Web Metasearch: Rank vs. Score Based
Rank Aggregation Methods®

M. Elena Renda
I.S.T.I. — CNR
Area della Ricerca del CNR
Via G.Moruzzi 1, 56124 Pisa - ITALY

renda@iei.pi.cnr.it

ABSTRACT

Given a set of rankings, the task of ranking fusion is the
problem of combining these lists in such a way to opti-
mize the performance of the combination. The ranking fu-
sion problem is encountered in many situations and, e.g.,
metasearch is a prominent one. It deals with the problem
of combining the result lists returned by multiple search en-
gines in response to a given query, where each item in a
result list is ordered with respect to a search engine and a
relevance score. Several ranking fusion methods have been
proposed in the literature. They can be classified based on
whether: (i) they rely on the rank; (ii) they rely on the score;
and (iii) they require training data or not. Our paper will
make the following contributions: (i) we will report exper-
imental results for the Markov chain rank based methods,
for which no large experimental tests have yet been made;
(i) while it is believed that the rank based method, named
Borda Count, is competitive with score based methods, we
will show that this is not true for metasearch; and (iii) we
will show that Markov chain based methods compete with
score based methods. This is especially important in the
context of metasearch as scores are usually not available
from the search engines.

Categories and Subject Descriptors

H.3.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval—Retrieval models; H.3.4
[INFORMATION STORAGE AND RETRIEVAL]: Sys-
tems and Software— Performance evaluation (efficiency and
effectiveness)

Keywords

Meta-search, rank list aggregation

*This work is funded by the European Community in the
context of the CYCLADES project IST-2000-25456, under
the Information Societies Technology programme.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC2003, Melbourne, Florida, USA

Copyright 2003 ACM 1-58113-624-2/03/03 ...$5.00.

Umberto Straccia
I.S.T.I. — CNR
Area della Ricerca del CNR
Via G.Moruzzi 1, 56124 Pisa - ITALY

straccia@iei.pi.cnr.it

1. INTRODUCTION

The problem of rank fusion is the problem of computing a
“consensus” ranking, given individual ranking preferences
(a ranking is a linear ordering of a set of items) of several
judges. The ranking fusion problem is encountered in many
situations and a prominent one is metasearch: it deals with
the problem of combining the result lists returned by multi-
ple search engines in response to a given query, where each
item in a result list is ordered with respect to (w.r.t.) a
search engine and a relevance score.

While search engines certainly help users in locating in-
formation relevant to the user’s information need, they still
have a number of deficiencies: (i) indexing Web data is a
time and space consuming task. As the content of the Web
changes rapidly, each search engine has to set up a trade-
off between the coverage, i.e., the number of Web docu-
ments indexed w.r.t. the whole Web and the update fre-
quency, i.e., the time that occurs between the subsequent
re-indexing of the complete database. However large the
indexes are, still a search engine (re) indexes only a small
subset of all available documents on the WWW; (i) many
information sources, e.g., proprietary information sources
like the Digital Libraries of Editors', are not indexible as
they do not admit the gathering of their documents. These
are essentially databases that cannot be indexed by search
engines. The only way to search for information within these
Digital Libraries is to rely on the search services provided
by them; (i44) for some search engines?, the more advertisers
pay, the higher they will rank in the search results, called
pay-for-placement, with a consequently average loss in preci-
sion; (iv) search engines are subject to spamming [7], i.e., a
search engine has been spammed by a page in its index, on
a given query, if it ranks the page “too highly”.

Limitations, as such listed above, has led to the introduc-
tion of metasearch engines® with the aim of both alleviating
user’s work and to improve the retrieval effectiveness.

The ideal scenario for ranking fusion is when each judge
(search engine) gives a complete ordering of all the alter-
native items in the universe of alternatives. Unfortunately,
in metasearch this is far too unrealistic for two reasons: (7)
the coverage of search engines is different; and (¢7) search
engines limit access to the top 100 or 1000 ranked items of
their ordering. Therefore, any method for rank aggregation

Lyww. acm. org/dl,www.ieee.org wuw.elsevier.com

lyww. goto.com, www.findwhat.com

3For example, see MetaCrawler [16], SavvySearch [6], In-
quirus [11], ProFusion [10].

for Web application must be capable of dealing with the fact
that only a limited number of entries of each ranking is avail-
able. Of course, if there is no overlap among the rankings,
there isn’t much any fusion method can do. A challenge is to
design ranking fusion methods that work when there is lim-
ited, but non-trivial, overlap among the top few hundreds
or thousands of items in each ranking.

