weights: query 0.2-0.6-0.2 - CellDec 0.5-1-0.5

Recall
CellDec 4.548 4.696 4.74 4.74 4.792 4.828 4.848
PODS07 4.112 4.252 4.308 4.444 4.492 4.516 4.54
Multi 7.024 7.632 7.824 7.976 8.028 8.056 8.08

Weights: query 0.6-0.2-0.2 - CellDec 1-0.5-0.5

Recall
CellDec 3.632 3.944 3.968 4.012 4.0 4.024 4.016
PODS07 3.044 3.44 3.62 3.736 3.824 3.876 3.884
Multi 5.808 7.132 7.728 8.128 8.32 8.488 8.632

Weights: query 0.2-0.2-0.6 - CellDec 0.5-0.5-1

Recall
CellDec 4.176 4.312 4.424 4.48 4.5 4.508 4.556
PODS07 3.584 3.876 3.996 4.08 4.148 4.244 4.292
Multi 6.52 7.432 7.896 8.116 8.32 8.4 8.52

Table 6.8. Quality results of the compared algorithms on TS2. Recall is a
number in [0,10], Data as a function of the number of visited clusters.
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Data Set TS2 = 100K docs.
Visited clusters 3 6 9 12 15 18 21

Weights: query 0.33-0.33-0.34 - CellDec 1-1-1

NAG
CellDec 0.858 0.876 0.891 0.905 0.914 0.919 0.924
PODS07 0.779 0.827 0.851 0.867 0.874 0.881 0.887
Multi 0.842 0.887 0.907 0.915 0.921 0.925 0.927

Weights: query 0.4-0.4-0.2 - CellDec 1-1-1

NAG
CellDec 0.852 0.869 0.884 0.899 0.908 0.914 0.918
PODS07 0.771 0.819 0.843 0.860 0.867 0.875 0.881
Multi 0.836 0.883 0.903 0.909 0.916 0.919 0.921

Weights: query 0.2-0.4-0.4 - CellDec 1-1-1

NAG
CellDec 0.798 0.811 0.828 0.847 0.857 0.863 0.868
PODS07 0.725 0.763 0.785 0.800 0.808 0.817 0.825
Multi 0.819 0.870 0.883 0.887 0.896 0.898 0.900

Weights: query 0.4-0.2-0.4 -CellDec 1-1-1

NAG
CellDec 0.834 0.855 0.863 0.868 0.874 0.877 0.880
PODS07 0.762 0.813 0.834 0.848 0.852 0.855 0.858
Multi 0.817 0.895 0.924 0.934 0.943 0.946 0.949

Weights: query 0.2-0.6-0.2 - CellDec 0.5-1-0.5

NAG
CellDec 0.870 0.900 0.914 0.923 0.927 0.928 0.930
PODS07 0.770 0.795 0.816 0.835 0.844 0.852 0.859
Multi 0.814 0.849 0.861 0.867 0.873 0.876 0.878

Weights: query 0.6-0.2-0.2 - CellDec 1-0.5-0.5

NAG
CellDec 0.803 0.852 0.861 0.865 0.869 0.874 0.874
PODS07 0.702 0.784 0.823 0.836 0.849 0.860 0.862
Multi 0.812 0.891 0.921 0.936 0.945 0.953 0.957

Weights: query 0.2-0.2-0.6 - CellDec 0.5-0.5-1

NAG
CellDec 0.853 0.869 0.884 0.889 0.894 0.896 0.903
PODS07 0.755 0.807 0.834 0.845 0.852 0.862 0.866
Multi 0.837 0.889 0.914 0.923 0.933 0.936 0.939

Table 6.9. Quality results of the compared algorithms on TS2. Normalized
Aggregated Goodness is a number in [0,1]. Data as a function of the number
of visited clusters.
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7
Conclusions