Several ranking fusion methods have been proposed in the
literature [1, 4, 7, 12]. A major distinction between the
methods is that they can be classified based on whether: (i)
they rely on the rank; (ii) they rely on the score; and (iii)
they require training data or not. Preliminary experimental
results seem to indicate that score based methods outper-
form rank based methods, while methods based on training
data perform better than those without training data.

In this work we will compare rank and score based meth-
ods, without training data, in the context of metasearch. In
particular, our paper will make the following contributions:
(i) we will report experimental results for the rank based
method based on Markov chains, for which no large experi-
mental tests have yet been made; (ii) while it is believed that
the rank based method, named Borda Count, is competitive
with score based methods, we will show that this is not true
for metasearch; and (iii) we will show that Markov chain
based methods compete with score based methods. This last
result is especially important in the context of metasearch
as scores are usually not available from the search engines.

In the following, we first review various approaches to
the ranking fusion problem. In Section 3 we present our
experimental results. Section 4 concludes with directions
for future research.

2. RANKING FUSION METHODS

There exist various methods for merging rank-ordered lists.
Basically, they use information that is readily available from
ranked lists of items. In most cases, the strategies relies on
the following information: (i) the ordinal rank assigned to
an item in the rank list; and (4i¢) the score assigned to an
item in the rank list. In score based methods, items are
ranked in order of the assigned scores in the rank lists, or
some transformation of those scores [1, 4, 8, 9, 12, 13, 17,
18], while in rank based merging methods, items are ranked
in order of the assigned ranks in the rank lists, or some trans-
formation of those ranks [1, 7, 12, 19]. Another orthogonal
distinction of rank fusion methods is whether the methods
rely on training data (e.g., the Bayes-fuse method [1], the
linear combination method [17] and the preference rank com-
bination method [8]) or not. Another class of methods is
based on the content of ranked items. In these methods, the
ranked documents are downloaded and analysed in order to
produce the final ranking. We will not address them here.

2.1 Preliminaries

At first, some basic definitions (see [7]) towards an uniform
way to present all the methods. Let U be a set of items,
called universe. A rank list (or simply ranking) T wr.t. U
is an ordering of a subset S C U, i.e., 7 = [21 > z2 >
-+« > xy], with each z; € S, and > some ordering relation
on S. Also, if i € U is present in 7, written ¢ € 7, let
7(i) denote the position or rank of 7 (a highly ranked or
preferred element has a low-numbered position in the list).
By assigning an unique identifier to each ¢ € U, without loss
of generality we assume that U = {1,2,...,|U|}.

We may distinguish at least the following cases: (i) if
7 contains all the elements in U, then 7 is said to be a
full list. In fact a full list is a total ordering on U, i.e., a
permutation. For instance, if U is the set of all indexed
pages of a search engine, we get a full list when we rank the
pages, say, w.r.t. the similarity to a query issued by a user;
(it) there are cases in which full lists are not convenient or
even possible. For instance, let U denote the set of all Web
pages in the world. Let 7 denote the results of a search
engine in response to a fixed query. Even though the query
might induce a total ordering of the pages indexed by the
search engine, since the index set of the search engine is
most surely only a subset of U, we have a strict inequality
|7| < |U|. Such lists that rank only some of the elements
in U are called partial lists; (ii1) a special case of partial
lists is the following. If S is the set of all the pages indexed
by a search engine and if 7 corresponds to the top k (say,
k = 10) results of the search engine w.r.t. a query, clearly
the pages that are not present in the list 7 can be assumed
to be ranked below k by the search engine. Such lists are
called top k rank lists, where k is the size of the list.

With s7(z) we will denote the real-valued score assigned
to item ¢ € U in rank list 7. Without loss of generality,
we can assume that the higher the score the better the rank
7(i) of item 7. If the score is not provided, s7(-) is undefined.
We will assume that either a score is provided for all items
in the rank list or the score is provided for none of them.
A rank list with scores will be called scored rank list. With
w” (4) we will indicate the normalised weight of item i € T
in ranked list 7. w” (i) is computed according to one of the
following methods. Consider a set R of rank lists, let 7 € R
and let U denote the union of the items occurring in R.

DEFINITION 1 (NORMALISATION METHODS). The norma-
lised weight, w™ (z), of an item i € T is defined as follows:

Score normalisation: for an item i € T

s7 (i) — minje, s7(4)

w’ (1) =
(@) maxjer $7(j) — minjer s7(4)

(1
Z-score normalisation: for an item i € T
T(7) _ -
W) = SO e
osT

where psm s the mean of the scores in T and osr is
their standard deviation

Rank normalisation: for an item ¢ € T

T(i) — 1

7|

W (i) =1 -

Borda rank normalisation: for an item i € U

Cr()=1
W™ (i) = 1 14 ifi €T @)
1y lr=1 otherwise

2 T 2 U]

For both normalisation methods based on scores, we assume
that there are at least two items with different score in the
rank list. Otherwise we assign w” (i) = 1. Furthermore,
note that w” is always monotone not increasing. For score
normalisation, the top ranked item has normalised weight
1, and the bottom ranked item has normalised weight 0. In

case of rank normalisation, w” is evenly distributed, which
is not true for the score case. The difference in weight be-
tween two subsequent ranked items in 7 is 1/|7|. The top
ranked item, has normalised rank weight 1, whereas the
bottom ranked item, has weight 1/|7|. Except the Borda
rank normalisation method, all other normalisation meth-
ods do not depend on R. Additionally, some explanation
is necessary for the Borda rank normalisation method. If
7 € R is a full list w.r.t. U, then the normalised Borda rank
weight coincides with the normalised rank weight. In case
of partial lists, there is a difference between the two. In
fact, in case of normalised rank weight, the weight decreases
with a factor 1/|7|, while in Borda rank normalisation case
the factor is 1/|U|. As a consequence, the distribution of
ranked items is equal within all lists 7; € R. Furthermore,
the normalised rank weight does not assign any value to
unranked items (¢ ¢ 7), while in the Borda rank normali-
sation, for the items left unranked, the remaining weights
are divided evenly among the unranked candidates. For-
mally, following the ideas of Borda [2] (see also [7, 14]),
if i € 7, then |U| + 1 — 7(4) is the Borda weight assigned
to item ¢ ranked as 7(¢). Normalising this weight we get
(U] = 7(i) + 1)/|U|. In case item ¢ is not ranked by 7,
ie, 1 &1, (U —|r|+1)/2|U| is the weight assigned to @
according to an evenly distribution. Indeed, 7 does not rank
d = |U| —|r| items. The remaining sum of Borda weights is,
thus, p = Zle i =d-(d+1)/2, which distributed evenly to
the d items gives d - (d+1)/2-d = (d + 1)/2 as weight for
each item. After normalisation we have (|U|—|r|+1)/2-|U]|.
Normalisation is usually applied before merging rank lists in
order to uniform score distributions. Normalisation allows
us to capture within an unique framework different fusion
methods.

Finally, another important concept in ranking fusion meth-
ods is the notion of rank hits, introduced first in [12]. In [12]
a ranking fusion method is presented, in the context of in-
formation retrieval, based on the assumption that the more
search engines retrieve the same document, the more this
document may be considered as relevant to a query and,
thus, be ranked higher. This assumption can be rephrased
in our context as: the more partial rank lists rank the same
item, the higher this item should be ranked in the fused list.

DEFINITION 2 (RANK HITS). Consider a set of rankings
R. Let U denote the union of the items occurring in R. For
each item i € U, the rank hits of i w.r.t. R, denoted h(i, R),
is given by h(i,R) = |{Tr € R:i € T}|.

2.2 Fusion methods

In this section we will present the ranking fusion methods
that we will analyse. In the following, consider a set of n
rankings R = {r1,...,7»}. Let U denote the union of the
items in 71,...,7n, d.e., U= U, cpie, 18} With 7 we will
indicate the ranking (called fused ranking or fused rank list),
which is the result of a rank fusion method applied to the
rank lists in R. In order to fully specify 7, it will be sufficient
to determine the score s (i) (called fused score), for each
item ¢ € U, as 7 will be ordered according to decreasing
values of s7. We will say that two fused rankings 71,72,
which are the result of two fusion methods, are equal iff
71 = T2, while we will say that 71 and 7» are equivalent iff
for each i € U, 71(i) = 72(4) (they have the same ordering).
Of course, equality implies equivalence and not vice-versa.

2.2.1 Linear combination methods

Fox and Shaw [9], and later Lee [12], presented ranking fu-
sion methods, which are based on the unweighted min, max,
or sum of each item’s normalised score. Lee, additionally,
addressed the case where the rank has been considered in
place of the score. Two interesting methods are listed below

CombSUM: s7(i) =3 cpw™ (i)
CombMNZ: s7(i) =h(i,R) - Y. cpw™ (%)

From the test results in [9, 12], CombMNZ is considered as
the best ranking fusion method, even if it performed slightly
better than CombSUM. Essentially, CombMNZ is based on
the fact that, according to Lee’s experiments, “different
search engines return similar sets of relevant documents but
retrieve different sets of non-relevant documents”. Indeed,
the CombMNZ combination function heavily weights com-
mon documents.