Abstract

This thesis completes a Ph.D course of three years in which wefocused our studies
in information retrieval. The majority of our studies were devoted on the cluster-
ing problem with particular attention to the Web scenario. We designed a family
of algorithms for thek-center problem, gave a novel definition of the concept of
medoid and tested our algorithms on three important applications of Web informa-
tion retrieval: web snippets clustering, video summarization and similarity search-
ing. These applications raised some important related problems for which we found
novel solutions. Snippets clustering is very often conjugated with the task of cluster
labelling, that is the problem of distilling a synthetic anddescriptive label for the
cluster content. Video summarization required to study many aspects: the video
features and distance to use, the optimal number of clustersand the selection of
the most representative element for each cluster. In similarity searching of semi-
structured text documents one should want to allow the user to assign different
weights to each field at query time. This requirement raises the problem of vector
score aggregation which complicates preprocessing because at that time weights
are unknown and thus one should build a data structure able tohandle all the possi-
ble weight assignments. We conclude this thesis discussingsome preliminary ideas
about on-going research directions. We observed that clustering algorithms spend
most of the processing time in adding points to the clusters,searching for the clos-
est center. This time can be reduced using a keen similarity searching scheme.
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7.1 Results
In this thesis we focused on the problem of clustering in the web scenario. We
began our studies from the Furthest Point First heuristic[Gonzalez, 1985] for
the k-center problem by Gonzalez. This algorithm returns a solution which is 2-
competitive with respect to the optimal solution and runs inlinear time. This result
is demonstrated to be the best possible approximation unless P = NP . For its
small computational cost we considered the Furthest Point First as a good starting
point for our studies. Our first result was FPF, a variant of the Furthest Point First
heuristic in which we exploit the triangular inequality to reduce the overall num-
ber of distance computations without changing the final output. Despite in practice
FPF is faster than the original Gonzalez’s algorithm, in theory the number of dis-
tance computations saved by this algorithm depends from data, therefore FPF has
the same worst case complexity bound of the original algorithm.

Later we investigated a different clustering strategy. We observed that, building
thek-center set, the choice of FPF to elect as thei-th center the furthest point from
the i − 1 already selected centers tends to select points that stand close to the
boundaries of the space. This also means that if the dataset contains many outliers
they are likely to be elected as cluster centers. We empirically observed that a
random sample of the input data, enough large to be representative of the whole
dataset is likely to have in proportion less outliers. For our purpose the size of the
random sample should be proportional to the numbern of objects and the number
k of desired clusters, thus we choose a sample of size

√
nk. We run FPF over this

sample in order to obtain ak-center set, then we add one by one the remaining
points to complete the clustering. We called this scheme M-FPF.

Experimentally M-FPF was shown to be more robust than FPF with respect
to noise. The tendency of centers to be “not in the center” of their own clusters
is mitigated, but it is still present. Thus we replaced centers with medoids in the
scheme of M-FPF. Given a certain set of pointsP , let a and b be its diametral
elements. Consider now the pointm, not necessarily inP , which is the middle
point of a andb. The medoid is the point ofP which is closest tom. The exact
computation of the medoid is quadratic in the number of elements in the cluster,
but it can be computed in linear time using an approximate method for finding the
diametral points. Using medoids we modified the M-FPF in the following manner:
firstly from the input points we extract a random sample of

√
nk elements, then we

cluster them using FPF and for each cluster we compute its medoid. We add one by
one the remaining points at each step updating the medoid of the involved cluster.
We called this scheme M-FPF-MD.

As shown in chapters 4, 5 and 6 we applied the clustering algorithm for differ-
ent practical applications of web information retrieval. Each of these applications
raised some interesting problems.

In chapter 4 we describedarmil a completely working clustering meta-search
engine that exploits M-FPF-MD to cluster snippets collected from auxiliary search
engines. In this case cluster labelling is not less important than clustering. In fact
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a good cluster with a poor descriptive label is likely to be ignored by the user. We
designed a novel labelling method that is completely independent from the data
domain and clustering algorithm. It works in two steps: in the first phase it collects
local statistics inside each cluster to extract the most relevant terms of the cluster,
then it uses a variation of the information gain measure to disambiguate keywords
that are considered relevant for more than one cluster. At the end it ranks all the
sentences of the cluster according with the relevant terms and returns the most
appropriate piece of text as label.