In the methods above, all rankings have same priority.
An obvious extension of the combination method is to in-
troduce a preference weight, «,, associated to the rank-
ings 7 € R, where > _pa, =1and a, > 0. For in-
stance, Vogt [17] proposed to linearly combine the score nor-
malised weights®, i.e., the fused score s™ of an item i € U is
sT(i) = Y .cg @r - w"(i). Note that the proposed model re-
quires training data to determine the weight a,. Although
good results are achieved in specific cases, this technique has
not yet been shown to produce reliable improvement.

We may generalise these methods as follows.

DEFINITION 3 (LINEAR COMBINATION METHOD). Inlin-
ear combination based ranking fusion methods, the fused
score s (i) of an item i € U is defined according to

sT(1) = h(i, R)Y - > ar - w” (i) (5)
TER
where (i) all the rank lists T € R have been normalised ac-
cording to the same normalisation method; (i1) y € {0,1} in-
dicates whether hits are counted or not; and (¥44) Y, o p 0r =
1 and ar > 0 indicates the priority of the rank list T.

We assume that o, is the constant value ‘17' if all rank list
have the same priority, e.g., no training data is considered.

In the following, we will identify the methods based on
the above combination function (5) with X.z.y, where y is
the value in the formula and = € {r,s,z,b} identifies the
normalisation method: z = r stands for rank normalisation,
x = s stands for score normalisation, x = z stands for z-score
normalisation and z = b stands for Borda normalisation.
For instance, the label ¥.s.1 indicates the fusion method
based on Equation (5), where hits are counted and score
normalisation has been applied.

2.2.1.1 Borda Count.

Borda’s method [2, 14] is a voting method based on ranks,
i.e., it assigns a weight corresponding to the ranks in which
a candidate appears within each voter’s ranked list. Compu-
tationally they are very easy, as they can be implemented in
linear time. The Borda Count (BC) method has been con-
sidered in the context of the rank fusion problem [1, 7], and
works as follows. Each voter ranks a fixed set of ¢ candidates

4The extension of weighted linear combination to the com-
bination methods of Definition 3 is immediate.

in order of preference. For each voter, the top ranked candi-
date is given c points, the second ranked candidate is given
c—1 points, and so on. If there are some candidates left un-
ranked by the voter, the remaining points are divided evenly
among the unranked candidates. The candidates are ranked
in decreasing order of total points (See, e.g., [7, 14]). For-
mally, the method is equivalent to the following: for each
item ¢ € U and rank list 7 € R, consider the Borda nor-
malised weight w7 (i) (Definition 1). The fused rank list 7
is ordered w.r.t. the Borda score s™, where the Borda score
of aitem i € U in 7 is defined as

sT(i) =Y w(i) (6)

TER

Consequently, the BC is equivalent to the CombSUM method
combined with Borda rank normalisation, i.e., £.b.0. Aslam
and Montague [1] also consider a Weighted Borda Count,
where in place of the sum over the normalised Borda weights,
a linear combination of these weights is considered, as for
the linear combination method above.

2.2.2 Markov chain based methods

An interesting approach to rank fusion is proposed in [7] and
is based on Markov chains. A (homogeneous) Markov chain
for a system is specified by a set of states S = {1,2,...,|5|}
and an |S| x |S| non-negative, stochastic (i.e., the sum of
each row is 1) matrix M. The system begins in some start
state in S and at each step moves from one state to an-
other state. The transition is guided by M: at each step,
if the system is at state 4, it moves to state j with prob-
ability M;;. If the current state is given as a probability
distribution, the probability distribution of the next state
is given by the product of the vector representing the cur-
rent state distribution and M. In general, the start state
of the system is chosen according to some distribution x
(usually, the uniform distribution) on S. After m steps, the
state of the system is distributed according to xM™. Under
some conditions (which we will not discuss here), irrespec-
tive of the start distribution x, the system eventually reaches
an unique fixed point where the state distribution does not
change (few steps may suffice). This distribution is called
stationary distribution. It can be shown that the stationary
distribution is given by the principal left eigenvector y of
M, i.e., yM = Ay. In practice, a simple power-iteration
algorithm can quickly obtain a reasonable approximation of
y. The entries in y define a natural ordering on S. We call
such an ordering the Markov chain ordering of M.

The application of Markov chains to the rank fusion prob-
lem is as follows. The set of states S corresponds to the list
of all candidates to be ranked, i.e., the set of all items in
R ={m,...,m}. The transition probabilities in M depend
in some way on i, ..., Tn, as we will see below. 7 is then the
Markov chain ordering on M. Below, some specific Markov
chains (MC) are proposed [7]:

MC1: if the current state is item 4, then the next state is
chosen uniformly from the multiset of all items j that
were ranked higher than or equal to ¢ by some ranking
that ranked 4, i.e., chose the next state uniformly from

the multiset QF* = Ur_ {5 : 74 (j) < 7 (9)};

MCs5: if the current state is item 4, then the next state is
chosen by first picking a ranking 7 uniformly from all

the 71, ..., 7, containing ¢, then picking an item j uni-
formly from the set Q€2 = {j : 7(j) < 7(i)};

MCs: if the current state is item 4, then the next state is
chosen as follows: first pick a ranking 7 uniformly from
all the 71,..., 7, containing ¢, then uniformly pick an
item j that was ranked by 7. If 7(j) < 7(4) then go to
7, else stay in 4;

MCy: if the current state is item 4, then the next state is
chosen as follows: first pick an item j uniformly from
S. If 7(j) < 7(3) for the majority of the lists 7 € R
that ranked both ¢ and j, then go to j, else stay in i.

Note that the Markov chain methods do rely on comparison
among the ranks only and neither consider scores nor hits.
Below is an example illustrating the Markov chain methods.

EXAMPLE 1. Consider the following rankings R = {T1,72,73}
of the three items in S = {1,2,3}

rank

lists 1| 72|78
1 1 3 3
2 2 1 2
3 3 2 1

It can be shown that the transition matrizes for cases MC1q,
MCs, MC3 and MCy are the matrizes M, M?, M?® and M4,
respectively.

M! M?
item 1 2 3 item 1 2 3
1 | 1/2|1/6]2/6 1 | 11/18 | 2/18 | 5/18
2 | 2/7|3/7 |2/ 2 5/18 | 8/18 | 5/18
3 |1/5]1/5]3/5 3 2/18 | 2/18 | 14/18
M3 M*
item 1 2 3 item 1 2 3
1 |6/91/9]2/9 1 |2/3| 0 |1/3
2 | 2/9|5/9|2/9 2 |1/3|1/3|1/3
3 |1/9|1/9|7/9 3 0| o 1

In the following, we show some example computations for the
maltriz entries. Remember that MZ; is the probability that, given

the current state represented by item i, the next state is repre-
sented by item j.

- Mll3 is 2/6. Indeed, Q?l is {1,1,3,1,2,3}. So, the prob-
ability of picking uniformly one of the elements in Q?l is
1/6 and, the probability of picking item 3 is 2/6.

- M221 is 5/18. Indeed, the probability of picking uniformly
a rank list containing item 2 is 1/3. If 71 has been selected
then Q7(_712,2 = {2,1}. So, the probability of picking item 1
is 1/2. Similarly, QZ2, = {2,1,3} and QZ2, = {2,3}.
Therefore, M%lzé-%+é-%+é-0:%.

- M233 is 2/9. Indeed, the probability of picking uniformly
a rank list containing item 2 is 1/3. The probability of
uniformly picking an item within a rank list is 1/3, as well.
Since, 11(3) £ 71(2), 72(3) < 72(2), 73(3) < 73(2), M35 =
1 1.1, 1.1 _2
5:0+3-3+ 35 3=35 holds.

- M242 is 1/3. Indeed, the probability of picking uniformly an
item in S is 1/3. Additionally, let us consider the following

table
item |1 (2|3 |
1 0|12
2 2102
3 11110

Each entry a;; in the table above is the count of the lists
T € R, such that 7(j) < 7(3), i.e., in how many rankings
item j is ranked better than item i. As there are three lists,

the magority threshold is two. Mr_fr_) is the probability that,
given item 2, after the next step we still stay in document
2. As a21,a22 and a3 are 2,0 and 2, respectively, in two
cases out of three we move away from item 2, whereas in
one case we still stay in item 2. Consequently, M242 is 1/3.

Finally, the fused rank list 7, of the rank set R is the Markov
chain ordering on M*, k = 1...4. It can be shown that for all
four cases 7, =[3>2 > 1].

3. EXPERIMENTS

Our experiments aims to compare the ranking fusion meth-
ods in the context of metasearch (without training data).