In chapter 5 we describedViStoa web application to create visual storyboards.
In this task, clustering is used to select the most representative frames (or scenes)
that will form the storyboard. We faced both the problem of static and dynamic sto-
ryboard production. A first important issue we addressed is the automatic detection
of a possible reasonable size for the storyboard to be suggested to the final user.
We designed an adaptive method that analyzes the distribution of distances between
pairs of consecutive frames to detect and count video cuts inorder to elaborate a
suggestion for the user. Another important aspect we studied concerns the use of
frames or scenes as input for the clustering algorithm for dynamic summaries. We
found that the use of frames introduces an unjustified bias infavor of longer scenes,
moreover, despite scenes have proportionally a less informative representation than
frames, this does not cause a performance degradation. Finally the use of scenes
should be preferable because they are less with respect to frames yielding a result-
ing shorter clustering time. A final important result, we obtained coping with this
task, is a faster approximation of M-FPF-MD for this type of data. In fact, by ob-
serving that consecutive frames are likely to be very close and, clearly, the closer
are two frames the more probable is that they will be assignedto the same cluster,
if a certain frame is enough close to its predecessor, we can assign it to the same
cluster without comparing it with all the centers.

In chapter 6 we cope with the similarity searching problem following the clus-
ter pruning approach. In this model we observed that if the query point is inside
a cluster, there is a relationship between thek-center problem and the similarity
searching problem. This is the case for example of the searchfor related docu-
ments in Citeseer or similar documents in Google. This relationship justifies our
choice in using our algorithms for similarity searching. Wealso studied the benefits
in terms of marginal utility due to the visit of more clustersor due to the choice of
making more clusters. We observed that most of the nearest neighbors are found
in the first few clusters, thus, after the visit of three or four clusters, the time spent
in visiting a new cluster is not justified by the corresponding improvement for the
recall. We proposed a novel scheme for cluster pruning in which, instead of having
just a clustering, we make a small number of independent clusterings, then we visit
a certain (smaller than the standard scheme) number of clusters for each clustering
and merge the solutions. In order to avoid duplicate distance computations due to
redundancy we cache distance computations. The overall result of this scheme is
an improvement of recall in less, at most the same, time of thestandard scheme.
The last issue related to similarity searching we coped with, is the vector score
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aggregation problem. Let us consider to have a semi-structured text, you may want
to allow the user to give a different weight to each field at query time. In this case
the problem is that each weights assignment affects differently the aggregate dis-
tance function; moreover at preprocessing time, that is at clustering time, weights
are not known. Thus one should make many clusterings with different weights as-
signments to cover all the spectrum of possible assignments. We exploited some
linearity properties of the cosine similarity that allowedus to handle weights only
at query time without any clustering replication.

7.2 Future research directions
The great majority of the running time for FPF and related clustering algorithms is
spent searching the closest center of a certain point we wantto insert into a cluster.
In fact, once thek-center set is established, for each of the remaining pointswe
must find the closest center to insert it in the appropriate cluster. This operation
requiresk distance computations for each item, thus, the higher isk, the slower
is the clustering algorithm. In chapter 5 we were able to reduce this time taking
advantage of the peculiar distribution of data in that domain. We observed that the
operation of finding the closest center is in practice a similarity searching problem,
similar to that we addressed in chapter 6, where the item to beinserted into the
clustering is the query point. We plan to develop a general scheme for approximate
FPF that takes advantage from the approximate similarity searching to reduce the
algorithm running time without any data dependence. Approximate clustering finds
application in those cases in which we must deal with a huge amount of documents,
the number of requested clusters is very high and a certain degree of error in the
clustering can be tolerated. This is the case for example of recommended systems.
In this problem, a company has huge database of items and wants to create a large
number of user profiles. When a new user matches a profile the system recom-
mends the articles of the matched profile. This problem can bereformulated as a
clustering problem in which the database is clustered and each cluster is a profile.
The distance between two items depends from the users feedback. The insertion of
an item into the wrong profile will be ignored by the customer in the worst case .

The outline of the approximated FPF should be:

1. Split the input points into two setsS andT such that|S| =
√

nk and cluster
S with FPF,

2. let C = {c1, . . . , ck} be the obtained cluster centers; clusterC using FPF
and make

√
k clusters with centersP = {p1, . . . , p√k},

3. for each pointq ∈ T :

• scanP and find the closestpi,

• scan the corresponding cluster and find the closestci,
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• addq to the corresponding cluster.

The above procedure running time is the summation of the following three
components:

Step1
︷ ︸︸ ︷√

nkk +

Step2
︷︸︸︷√

kk +

Step3
︷ ︸︸ ︷

(n −
√

nk)
√

k
w
w
�

w
w
�

w
w
�

O((
√

nk)
√

k) O(n
√

k) O(n
√

k)

The overall running time isO(max(
√

nk, n)
√

k) which has minimum fork =√
n.
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