3.1 Datasets

We will use the systems submitted to the annual Text RE-
trieval Conference® (TREC). TREC offers large, standard
data sets with many rank lists, ready to be fused. Usually,
each year a large document data base S and a list of 50
queries are given. In the ad-hoc and Web information re-
trieval contest, each system x has to index this document
base and then has to provide to the TREC organisation, for
each query g, the top 1000 ranked documents, 7,. For all

queries g, all the rank lists) provide a pool of documents.
Each document is then evaluated by humans whether being
relevant or not w.r.t. g. After this manual step, each sys-
tem is evaluated in terms of its effectiveness, i.e., its average
precision [15] is computed. As we would like to evaluate the
fusion methods in the context of Web metasearch, we con-
sidered the Web results of TREC8, TREC9 and TREC2001,
i.e., the rank lists are related to World Wide Web engines.
Furthermore, TRECY, is divided into a “short category”,
which we will identify with TREC9, and a non short one
(identified by TREC9L). In summary, we rely on the results
of four data sets. For each of them, we considered the top
12 performing rank lists, where at most one rank list per

system has been considered®. The list is shown below”.

TRECS ok8wmx (.3829), Flab8wtdnN (.3405), INQ620 (.3327),
mds08w1 (.322), UniNEW2Ct (.315), att99wtde (.3113),
uwmt8w0 (.3066), acsys8wm (.3009), CL99WebM (.2889),
iit99wt1 (.2265), DCU9ILOL (.1939), Scai8Webl (.1854)

TREC9: jscbt9wcesl (.2011), hum9te (.197), uwmt9w10g4 (.1812),
tnout9t2 (.1801), ric9tpx (.1787), NEtm (.1754), iit00t (.1627),
Flab9atN (.136), apl9t (.1272), Sab9web1 (.1265), PuShort-
Base (.0654), CWI0000 (.0176)

TRECYL: iit00m (.3519), jscbtowll2 (.2801), ricddpn (.2616),
NEnm (.2499), acsys9mwO0 (.2486), hum9tdn (.2335), pir0Watd
(.2209), NRKprf20 (.2173), Sab9web3 (.2159), apl9all (.1948),
Flab9atdnN (.1923), xvsmman (.1785)

TREC2001: iit0lm (.3324), oklOwtndl (.2831), csiro0mwal
(.2817), flabxtd (.2332), UniNEn7d (.2242), fub01be2 (.2226),
hum01tdlx (.2201), JuruFull (.2105), kuadhoc2001 (.2088),
ricMM (.2084), jscbtawtl4 (.206), apl10wd (.2035)

3.2 Experimental setup

Our method to examine the effectiveness of the fusion meth-
ods is as follows. Each experiment is applied to a TRECS,
TREC9, TRECIL and TREC2001 individually. For each
TREC, each data point is the average of 10 trials. Each
trial is performed as follows: randomly select a set R of
n € {2,4,6,8,10,12} rank lists w.r.t. a given TREC, apply
the fusion methods and record the average precision of the
fused rank lists. This experiment is designed to compare the

*http://trec.nist.gov

Indeed, it may happen that a contender submitted different
runs. Then we consider the best run for it.

"The rank list ID and its average precision are shown.

fusion methods. The fusion methods that will be tested are
Y.z.y with constant ar and the M C;s. Concerning M C;, we
have slightly modified them by assuming that each ranked
item ¢ € 7 is ranked better than any unranked item j & .

3.3 Experimental results

The results of our experiments are reported in Tables 1-4.
For each method, the values in the row indicates the average
precision of the 10 trials for each group. Concerning the lin-
ear combination based fusion methods X.z.y, the following
can be established:

1. w.r.t. the methods based on ranks, the methods which
do not count the hits (X.7.0, X.5.0) perform better than
those counting hits (X.7.1,3.b.1). The result is surpris-
ing, as it is believed that counting hits yields better

performance;

2 4 6 8 10 12 Avg
MC, .3328 | .3711 | .3803 | .3850 | .3872 | .3905 | .3745
MCo .3288 | .3661 | .3793 | .3785 | .3858 | .3905 | .3715
MC3 .3301 | .3584 | .3689 .376 .3780 .381 .3654
MCy .3642 .3627 | .3903 | .3986 .3999 .3994 .3858
Y.l .3150 .3486 .3468 | .3467 | .3498 .3504 .3428
X.r.0 .3341 .3581 .3558 | .3538 .3625 .3625 .3545
X.s.1 .3418 .3674 | .3852 | .3886 .3914 | .3943 .3781
¥.s.0 | .3317 | .3615 | .3746 | .3948 | .3987 | .4028 | .3774
¥.z.1 | .3450 | .3558 | .3620 | .3643 | .3646 .367 .3598
>.2.0 | .3038 | .3569 | .3501 | .3571 | .3608 | .3657 | .3491
>.b.1 | .3288 | .3440 | .3369 | .3430 | .3416 | .3432 | .3396
3.0.0 .3249 .338 .3426 | .3461 .3439 .3454 .3402

Table 1: TREC8 Experimental Results.

2 4 6 8 10 12 Avg
MC, L1738 | L1697 | .1849 | .1907 | .1960 197 .1853
MC» .159 .1839 | .1887 | .1946 | .2034 | .2072 | .1895
MCs3 .1676 | .1835 | .1867 | .1927 | .1979 | .2008 | .1882
MC4 | .1486 | .1993 | .2110 | .2093 | .2080 | .2065 | .1971
Y.l .1745 1571 .1543 | .1426 .1488 152 .1549
X.7.0 .1505 .1644 | .1615 | .1651 1740 | 1777 | .1655
X.s.1 .1555 173 .1881 .1952 .1966 2017 .185
3.s.0 .1662 .1854 | .1975 | .2051 .2066 .2049 .1943
¥.z.1 | .1533 | .1848 | .1947 | .2007 | .2025 | .2021 | .1897
».z.0 | .1662 | .1861 | .1950 | .2015 | .2053 | .2053 | .1932
¥.b.1 .1529 1375 .1318 | .1261 .1299 .1168 .1325
X.b.0 .1601 .1383 .1412 | .1361 .1294 124 .1382

Table 2: TREC9 Experimental Results.

2 4 6 8 10 12 Avg
MC, .2979 .3045 .312 .3185 .3283 .3304 .3153
MC» .2491 | .2847 | .3168 | .3208 | .3268 | .3304 | .3048
MCs3 .2463 | .2743 | .3105 | .3026 | .3242 | .3279 | .2977
MC4 | .2683 | .2990 | .3206 | .3224 | .3303 | .3287 | .3115
Yol .2512 .2804 | .2834 | .2956 .2979 .2979 .2844
.70 .2624 .3029 .3018 | .2961 .3085 .3042 .2960
Y.s.1 .2681 .3056 .3068 | .3301 .3332 .3471 .3152
3.s.0 2714 .2912 .3189 | .3265 .3355 .3425 .3143
X.z.1 2414 2732 2791 2765 .2832 2798 2722
».z.0 | .2647 | .2533 | .2786 | .2782 | .2754 | .2725 | .2705
¥.b.1 .2858 .2691 .2913 | .2881 .2940 | .2942 .2871
X.b.0 .2522 .3064 | .2952 | .2982 .2954 | .2944 .2903

Table 3: TREC9L Experimental Results.

2. w.r.t. the methods based on scores, there is no substan-
tial difference between the methods which do count the

MCy .2724 | 2960 | .3232 | .3376 | .3443 | .3478 | .3202
MCo | .2581 | .3194 | .3146 | .3353 | .3488 | .3478 | .3207
MCs | .2721 | .3029 | .3161 | .3315 | .3346 | .3435 | .3168
MC,4 | 2796 | .3096 | .3178 | .3234 | .3294 | .3341 | .3155
X.r.1 | .2611 | .3035 | .3175 | .3282 | .3543 .348 .3188
X.r.0 | .2799 | .3282 | .3196 | .3358 | .3432 .353 .3266
X.s.1 | .2740 | .3077 | .3430 | .3563 | .3410 | .3493 | .3286
>.s.0 | .2699 | .3161 | .3427 | .3425 | .3406 .346 .3263
.z.1 | .2514 | 2711 | .2795 | .2915 | .2769 | .2762 | .2745
>.2.0 | .2483 | .2767 | .2720 | .2728 | .2721 | .2668 | .2681
X.b.1 | .2884 | .2892 | .3204 | .3324 | .3350 | .3395 | .3175
X.b.0 | .2516 | .2912 | .3233 | .3171 | .3272 | .3404 | .3085

Table 4: TREC2001 Experimental Results.

hits (2.s.1,3.2.1) and those which do not count hits
(X.5.0,3.2.0). Therefore, counting hits seems not to
improve performance in metasearch;

3. score normalisation performs clearly better than z-
score normalisation;

4. rank normalisation performs better than Borda rank
normalisation and, in particular, it performs better
than the BC method. While the BC showed to be
promising in early experiments [1], it works worse at
least for metasearch;

5. the ¥.s.1 method, i.e., score normalisation and count-
ing hits, wins three out of four tests, but its average
precision is substantially equal to X.s.0;

6. the X.7.0 method, i.e., rank normalisation and do not
counting hits, may considered the winner (wins three
out of four tests), and its average precision is highest
among the rank based methods;

7. the ¥.s.y methods wins over the X.r.0 method (even
if in TREC2001 they are very close), in terms of wins
and clearly in terms of average precision.

Table 5 contains the average precision over the four tests.

Method | MCy | MCs | MC3 | MCy | X.r.1 | 1.0
Avg .3025 | .2966 .292 .2988 | .2752 | .2857
Method | X.5.1 | X.5.0 | X.2.1 | X.2.0 | X.b.1 | X.b.0
Avg .3017 | .3031 | .2741 | .2702 | .2692 | .2693

Table 5: Average precision over the tests.
About the Markov chain based methods we observe that:

1. there is no clear winner. M C; and M C4 are first twice,
and their average precision is not appreciably different;

2. the Markov chain based methods win over X.r.0 three
times out of four, and the average precisions of MC}
and M Cy are clearly better than those of rank based
combination methods;

3. the average precisions of M Cy and M C4 are compara-
ble to those of ¥.s.1 and X.s.0.

4. CONCLUSIONS

We may summarize our results in the context of metasearch
as follows. Counting hits does not improve the effectiveness
significantly. Additionally, we have shown that, contrary
to what is usually assumed, there are rank based methods,
i.e., the Markov chain based methods, whose performance
is comparable to score based methods. This is especially
important in the context of metasearch as scores are usually
not available from the search engines. It is worth noting
that the Markov chain based methods do not rely on hits,
but do rely on rank comparisons only.

There are some directions for future research, which we
are currently investigating; (i) to verify whether Markov
chain based methods perform well also in other contexts,
e.g., testing them also w.r.t. other TREC results; (i) to
investigate the performance of the methods when training
data is available.

5. REFERENCES

[1] A. Aslam, Javed and Mark Montague. Models for metasearch.
In ACM SIGIR-01, pages 276-284, 2001.

[2] J.C. Borda. Mémoire sur les élections au scrutin. Histoire de
l’Académie Royal des Sciences, 1781.

[3] Sergey Brin and Lawrence Page. The anatomy of a large-scale
hypertextual Web search engine. Computer Networks and
ISDN Systems, 30(1-7):107-117, 1998.

[4] Jamie Callan, Zhihong Lu, and Bruce W. Croft. Searching
distribute collections with inference networks. In ACM
SIGIR-95, pages 21-28, 1995.

[5] Nick Craswell, David Hawking, and Paul Thistlewaite. Merging

results from isolated search engines. In 10th Australian

Database Conf., 1999.

Daniel Dreilinger and Adele E. Howe. Experiences with

selecting search engines using metasearch. ACM Transactions

on Information Systems, 15(3):195-222, 1997.

[7] Cynthia Dwork, Ravi Kumar, Moni Noar, and D. Sivakumar.

Rank aggregation methods for the web. In 10th International

Conf. on the World Wide Web, pages 613—622. ACM Press

and Addison Wesley, 2001.

Ronald Fagin and Edward L. Wimmers. Incorporating user

preferences in multimedia queries. In Proc. of 6th

International Conf. on Database Theory, LNCS 1186, 1997.

Joseph A. Fox, Edward Shaw. Combination of multiple

sources: The TREC-2 interactive track matrix experiment. In

ACM SIGIR-94, 1994.

[10] Susan Gauch, Guijun Wang, and Mario Gomez. ProFusion:
Intelligent fusion from multiple, distributed search engines.
volume 2, pages 637—649, 1996.

[11] Steve Lawrence and Lee C. Giles. Inquirus, the NECI meta
search engine. Computer Networks and ISDN Systems,
30:95-105, 1998.

[12] Joon Ho Lee. Analysis of multiple evidence combination. In
ACM SIGIR-97, pages 267276, 1997.

[13] R. Manmatha, R. Rath, and F. Feng. Modeling score
distributions for combining the outputs of search engines. In
ACM SIGIR-01, pages 267-275, 2001.

[14] D. G. Saari. The mathematics of voting: Democratic
symmetry. The Economist, March 4 2000.

[15] Gerard Salton and J. Michael McGill. Introduction to Modern
Information Retrieval. Addison Wesley Publ. Co., 1983.

[16] E. Selberg and O. Etzioni. The MetaCrawler architecture for
resource aggregation on the Web. IEEE Ezpert,
(January—February):11-14, 1997.

[17] Christopher C. Vogt and Garrison W. Cottrell. Fusion via a
linear combination of scores. Information Retrieval,
1(3):151-173, 1999.

[18] Ellen M. Voorhees, Narendra K. Gupta, and Ben Johson-Laird.
The collection fusion problem. In D.K. Harman, editor, Proc.
3rd Text REtrieval Cconference (TREC-3), number 500-225,
1994. National Institute of Standards and Technology.

[19] Ronald R. Yager and Rybalov. On the fusion of documents
from multiple collection information retrieval systems. Journal
of the American Society for Information Science,
13(49):1177-1184, 1998.

[6

[8

[9

